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Abstract

In the regression discontinuity design (RDD), it is common practice to assess the credibility

of the design by testing the continuity of the density of the running variable at the cut-off,

e.g., McCrary (2008). In this paper we propose an approximate sign test for continuity of

a density at a point based on the so-called g-order statistics, and study its properties under

two complementary asymptotic frameworks. In the first asymptotic framework, the number

q of observations local to the cut-off is fixed as the sample size n diverges to infinity, while

in the second framework q diverges to infinity slowly as n diverges to infinity. Under both

of these frameworks, we show that the test we propose is asymptotically valid in the sense

that it has limiting rejection probability under the null hypothesis not exceeding the nominal

level. More importantly, the test is easy to implement, asymptotically valid under weaker

conditions than those used by competing methods, and exhibits finite sample validity under

stronger conditions than those needed for its asymptotic validity. In a simulation study, we find

that the approximate sign test provides good control of the rejection probability under the null

hypothesis while remaining competitive under the alternative hypothesis. We finally apply our

test to the design in Lee (2008), a well-known application of the RDD to study incumbency

advantage.
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1 Introduction

The regression discontinuity design (RDD) has been extensively used in recent years to retrieve

causal treatment effects - see Lee and Lemieux (2010) and Imbens and Lemieux (2008) for exhaus-

tive surveys. The design is distinguished by its unique treatment assignment rule where individuals

receive treatment when an observed covariate, known as the running variable, crosses a known cut-

off. Such an assignment rule allows nonparametric identification of the average treatment effect

(ATE) at the cut-off, provided that potential outcomes have continuous conditional expectations at

the cut-off (Hahn et al., 2001). The credibility of this identification strategy along with the abun-

dance of such discontinuous rules have made RDD increasingly popular in empirical applications.

While the continuity assumption that is necessary for nonparametric identification of the ATE

at the cut-off is fundamentally untestable, researchers routinely assess the plausibility of their

RDD by exploiting two testable implications of a stronger identification assumption proposed by

Lee (2008). We can describe the two implications as follows: (i) the treatment is locally random-

ized at the cut-off, which translates into the distribution of all observed baseline covariates being

continuous at the cut-off; and (ii) individuals have imprecise control over the running variable,

which translates into the density of the running variable being continuous at the cut-off. The

practice of judging the reliability of RDD applications by assessing either of the two above stated

implications (commonly referred to as manipulation, or falsification, or placebo tests) is ubiquitous

in the empirical literature. Indeed, Table 4 surveys RDD empirical papers in four leading applied

economic journals during the period 2011-2015. Out of 62 papers, 43 of them include some form

of manipulation, falsification, or placebo test.

This paper proposes an approximate sign test for the null hypothesis on the second testable

implication, i.e., the density of the running variable is continuous at the cut-off.1 The approximate

sign test has a number of distinctive attractive properties relative to existing methods used to test

our null hypothesis of interest. First, the test does not require consistent non-parametric estimators

of densities and simply exploits the fact that a certain functional of order statistics of the data is

approximately binomially distributed under the null hypothesis. Second, our test controls the

limiting null rejection probability under fairly mild conditions that, in particular, do not require

existence of derivatives of the density of the running variable.2 In addition, our test is valid in finite

samples under stronger, yet plausible, conditions. Third, the asymptotic validity of our test holds

under two alternative asymptotic frameworks; one in which the number q of observations local to the

cut-off is fixed as the sample size n diverges to infinity, and one where q diverges to infinity slowly as

1It is important to emphasize that the null hypothesis we test in this paper is neither necessary nor sufficient for

identification of the ATE at the cut-off; see Remark 2.2.
2We use the term null rejection probability as opposed to asymptotic size as a way to acknowledge that, for a

given sample size, there always exists a heavily steep smooth function that is indistinguishable from a discontinuous

one. Remark 4.5 discusses this further and provides important references.
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n diverges to infinity. Importantly, both frameworks require similar and arguably mild conditions.

Fourth, our test is simple to implement as it only involves computing order statistics, a constant

critical value, and a single tuning parameter. This contrasts with existing alternatives that require

local polynomial estimation of some order and either bias correction or under-smoothed bandwidth

choices. Finally, we have developed a companion Stata package to facilitate the adoption of our

test.3

The construction of our test is based on the simple intuition that, when the density of the

running variable is continuous at the cut-off, the fraction of units under treatment and control

local to the cut-off should be roughly the same. This means that the number of treated units

out of the q observations closest to the cut-off, is approximately distributed as a binomial random

variable with sample size q and probability 1
2 . To formalize this intuition, we exploit and develop

properties of the so-called g-order statistics (see, e.g., Kaufmann and Reiss, 1992; Reiss, 1989) and

consider the two asymptotic frameworks mentioned earlier to capture the local behavior of the

density at the cut-off. In the first asymptotic framework, q is fixed as n→∞ to represent a finite

sample situation where the effective number of observations used by the test is too small to credibly

invoke approximations for “large” q. This may arise, for example, when the density is not so well

behaved around the cut-off as illustrated in some of our simulations. This framework is similar to

the one in Canay and Kamat (2018), who in turn exploit results from Canay, Romano and Shaikh

(2017). It is worth noting that the hypothesis we test, the test statistic, the critical value, and most

of the formal arguments are different from those in Canay and Kamat (2018) or Canay, Romano

and Shaikh (2017). In the second asymptotic framework, q diverges to infinity slowly as n → ∞
to represent a finite sample situation where the effective number of observations used by the test

is large enough to invoke approximations for “large” q. This framework is similar to the one in

McCrary (2008); Otsu et al. (2013); Cattaneo et al. (2019); Armstrong and Kolesár (2019), among

others, and is in line with more traditional asymptotic arguments in non-parametric tests.

From a technical standpoint, this paper has several contributions relative to the existing liter-

ature. To start, our results exhibit two important differences relative to Canay and Kamat (2018)

that go beyond the difference in the null hypotheses. First, we do not study our test as an approx-

imate randomization test but rather as an approximate sign test. This not only requires different

analytical tools, but also by-passes some of the challenges that would arise if we were to char-

acterize our test as an approximate randomization test; see Remark 4.1 for a discussion on this.

In addition, our approach in turn facilitates the analysis for the second asymptotic framework in

which q → ∞. Second, we develop results on g-order statistics as important intermediate steps

towards our main results. Some of them may be of independent interest; e.g., Theorem 4.1. In

addition, relative to the results in McCrary (2008); Otsu et al. (2013); Cattaneo et al. (2019); our

test does not involve consistent estimators of density functions to either side of the cut-off and does

3The Stata package rdcont can be downloaded from http://sites.northwestern.edu/iac879/software/.
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not require conditions involving existence of derivatives of the density of the running variable local

to the cut-off. To the best of our knowledge, the formal asymptotic results we present are original

to this paper.

It is relevant to note that similar binomial tests have been recently proposed in the RDD

literature by Cattaneo et al. (2016, 2017) and Frandsen (2017). As we explain in more detail in

Remark 3.3, there are important differences between these binomial tests and ours when it comes

to the null hypothesis being tested, the formal arguments, and the practical implementation of the

tests. Cattaneo et al. (2016, 2017) rely on finite sample arguments to justify their test construction

for the hypothesis of local randomization. Frandsen (2017) also relies on finite sample arguments

to test the hypothesis of manipulation of a discretely distributed running variable. In contrast, we

test the hypothesis that the density of the running variable is continuous at the cut-off. Our focus

on this particular null hypothesis prevents us from invoking finite sample arguments at the level

of generality we consider and leads us to study the asymptotic properties of the approximate sign

test. Our analysis also guides how to choose q in data-dependent way and this, in turn, leads to a

distinctive implementation of the test that we propose.

The remainder of the paper is organized as follows. Section 2 introduces the notation and

describes the null hypothesis of interest. Section 3 defines g-order statistics, formally describes the

test we propose, and discusses all aspects related to its implementation including a data-dependent

way of choosing q. Section 4 presents the main formal results of the paper, dividing those results

according to the two alternative asymptotic frameworks we employ. In Section 5, we examine the

relevance of our asymptotic analysis for finite samples via a simulation study. Finally, Section 6

implements our test to reevaluate the validity of the design in Lee (2008) and Section 7 concludes.

The proofs of all results can be found in the Appendix.

2 Setup and notation

Let Y ∈ R denote the observed outcome of interest for an individual or unit in the population

and A ∈ {0, 1} denote an indicator for whether the unit is treated or not. Further denote by Y (1)

the potential outcome of the unit if treated and by Y (0) the potential outcome if not treated. As

usual, the observed outcome and potential outcomes are related to treatment assignment by the

relationship

Y = Y (1)A+ Y (0)(1−A) . (1)

The treatment assignment in the (sharp) RDD follows a discontinuous rule,

A = I{Z ≥ z̄} ,

where Z ∈ Z ≡ supp(Z) is an observed scalar random variable known as the running variable and

z̄ is the known threshold or cut-off value. For convenience we normalize z̄ = 0, which is without
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loss of generality as we can always redefine Z as Z − z̄. This treatment assignment rule allows us

to identify the average treatment effect (ATE) at the cut-off; i.e.,

E[Y (1)− Y (0)|Z = 0] .

In particular, Hahn et al. (2001) establish that identification of the ATE at the cut-off relies on the

discontinuous treatment assignment rule and the assumption that

E[Y (1)|Z = z] and E[Y (0)|Z = z] are both continuous in z at z = 0 . (2)

Reliability of the RDD thus depends on whether the mean outcome for units marginally below the

cut-off identifies the true counterfactual for those marginally above the cut-off.

The continuity assumption in (2) is arguably weak, but fundamentally untestable. In practice,

researchers routinely employ two specification checks in RDD that, in turn, are testable implications

of a stronger sufficient condition proposed by Lee (2008, Condition 2b). The first check involves

testing whether the distribution of pre-determined characteristics (conditional on the running vari-

able) is continuous at the cut-off. See Shen and Zhang (2016) and Canay and Kamat (2018) for a

recent treatment of this problem. The second check involves testing the continuity of the density

of the running variable at the cut-off, an idea proposed by McCrary (2008). This second check is

particularly attractive in settings where pre-determined characteristics are not available or where

these characteristics are likely to be unrelated to the outcome of interest. Formally, we can state

the hypothesis testing problem for the second check as

H0 : f+Z (0) = f−Z (0) vs. H1 : f+Z (0) 6= f−Z (0) , (3)

where f+Z (0) and f−Z (0) are the one-sided limits of the probability density function of Z, i.e.,

f+Z (0) ≡ lim
z↓0

fZ(z) and f−Z (0) ≡ lim
z↑0

fZ(z) . (4)

In RDD empirical studies, the aforementioned specification checks are often implemented (with

different levels of formality) and referred to as falsification, manipulation, or placebo tests (see

Table 4 for a survey).

In this paper we consider an approximate sign test for the null hypothesis of continuity in the

density of the running variable Z at the cut-off z̄ = 0, i.e., (3). This test has three attractive

features compared to existing approaches (see, e.g., McCrary, 2008; Otsu et al., 2013; Cattaneo

et al., 2019). First, it does not require commonly imposed smoothness conditions on the density

of Z, as it does not involve non-parametric estimation of such a density. Second, it exhibits finite

sample validity under certain (stronger) easy to interpret conditions. Finally, it involves a single

tuning parameter (a feature shared by the approach proposed by Cattaneo et al., 2019) as opposed

to multiple ones in McCrary (2008). We discuss these features further in Section 4.
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Remark 2.1. Gerard et al. (2016) study the consequences of discontinuities in the density of Z at

the cut-off. In particular, the authors consider a situation in which manipulation occurs only for a

subset of participants and use the magnitude of the discontinuity of f(z) at z = 0 to identify the

proportion of always-assigned units among all units close to the cut-off. Using this setup, Gerard

et al. (2016) show that treatment effects in RDD are not point identified but the model still implies

informative bounds.

Remark 2.2. It is important to emphasize that a running variable with a continuous density is

neither necessary nor sufficient for the identification of the average treatment effect at the cut-off.

For a discussion of this and some intuitive examples, see Lee (2008) and McCrary (2008).

3 Approximate sign test via g-ordered statistics

Let P be the distribution of Z and Z(n) = {Zi : 1 ≤ i ≤ n} be a random sample of n i.i.d.

observations from P . Let q be a small (relative to n) positive integer and g : Z → R be a

measurable function such that g(Z) has a continuous distribution function. For any z, z′ ∈ Z
define ≤g as

z ≤g z′ if g(z) ≤ g(z′) .

The ordering defined by ≤g is called a g-ordering on Z. The g-order statistics Zg,(i) corresponding

to Z(n) are defined as the values satisfying

Zg,(1) ≤g · · · ≤g Zg,(n) ,

see, e.g., Reiss (1989, Section 2.1) and Kaufmann and Reiss (1992).

To construct our test statistic, we use the sign of the q values of {Zi : 1 ≤ i ≤ n} that are

induced by the q smallest values of {g(Zi) = |Zi| : 1 ≤ i ≤ n}. That is, for Zg,(1), . . . , Zg,(q), let

Ag,(j) ≡ I{Zg,(j) ≥ 0} for 1 ≤ j ≤ q , (5)

and

Sn ≡
∑
j≤q

Ag,(j) . (6)

The test statistic of our test only depends on the data via Sn and is defined as

Tq(Sn) ≡ √q
∣∣∣∣1qSn − 1

2

∣∣∣∣ . (7)

In order to describe the critical value of our test it is convenient to recall that the cumulative

distribution function (CDF) of a binomial random variable with q trials and probability of success
1
2 is given by

Ψq(b) ≡
1

2q

bbc∑
x=0

(
q

x

)
I{0 ≤ b ≤ q} + I{b > q} , (8)
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where bxc is the largest integer not exceeding x. Using this notation the critical value for a

significance level α ∈ (0, 1) is given by

cq(α) ≡ √q
(

1

2
− bq(α)

q

)
, (9)

where bq(α) is the unique value in {0, 1, . . . , b q2c} satisfying

Ψq(bq(α)− 1) ≤ α

2
< Ψq(bq(α)) . (10)

The test we propose is then given by

φ(Sn) =


1 if Tq(Sn) > cq(α)

aq(α) if Tq(Sn) = cq(α)

0 if Tq(Sn) < cq(α)

, (11)

where

aq(α) ≡ 2q−1
(

q

bq(α)

)−1
[α− 2Ψq(bq(α)− 1)] . (12)

Intuitively, the test φ(Sn) exploits the fact that, under the null hypothesis in (3), the distribution

of the treatment assignment should be locally the same to either side of the cut-off. That is, local

to the cut-off, the treatment assignment behaves as purely randomized under the null hypothesis,

so the fraction of units under treatment and control should be similar.

Remark 3.1. The test in (11) is possibly randomized. The non-randomized version of the test

takes the form I{Tq(Sn) > cq(α)} and, by definition, does not reject more often than φ(Sn) in

(11). For our data-dependent choice of q that we describe in the next section, the randomized and

non-randomized versions perform similarly in our simulations.

Remark 3.2. The value of bq(α) ∈ {0, 1, . . . , b q2c} solving (10) is well-defined and unique for all

q ≥ 1 and α ∈ (0, 1). To see this, let

q∗(α) ≡ 1− logα

log 2
. (13)

When q < q∗(α), (10) uniquely holds for bq(α) = 0. In this case, φ(Sn) in (11) does not reject

deterministically with positive probability. When q ≥ q∗(α), the uniqueness of the solution is

guaranteed by Ψq(·) being strictly increasing over {0, 1, . . . , b q2c}, Ψq(0) = 1
2q , and Ψq(

q
2) ≥ 1

2 . In

this case, φ(Sn) in (11) deterministically rejects with positive probability. This shows that in order

for the non-randomized version of the test to be non-trivial (see Remark 3.1), q needs to exceed

q∗(α). To better appreciate these magnitudes, note that for α = 5% this requires q ≥ 6 while for

α = 1% this requires q ≥ 8. Similarly, and given bq(α), the value of aq(α) in (12) is also uniquely

defined and taking values in [0, 1) by the same properties of Ψq(·).
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Given q, the implementation of our test proceeds in the following five steps.

Step 1. Find the q observations closest to the cut-off, i.e., Zg,(1), . . . , Zg,(q).

Step 2. Count the number of non-negative observations in Zg,(1), . . . , Zg,(q), i.e., Sn as in (6).

Step 3. Compute test statistic Tq(Sn) as in (7), cq(α) as in (9), and aq(α) as in (12).

Step 4. Compute the p-value of the non-randomized version of the test as

pvalue = 2 min {Ψq (Sn) ,Ψq (q − Sn)} . (14)

Step 5. Reject the null hypothesis in (3) using φ(Sn) in (11). If a non-randomized test is preferred,

reject the null hypothesis if pvalue < α.

Remark 3.3. As we show in Theorems 4.1 and 4.2, the test φ(Sn) is an approximate sign or

binomial test. As mentioned in the introduction, related binomial tests have been recently presented

in the RDD context by Cattaneo et al. (2016), Cattaneo et al. (2017), and Frandsen (2017). The

first two papers use a binomial test based on the number of observations of the running variable

exceeding the cut-off in a window [−h, h] for a varying bandwidth h. The authors propose to

vary h until a “break-down” window size h∗ is found, which is defined as the largest window such

that the minimum p-value of the binomial test is larger than α for all nested (smaller) windows.

The justification provided for the validity of such a test involves a finite sample argument: under

the hypothesis of “local randomization/random assignment” in [−h∗, h∗], a binomial test with

probability π is exact. Frandsen (2017) considers an RDD model in which the running variable is

discretely distributed and tests a different hypothesis from ours. Also motivated by finite sample

arguments, he proposes a test that involves quantiles from binomial distributions. Contrary to

these papers, our goal is not to validate a “local random assignment” hypothesis or to deal with

discrete running variables in an RDD framework, but rather to test the continuity hypothesis in

(3) when the running variable is continuous at the cut-off. As a result of this, we cannot exploit

finite sample arguments and rather need to rely on the asymptotic analysis of our test. The formal

results in Theorems 4.1, 4.2, and 4.3 are novel to this paper and, to the best of our knowledge, they

provide the first formal results about approximate sign tests for the hypothesis in (3) in the RDD

framework.

3.1 Data-dependent rule for q

In this section we discuss the practical considerations involved in the implementation of our test,

highlighting how we addressed these considerations in the companion Stata package. The only

tuning parameter of our test is the number q of observations closest to the cut-off. We propose a
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data-dependent way to choose q that combines a rule of thumb with a local optimization. We call

this data-dependent rule the “informed rule of thumb” and its computation requires the two steps

described below. For the sake of clarity, in this section we do not use the normalization z̄ = 0.

Additional computational details are presented in Appendix D.

In Section 4.2 we consider the asymptotic framework where q diverges as n → ∞. Under

Assumption 4.1 and H0 in (3), we show in that section that the value of q that sets the worst case

asymptotic bias equal to the standard deviation is given by

q = n2/3
(

4f2Z(z̄)

CP

)2/3

, (15)

where fZ(z̄) equals f+Z (z̄) = f−Z (z̄) under H0, and CP is the Lipschitz constant in Assumption

4.1(i’). Since the results in Theorem 4.3 also require q3/2/n→ 0, we propose to start with an initial

rule of thumb where fZ(z̄) and CP are computed under the assumption Z ∼ N(µ, σ2) and the rate

is set to n1/2. This leads to

qrot = n1/2

(
σ

4φ2µ,σ(z̄)

φµ,σ(µ+ σ)

)2/3

, (16)

where we used that CP = |φ′µ,σ(µ + σ)| = 1
σφµ,σ(µ + σ) when Z ∼ N(µ, σ2), and φµ,σ(·) and

φ′µ,σ(·) denote the density of N(µ, σ2) and its derivative. This initial rule of thumb is location and

scale invariant and, by definition, is inversely related to the asymptotic bias of the test statistic in

the asymptotic framework of Section 4.2. In turn, the constant multiplying n1/2 in (16) is fairly

intuitive. First, it captures the idea that a steeper density at the cut-off should be associated with

a smaller value of q. Intuitively, the steeper the density, the more it resembles a density that is

discontinuous (Figure 1.(c) illustrates this in Section 5). Since the maximum slope is determined

by the Lipschitz constant, the rule is inversely proportional to that. Second, it also captures the

idea that q should be small if the cut-off is a point of low density. Intuitively, when fZ(z̄) is low,

the q closest observations to z̄ are likely to be “far” from z̄ (Figure 1.(a) with µ = −2 illustrates

this in Section 5). One could alternatively replace the normality assumption with a non-parametric

estimator of fZ(z̄) but it is unfortunately impossible to choose CP adaptively for testing (3) (see,

e.g., Low, 1997; Armstrong and Kolesár, 2018). Since any data-dependent rule for q will require a

reference for CP , we prefer to prioritize its simplicity and use normality for both fZ(z̄) and CP .

The second step involves a local maximization of the asymptotic null rejection probability of

the non-randomized version of the test. In particular, based on our results, we propose

qirot = argmax
q∈N (qrot)

Ψq(bq(α)− 1) , (17)

where Ψq(·) is the CDF defined in (8), bq(α) is defined in (10), andN (qrot) is a discrete neighborhood

defined in (D-21) in Appendix D. This step helps the performance of the non-randomized version

of the test (see Remark 3.1) as Ψq(bq(α)−1) is non-monotonic in q (see Figure 3) and so optimizing

8



locally to qrot over N (qrot) prevents choosing a value of q with a low value of Ψq(bq(α) − 1). In

practice, we replace (µ, σ) with sample analogs to obtain the feasible informed rule of thumb q̂irot.

Remark 3.4. The recommended choice of q in (17) can be interpreted as the under-smoothed

version of the rule that captures a bias-variance trade-off, where we impose normality to compute

unknown constants. It also exploits the shape of the limiting null rejection probability of the non-

randomized version of the test to derive a better choice of q. Even though qirot is motivated by a

root-mean-square error (RMSE) optimal choice of q, it is an under-smoothed rule of thumb that is

not optimal in a formal sense. A formal study of an optimal choice of q in either of our asymptotic

frameworks is an important topic of investigation that we leave for future research.

4 Asymptotic framework and formal results

In this section we derive the asymptotic properties of the test in (11) using two alternative asymp-

totic frameworks. The first one requires q to be fixed as n → ∞, and represents a finite sample

situation where the effective number of observations used by the test is too small to credibly in-

voke approximations for “large” q. The second framework requires q → ∞ slowly as n → ∞, and

represents a finite sample situation where the effective number of observations used by the test is

large enough to invoke approximations for “large” q.

There are three main features of our results that are worth highlighting: (i) our test exhibits

similar properties under both asymptotic frameworks, (ii) the implementation of the test does not

depend on which asymptotic framework one has in mind, and (iii) all formal results require similar,

and arguably mild, conditions. We start by introducing these conditions.

Assumption 4.1. The distribution function P is absolutely continuous on (−δ, δ) for some δ > 0.

On this set, the density function fZ(z) satisfies the following:

(i) fZ(z) is bounded on (−δ, δ) and has one-sided limits at zero given by f+Z (0) and f−Z (0).

(i’) ∃CP ∈ (0,∞) such that

|fZ(z)− f+Z (0)| ≤ CP |z| for z ∈ (0, δ) and |fZ(z)− f−Z (0)| ≤ CP |z| for z ∈ (−δ, 0) .

(ii) f−Z (0) + f+Z (0) > 0.

Assumptions 4.1(i) and 4.1(i’) each impose different degrees of smoothness on the density of Z

local to the cut-off z̄ = 0. Indeed, Assumption 4.1(i’) strengthens Assumption 4.1(i) by replacing

the requirement of left- and right-continuity at the cut-off with its Lipschitz version. In the formal

results that follow, we use Assumption 4.1(i) in the asymptotic framework where q is fixed as

n → ∞ and Assumption 4.1(i’) in the asymptotic framework where q → ∞ as n → ∞. Both
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assumptions allow for the distribution of Z to be discontinuous outside of a neighborhood of the

cut-off.4 More importantly, they do not require the density of Z to be differentiable anywhere.

This is in contrast to McCrary (2008), who requires three continuous and bounded derivatives of

the density of Z (everywhere except possibly at z̄ = 0), and Cattaneo et al. (2019) and Otsu et al.

(2013), who require the density of Z to be twice continuously differentiable local to the cut-off

(in the case of a local-quadratic approximation). Assumption 4.1(ii) rules out a situation where

f−Z (0) = f+Z (0) = 0, which is implicitly assumed away in McCrary (2008) and Otsu et al. (2013),

and is weaker than assuming a positive density of Z in a neighborhood of the cut-off as in Cattaneo

et al. (2019). In Section 5 we explore the sensitivity of our results to violations of these conditions.

4.1 Results for fixed q

In this section we present two main results. The first result, Theorem 4.1, describes the asymptotic

properties of Sn in (6) when q is fixed as n → ∞. This result about g-order statistics with

g(·) = | · | represents an important milestone in proving the asymptotic validity of our test. The

second result, Theorem 4.2, exploits Theorem 4.1 to show that the test in (11) controls the limiting

rejection probability under the null hypothesis.

Theorem 4.1. Let Assumptions 4.1(i) and 4.1(ii) hold and let q ≥ 1 be fixed. Then,

Sn
d→ S ∼ Bi(q, πf )

as n→∞, where Bi(q, πf ) denotes the Binomial distribution with q trials and probability of success

πf ≡
f+Z (0)

f−Z (0) + f+Z (0)
.

Theorem 4.1, although fairly intuitive, does not follow from standard arguments. First, the

random variables {Ag,(j) : 1 ≤ j ≤ q} are indicators of g-order statistics so, in general, they are

neither independent nor identically distributed. Second, applying results from the literature on

g-order statistics (e.g., Kaufmann and Reiss, 1992, Theorem 1) requires g(Z) = |Z| to have a

continuous distribution function everywhere on its domain. Under Assumption 4.1(i) this is only

true in [0, δ), and mass points are allowed outside of [0, δ). In the proof of Theorem 4.1 we use

a smoothing transformation of Z as an intermediate step and then accommodate the results in

Kaufmann and Reiss (1992, Theorem 1) to reach the desired conclusion.

The following result, which heavily relies on Theorem 4.1, is the main result of this section and

characterizes the asymptotic properties of the test φ(Sn) in (11).

Theorem 4.2. Let Assumptions 4.1(i) and 4.1(ii) hold and let q ≥ 1 be fixed. Then, the following

holds for α ∈ (0, 1):

4In Appendix C we also allow for situations with a mass point at the cut-off, i.e., P{Z = 0} > 0.

10



(a) Under H0 in (3),

lim
n→∞

E[φ(Sn)] = 2Ψq(bq(α)− 1) +
aq(α)

2q−1

(
q

bq(α)

)
= α .

(b) Under H1 in (3), limn→∞E[φ(Sn)] ≥ α.

Theorem 4.2 shows that φ(Sn) behaves asymptotically, as n → ∞, as the two-sided sign test

in an experiment where one observes S ∼ Bi(q, π) and wishes to test the hypotheses H0 : π = 1
2

versus H1 : π 6= 1
2 . For this reason, we refer to φ(Sn) as an approximate sign test.

Remark 4.1. The test φ(Sn) could be alternatively characterized as an “approximate” random-

ization test, see Canay et al. (2017) for a general description of such tests. However, such a

characterization would make the analysis of the formal properties of the test more complicated

and, in particular, the results in Canay et al. (2017) would not immediately apply due to two

fundamental challenges. First, Assumption 3.1(iii) in Canay et al. (2017) is immediately violated

in our setting. Second, such an approach would require an asymptotic approximation to the joint

distribution of {Ag,(j) : 1 ≤ j ≤ q}, which in turn would require a strengthening of Lemma B.4.

Our proof approach avoids both of these technicalities by directly exploiting the binary nature of

{Ag,(j) : 1 ≤ j ≤ q} and by simply approximating the distribution of Sn, which is a scalar, as in

Theorem 4.1.

Remark 4.2. It is possible to show that φ(Sn) in (11) is level α in finite samples whenever the

distribution of Z is continuous and symmetric about the cut-off. In this case, the fundamental

result in Lemma B.4 holds for Sn with P{Z > 0 | |Z| < r} = 1
2 for any r > 0, and the proof of

Theorem 4.2 can in turn be properly modified to show E[φ(Sn)] = α for all n ≥ 1.

4.2 Results for large q

In this section we study the properties of φ(Sn) in (11) in an asymptotic framework where q

diverges to infinity as n→∞. This asymptotic framework is in line with traditional non-parametric

arguments and so our results depend on the assumed smoothness of the density of Z and the rate

at which q is allowed to grow. Importantly, the results in this section follow from Assumption

4.1(i’)-(ii) and so, accounting for the differences between Assumptions 4.1(i) and 4.1(i’), the result

below shows that the asymptotic properties of the approximate sign test under both asymptotic

frameworks require similar, and arguably mild, conditions.

Theorem 4.3. Let Assumptions 4.1(i’) and 4.1(ii) hold and let q be such that q →∞ and q3/2

n → 0

as n→∞. Then,
√
q

(
1

q
Sn − πf

)
d→ N (0, πf (1− πf )) , (18)

where πf is as in Theorem 4.1. Moreover, the following holds for α ∈ (0, 1):

11



(a) Under H0 in (3), limn→∞E[φ(Sn)] = α.

(b) Under H1 in (3), limn→∞E[φ(Sn)] = 1.

(c) Under a sequence of alternative distributions local to H0 satisfying
√
q(πf − 1

2)→ ∆ 6= 0,

lim
n→∞

E[φ(Sn)] = P{|ζ + 2∆| > zα/2} > α ,

where ζ ∼ N(0, 1) and zα/2 is the (1− α
2 )-quantile of ζ.

Theorem 4.3, although fairly intuitive again, does not follow from standard arguments. In

particular, given that the random variables {Ag,(j) : 1 ≤ j ≤ q} are neither independent nor

identically distributed, the result does not follow from a simple application of the central limit

theorem. We instead adapt Kaufmann and Reiss (1992, Theorem 1) and prove the result using

first principles and the normal approximation to the binomial distribution.

Given the result in Theorem 4.3, we can provide some insight on the properties of the data-

dependent rule for choosing q that we describe in Section 3.1. Specifically, we focus on providing

interpretation to qrot in (16), as qirot in (17) is a modification of qrot to improve the performance

of the non-randomized version of the test. Under H0 in (3) and Assumption 4.1(i’)-(ii), the results

in Armstrong and Kolesár (2019) imply that

√
q(1qSn − πf )√
πf (1− πf )

= ζn +Bn,q + op(1) , (19)

where ζn
d→ ζ ∼ N(0, 1) and Bn,q is a standardized bias term satisfying

|Bn,q| ≤
q3/2

n

CP
4f2Z(0)

(20)

with fZ(0) equals f+Z (0) = f−Z (0) under H0. Denote by t∗ the right-hand side of (20) and note that

this can be interpreted as the worst (in absolute value) ratio of bias to standard deviation (sd) of

the left-hand side of (19). We can then solve for q to obtain

q∗ = n2/3(t∗)2/3
(

4f2Z(0)

CP

)2/3

. (21)

This derivation shows that the requirement q3/2

n → 0 is analogous to under-smoothing as this is the

rate condition that removes the worst-case asymptotic bias.5 This immediately gives two alternative

interpretations to the data-dependent rule qrot in (16) (see Armstrong and Kolesár, 2019, Section

5A previous version of this paper did not include Assumption 4.1(i’) and the requirement q3/2/n → 0, which is

required to control the asymptotic bias term. We thank Tim Armstrong for pointing this out to us.
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4.2, for a more detailed description). In order to describe these two interpretations, note that by

(21) and (16) we obtain that qrot = q∗ whenever

t∗ =

(
n1/2

n2/3

)3/2 [
φ2µ,σ(0)

f2Z(0)

CP
1
σφµ,σ(µ+ σ)

]
. (22)

Assume for a moment that the rule-of-thumb assumption of normality is correct (which means that

the term within brackets in (22) equals 1). Then, qrot is equivalent to q∗ for a worst ratio of bias

to sd t∗ given by

t∗ =

(
n1/2

n2/3

)3/2

⇒ t∗ = 0.12 for n = 5, 000 .

This implies the size of φ(Sn) for α = 5% and n = 5, 000 would approximately be P{|ζ + 0.12| >
zα/2} = 5.16%. In this sense, qrot makes the size distortion of the bias negligible when n = 5, 000.

Next, suppose that the rule-of-thumb assumption of normality over-estimates the ratio f2Z(0)/CP .

In other words, suppose that the term within brackets in (22) equals a constant a > 1. In this case,

qrot would be equivalent to q∗ for a worst ratio of bias to sd t∗ given by

t∗ = a

(
n1/2

n2/3

)3/2

⇒ t∗ = 0.36 for n = 5, 000 and a = 3 .

This implies that the size of φ(Sn) for α = 5% and n = 5, 000 would approximately be P{|ζ+0.36| >
zα/2} = 6.38%. When fZ(0) = φµ,σ(0), this means that even if the true Lipschitz constant CP is

three times larger than the one imposed by normality, φ(Sn) would still exhibit mild over-rejection

under the null hypothesis. The price we pay for this robustness under the null hypothesis (in terms

of performance and mild requirements) is possibly a lower power under the alternative hypothesis,

a feature that we explore in the simulations of Section 5.

Remark 4.3. It may be tempting to use the first part of Theorem 4.3 to consider a variation of

the test we propose; namely the test that rejects H0 when Tq(Sn) > 1
2zα/2 and zα/2 is the (1− α

2 )-

quantile of a standard normal random variable. However, we do not recommend this variation as it

provides no theoretical advantages over φ(Sn) in the asymptotic framework where q →∞, and it is

not formally justified in the asymptotic framework where q is fixed (in particular, such a variation

will not inherit the finite sample properties discussed in Remark 4.2).

Remark 4.4. As pointed out by a referee, in the asymptotic framework where q → ∞, the test

statistic Tq(Sn) can be shown to be proportional to a Wald-type statistic

Wn = |f̂Z(hn)− f̂Z(−hn)| ,

where f̂Z(z) is a non-parametric kernel density estimator of fZ(z) implemented with a uniform on

[−1, 1] kernel and bandwidth hn. Under some conditions it will follow that Wn is asymptotically

normal and a test for H0 could be constructed by using the quantile of a normal distribution

13



(possibly by additionally estimating the asymptotic variance). One could go a step further and

use the bound on the bias term Bn,q to construct a test that explicitly accounts for the asymptotic

bias of the test following the approach proposed by Armstrong and Kolesár (2019). However,

the interpretation of φ(Sn) as a test based on a Wald-type statistic with a normal critical value

exclusively holds in the asymptotic framework where q →∞ and does not apply in the asymptotic

framework with fixed q. For this reason, we do not emphasize this interpretation here.

Remark 4.5. The recent literature has obtained impossibility results in the RDD setting that

apply to the hypothesis testing problem in (3); see, e.g., Low (1997), Kamat (2017), Armstrong

and Kolesár (2018), and Bertanha and Moreira (2019). An implication of these impossibility

results is that φ(Sn) cannot control size in a uniform sense without further restricting the set of

data generating processes. These findings are reflected in the bound on the bias term presented in

(20), where higher values of CP or lower values of fZ(0) can make such a bound arbitrarily high

for given values of q and n. We would therefore expect the performance of φ(Sn) to deteriorate in

cases where the density at the cut-off is very low or very steep, as highlighted by the simulations

we present next.

5 Simulations

In this section we examine the finite-sample performance of the test in (11) with a simulation study.

Instead of just presenting designs where this test excels relative to competing ones, we present an

array of data generating processes that hopefully illustrate its relative strengths and weaknesses.

The data for the study are simulated as i.i.d. samples from the following designs.

Design 1: For µ ∈ {−2,−1, 0}, Z ∼ N(µ, 1).

Design 2: For λ ∈ {13 , 1},

Z ∼

V1 with prob. λ

V2 with prob. (1− λ)
,

where V1 ∼ 2Beta(2, 4)− 1 and V2 ∼ 1− 2Beta(2, 8).

Design 3: For (λ1, λ2, λ3) = (0.4, 0.1, 0.5),

Z ∼


V1 with prob. λ1

V2 with prob. λ2

V3 with prob. λ3

,

where V1 ∼ N(−1, 1), V2 ∼ N(−0.2, 0.2), and V3 ∼ N(3, 2.5).
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Design 4: For κ ∈ {0.05, 0.10, 0.25}, the density of Z is given by

fZ(z) =


0.75 if z ∈ [−1,−κ]

0.75− 1
4κ(z + κ) if z ∈ [−κ, κ]

0.25 if z ∈ [κ, 1]

.

Design 5: For κ ∈ {0.05, 0.10, 0.25}, the density of Z is given by

fZ(z) =


0.25 if z ∈ [−1,−κ]

0.50 if z ∈ [−κ, κ]

0.75 if z ∈ [κ, 1]

.

Design 6: We first non-parametrically estimate the density of the running variable in Lee

(2008, see Section 6 for details) and then take i.i.d. draws from such a density.

Design 1 in Figure 1(a) is the canonical normal case and, by Remark 4.2, our test is expected

to control size in finite samples when µ = 0 but not when µ ∈ {−2,−1}. Indeed, µ = −2 is a

challenging case due to the low probability of getting observations to the right of the cut-off. Design

2 in Figure 1(b) is taken from Canay and Kamat (2018). Design 3 in Figure 1(c) is a parametrization

of the taxable income density in Saez (2010, Figure 8). This design exhibits a spike (almost a kink)

to the left of the cut-off which is essentially a violation of the smoothness assumptions required by

McCrary (2008) and Cattaneo et al. (2019). It also exhibits a steep density at the cut-off, which also

makes it a difficult case in general. Similar to Design 3, Design 4 in Figure 1(d) also illustrates the

difficulty in distinguishing a discontinuity from a very steep slope; see Low (1997), Kamat (2017),

Armstrong and Kolesár (2018), and Bertanha and Moreira (2019) for a formal discussion. Here we

can study the sensitivity to the slope by changing the value of κ. Design 5 in Figure 1(e) requires

δ in Assumption 4.1(a) to be such that δ < κ in order for our approximations to be accurate, but

as opposed to Design 4, it is locally symmetric around the cut-off. As κ gets smaller, we expect

our test to perform worse if q is not chosen carefully. Finally, Design 6 in Figure 1(f) draws data

i.i.d. from the non-parametric density estimate of the running variable in Lee (2008), i.e., Z is the

difference in vote shares between Democrats and Republicans.

We consider sample sizes n ∈ {1, 000; 5, 000}, a nominal level of α = 10%, and perform 10, 000

Monte Carlo repetitions. Designs 1 to 6 satisfy the null hypothesis in (3). We additionally consider

the same models under the alternative hypothesis by randomly changing the sign of observations

in the interval z ∈ [0, 0.1] with probability Pr = 0.2− 2z. We report results for the following tests.

AS-NR and AS-R: the approximate sign test we propose in this paper in its two versions.

The randomized version (AS-R) in (11) and the non-randomized version (AS-NR) that rejects
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Figure 1: Density functions f(z) for Designs 1 to 6 used in the Monte Carlo simulations

when pvalue in (14) is below α, see Remark 3.1. The tuning parameter q is set to

q ∈ {20, 50, 75, q̂irot} ,

where q̂irot is the feasible informed rule of thumb described in Section 3 and Appendix D.

McC: the test proposed by McCrary (2008). We implement this test using the function

DCdensity from the R package rdd (Ver 0.57), with the default choices for the bandwidth

parameter and kernel type.

CJM: the test proposed by Cattaneo et al. (2019). We implement this test using the

rddensity function from the R package rddensity (Ver 1.0). We use jackknifed standard

errors and bias correction, as these are the default choices in the paper.

Tables 1 and 2 report rejection probabilities under the null and alternative hypotheses for the

six designs we consider and for sample sizes of n = 1, 000 and n = 5, 000, respectively. We start

by discussing the results under the null hypothesis. AS-NR delivers rejection probabilities under

the null hypothesis closer to the nominal level than those delivered by McC and CJM in most of

the designs. The two empirically motivated designs (Designs 3 and 6) illustrate this feature clearly.

Designs 4 and 5 also show big differences in performance, both in cases where AS-NR delivers
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Rejection Rate under H0 Rejection Rate under H1

AS-NR AS-R McC CJM AS-NR AS-R McC CJM

q q q q

Design 20 50 75 q̂irot q̂irot 20 50 75 q̂irot q̂irot

D1: µ = 0 4.4 6.8 6.6 10.0 10.1 9.2 8.2 11.1 19.6 18.1 25.2 25.4 17.0 11.4

D1: µ = −1 4.3 8.1 12.4 10.5 10.6 11.9 9.4 10.7 21.5 26.3 24.8 24.9 21.2 10.4

D1: µ = −2 12.4 84.5 99.8 8.3 11.3 11.4 7.6 17.2 87.8 99.9 12.0 15.4 11.8 7.8

D2: λ = 1 4.0 7.0 7.9 10.4 10.6 11.2 9.6 9.4 13.4 9.7 19.5 19.7 26.4 16.8

D2: λ = 1
3 4.2 7.0 10.3 10.6 10.7 10.7 7.6 11.9 32.0 42.6 32.1 32.3 34.6 18.2

D3 5.1 17.5 39.2 24.6 24.9 99.9 86.1 12.9 38.6 60.9 48.0 48.3 100.0 89.2

D4: κ = 0.25 4.0 8.1 12.2 10.9 11.0 11.9 9.3 12.5 32.4 42.6 34.8 35.0 33.2 18.6

D4: κ = 0.10 4.6 16.9 42.0 16.3 16.5 48.1 24.4 14.8 50.5 77.3 46.4 46.6 80.2 42.1

D4: κ = 0.05 6.9 48.0 86.2 35.9 36.1 84.9 59.9 20.2 79.4 97.4 66.8 67.0 96.4 77.4

D5: κ = 0.25 4.3 7.4 7.1 10.4 10.5 21.0 13.5 11.2 21.6 22.3 26.8 27.0 17.2 31.0

D5: κ = 0.10 4.1 6.4 6.4 9.9 10.1 17.9 33.1 11.0 21.5 21.8 26.1 26.3 23.2 13.5

D5: κ = 0.05 4.0 7.4 35.1 9.7 9.8 40.3 25.7 10.7 27.4 72.6 27.4 27.6 75.7 42.0

D6 4.2 6.2 6.6 9.4 9.6 9.5 10.6 11.5 25.1 27.8 32.8 33.0 37.0 23.8

Table 1: Rejection probabilities (in %) under H0 and H1 across Designs 1-6 and for n = 1, 000.

Rejection Rate under H0 Rejection Rate under H1

AS-NR AS-R McC CJM AS-NR AS-R McC CJM

q q q q

Design 20 50 75 q̂irot q̂irot 20 50 75 q̂irot q̂irot

D1: µ = 0 4.1 6.4 6.8 9.8 10.0 9.2 8.8 12.5 30.5 38.4 63.7 63.9 50.0 33.2

D1: µ = −1 4.0 6.3 6.5 9.5 9.7 11.8 9.0 12.0 30.2 38.4 39.1 39.4 47.2 16.6

D1: µ = −2 4.5 12.4 26.0 10.2 10.6 12.2 9.6 11.8 31.5 47.9 21.2 21.7 15.7 12.5

D2: λ = 1 4.0 6.5 6.0 9.7 9.8 9.7 9.8 12.1 29.0 35.8 50.9 51.2 68.6 34.4

D2: λ = 1
3 4.4 6.8 6.7 10.0 10.2 10.3 8.1 12.6 32.5 44.0 46.2 46.5 87.0 59.2

D3 4.2 7.2 7.9 17.2 17.4 100.0 93.9 12.4 33.6 46.6 73.7 73.9 100.0 97.8

D4: κ = 0.25 4.7 6.3 6.4 11.2 11.4 11.6 10.2 13.5 33.8 45.5 69.9 70.2 78.8 61.5

D4: κ = 0.10 4.2 7.1 8.1 16.9 17.0 68.6 22.8 13.3 36.3 51.5 80.0 80.2 99.5 72.4

D4: κ = 0.05 4.2 8.3 12.0 36.7 36.9 99.7 93.5 14.5 42.0 62.1 91.9 92.0 100.0 99.7

D5: κ = 0.25 4.0 6.2 6.0 9.7 9.8 33.4 17.0 12.1 30.8 40.8 60.1 60.4 55.2 78.5

D5: κ = 0.10 4.0 6.3 6.4 10.0 10.2 50.9 43.9 12.6 31.3 40.9 60.8 61.1 33.2 13.3

D5: κ = 0.05 4.3 6.6 6.9 10.5 10.7 45.7 30.9 12.8 31.7 40.3 60.8 61.1 98.2 63.7

D6 4.1 6.6 6.5 9.4 9.5 12.9 13.4 12.0 31.7 41.9 70.3 70.5 90.2 65.2

Table 2: Rejection probabilities (in %) under H0 and H1 across Designs 1-6 and for n = 5, 000.

rejection rates equal to the nominal level (Design 5) and McC and CJM severely over-reject; as

well as in cases where all tests over-reject (Design 4, κ = 0.05) but AS-NR is relatively closer

to the nominal level. A particularly difficult case for AS-NR is Design 1 with µ = −2, where

the probability of getting observations to the right of the cut-off is below 2%. This showcases

the satisfactory performance of our data-dependent rule q̂irot, which takes the lowest value in that
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D1 D1 D1 D2 D2 D3 D4 D4 D4 D5 D5 D5 D6

µ = 0 µ = −1 µ = −2 λ = 1
3 λ = 1 κ = 0.25 κ = 0.01 κ = 0.05 κ = 0.25 κ = 0.01 κ = 0.05

n = 1, 000

AS-NR 53.0 37.0 8.5 37.0 37.0 51.7 40.5 39.3 39.2 44.2 39.7 39.2 53.0

McC 716.2 440.6 113.7 209.7 415.3 606.1 361.3 358.1 377.9 365.6 337.4 350.8 564.4

CJM 574.7 434.1 85.1 142.8 456.6 493.7 351.4 412.8 437.9 359.2 338.5 416.9 498.8

n = 5, 000

AS-NR 147.0 54.1 18.0 119.0 62.0 119.0 119.0 119.0 119.0 119.0 119.0 119.0 146.9

McC 2964.3 1775.6 506.4 774.8 1782.3 2944.8 1526.3 1424.2 1612.0 1623.9 1318.4 1365.4 2258.3

CJM 2312.5 1883.5 348.0 489.2 2007.7 1879.5 1263.9 1660.5 2076.4 1363.6 1194.7 1703.4 2274.9

Table 3: Average effective sample size across simulations for each design. Effective sample size is defined as follows:

q̂irot for AS-NR, number of obs. in [−hn, hn] for McC, with hn being the bandwidth used to estimate the density to

the left and to the right of the cutoff, and number of obs. in [−hn,L, hn,R] for CJM, with hn,L and hn,R being the

bandwidths used to estimate the density the left and to the right of the cutoff, respectively.
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Figure 2: Rejection probabilities of AS-NR (solid blue line) and AS-R (dashed orange line) as a function of q for

n = 1, 000. The vertical dashed line denotes the value of q̂irot and the horizontal dotted line the value of α.

particular design. Tables 1 and 2 also show negligible differences between the randomized (AS-R)

and non-randomized (AS-NR) versions of our test, consistent with our discussion in Remark 3.1.

To describe the performance of the different tests under the alternative hypothesis, we focus on
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designs where the rejection probability under the null hypothesis is close to the nominal level for all

tests: Design 1, Design 2, Design 4 with κ = 0.25, and Design 6. In those cases, we see that AS-NR

has competitive power, and can sometimes even be the test with the highest rejection probability

under the alternative hypothesis. For n = 1, 000, AS-NR delivers the highest rejection probability

under the alternative hypothesis in Design 1 for all values of µ and Design 4 with κ = 0.25. In the

rest of the cases under consideration, McC exhibits the highest power and is followed by AS-NR.

The results for n = 5, 000 are qualitatively similar, with a few exceptions. McC has the highest

rejection probability in Design 1 with µ = −1, and CJM are have the second highest rejection

probability in Design 2 with λ = 1
3 .

Table 3 shows the mean values of q̂irot across simulations for all designs and sample sizes. As

described in Section 3, q̂irot takes into account both the slope and the magnitude of the density

at the cut-off. As a result, q̂irot is relatively high in designs with flat density at the cut-off and

high fZ(0) (e.g., Design 1 with µ = 0) and relatively low in designs with steep slopes or low fZ(0)

(e.g., Design 1 with µ = −2 or Design 2 with λ = 1). Table 3 also reports the average number

of observations in [−hn,L, hn,R] for McC and CJM, where hn,L and hn,R are the left and right

bandwidths used to estimate f−Z (0) and f+Z (0), respectively (in the case of McC, hn,L = hn,R). In

comparison, AS-NR uses significantly fewer observations than either McC or CJM, a feature that

may support the the asymptotic framework in Section 4.1. Finally, and to gain further insight on

the sensitivity of our test to the choice of q, Figure 2 displays the rejection probabilities of AS-NR

and AS-R as a function of q in two types of designs. In the top row we illustrate two designs

where the rejection probability is mostly insensitive to the choice of q (Design 1 with µ = 0 and

Design 6). These are designs where the density is rather flat around the cut-off so increasing q

does not deteriorate the performance of our test. In the bottom row we illustrate two designs

where the rejection probability is highly sensitive to the choice of q (Design 1 with µ = −1 and

Design 3). These are designs that feature a steep density at the cut-off (also low in Design 1) so

increasing q very quickly deteriorates the performance of the test under the null hypothesis. The

data-dependent rule q̂irot is displayed in each case with a vertical dashed line and seems to be doing

a good job at choosing relatively smaller values in the sensitive cases.

We conclude this section with two final remarks. First, one could compare the results in Tables

1 and 2 for a fix value of q to appreciate the results in Section 4.1. For example, taking q = 75, the

rejection probability in Design 1 with µ = −2 and Design 3 are 99.8 and 40.1, respectively, when

n = 1, 000. The same numbers when n = 5, 000 are 26 and 8.4, respectively, which are closer to

the nominal level as predicted by our results. Second, at the request of a referee, the results for

n = 1, 000, 000 and α = 1% are available upon request. Notably, AS-NR with the data-dependent

rule q̂irot delivers rejection probabilities under H0 equal to α across all designs when n = 1, 000, 000

whereas McC and/or CJM still significantly over-reject for Designs 3, 5, and 6.
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6 Empirical illustration

In this section we briefly reevaluate the validity of the design in Lee (2008). Lee studies the benefits

of incumbency on electoral outcomes using a discontinuity constructed with the insight that the

party with the majority wins. Specifically, the running variable Z is the difference in vote shares

between Democrats and Republicans in a house election; see Figure 1(f) for a graphical illustration

of the density of Z. The assignment rule then takes a cut-off value of zero that determines the

treatment of incumbency to the Democratic candidate, which is used to study their outcome in the

next election. The total number of observations is 6,559 with 2,740 below the cut-off. The dataset

is publicly available at http://economics.mit.edu/faculty/angrist/data1/mhe.

Lee assesses the credibility of the design in this application by inspecting discontinuities in

means of the baseline covariates, but mentions in footnote 19 the possibility of using the test

proposed by McCrary (2008). Here, we frame the validity of the design in terms of the hypothesis

in (3) and use the approximate sign test we describe in Section 3, using q̂irot as our default choice

for the number of observations q. This test delivers a p-value of 0.55 for Sn = 73 out of q̂irot = 138

observations. The null hypothesis of continuity of the density is therefore not rejected.

7 Concluding remarks

This paper presents an approximate sign test based on g-order statistics for testing the continuity of

a density at a point in RDD. We study the properties of this test under two asymptotic frameworks;

one in which the number q of observations local to the cut-off is fixed as the sample size n diverges

to infinity, and one in which q diverges to infinity slowly as n diverges to infinity. We show that

the test has limiting rejection probability under the null hypothesis not exceeding the nominal level

in both asymptotic frameworks under similar and arguably mild conditions. More importantly,

our test is easy to implement, asymptotically valid under weaker conditions than those used by

competing methods, exhibits finite sample validity under stronger conditions than those needed for

its asymptotic validity, and delivers competitive power in simulations.

A final aspect we would like to highlight of our test is its simplicity. The test only requires

to count the number of non-negative observations out of the q observations closest to the cut-off

(this is all that is required to compute the p-value in (14)), and does not involve kernels, local

polynomials, bias correction, or bandwidth choices. Importantly, we have developed the rdcont

Stata package that allows for effortless implementation of the test we propose in this paper.

20

http://economics.mit.edu/faculty/angrist/data1/mhe


A Proof of the main results

A.1 Proof of Theorem 4.1

Throughout the proof we use {Z∗i : 1 ≤ i ≤ n} as defined in Lemma B.1, which in turn allow us to apply

Kaufmann and Reiss (1992, Theorem 1) later in the proof, when invoking Lemma B.4.

Let Z∗g,(1), . . . , Z
∗
g,(q) denote the q values of {Z∗i : 1 ≤ i ≤ n} that are induced by the q smallest values of

{g(Z∗i ) = |Z∗i | : 1 ≤ i ≤ n} and let

A∗g,(j) ≡ I{Z
∗
g,(j) ≥ 0} for 1 ≤ j ≤ q

and

S∗n ≡
q∑
j=1

A∗g,(j) . (A-1)

It is convenient to introduce the following notation. Let pq(s|π) denote the probability mass function

(pmf) of Bi(q, π) with π ∈ [0, 1], i.e.,

pq(s|π) =

(
q

s

)
πs(1− π)q−s . (A-2)

Note that pq(s|π) is continuous in π.

Next, consider Sn in (6). Note that Sn has support Nq ≡ {0, 1, . . . , q} for all n ∈ N, and so its CDF

at any x ∈ R is
∑
s∈Nq

P{Sn = s}I{s ≤ x}. From this, we conclude that Sn
d→ S ∼ Bi(q, πf ) follows

from showing that P{Sn = s} → pq(s|πf ) for all s ∈ Nq. To this end, consider the following derivation for

arbitrary s ∈ Nq and ε < δ/2 with δ as in Assumption 4.1.

|P{Sn = s} − pq(s|πf )| ≤ Rn,1 + |P{S∗n = s} − pq(s|πf )|

= Rn,1 + |E[P{S∗n = s | |Z∗g,(q+1)|} − pq(s|πf )]|

≤ Rn,1 + E|P{S∗n = s | |Z∗g,(q+1)|} − pq(s|πf )|

= Rn,1 + E[|P{S∗n = s | |Z∗g,(q+1)|} − pq(s|πf )|I{|Z∗g,(q+1)| ≤ ε}]

+ E[|P{S∗n = s | |Z∗g,(q+1)|} − pq(s|πf )|I{|Z∗g,(q+1)| > ε}]

≤ Rn,1 +R2(ε) +Rn,3(ε) , (A-3)

where the first inequality follows from the triangle inequality and by setting Rn,1 ≡ |P{Sn = s}−P{S∗n = s}|,
the first equality follows from the law of iterated expectations, the second inequality follows from Jensen’s

inequality, and the last inequality follows from Lemma B.4 and by setting R2(ε) ≡ supr≤ε |pq(s|π(r)) −
pq(s|πf )|, and Rn,3(ε) ≡ P{|Z∗g,(q+1)| > ε}. By computing sequential limits n→∞ and ε ↓ 0, we now show

that right hand side of (A-3) converges to zero. As n→∞, Rn,1 = o(1) by Lemma B.3(b) and Rn,3(ε) = o(1)

by Lemma B.3(a). By then taking ε ↓ 0, Lemma B.2 implies that supr≤ε |π(r) − πf | = o(1), and this and

the continuity of pq(s|π) in π implies that R2(ε) = o(1). �

A.2 Proof of Theorem 4.2

By the definition of φ(Sn) in (11) and the expressions of T (Sn) in (7) and cq(α) in (9),

E[φ(Sn)] = P{Sn < bq(α)}+ P{Sn > q − bq(α)}+ aq(α) (P{Sn = bq(α)}+ P{Sn = q − bq(α)}) .
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Theorem 4.1 shows that P{Sn = s} = P{S = s} + o(1) for all s ∈ Nq ≡ {0, 1, . . . , q}, where S ∼ Bi(q, πf )

and πf is as in Theorem 4.1. It follows from this result and the above display that E[φ(Sn)] → E[φ(S)] as

n→∞, where

E[φ(S)] = P{S < bq(α)}+ P{S > q − bq(α)}+ aq(α) (P{S = bq(α)}+ P{S = q − bq(α)}) . (A-4)

We complete the proof by analyzing (A-4) under H0 and H1 in (3).

Under H0 in (3), S ∼ Bi(q, 1
2 ). In this case,

P{S < bq(α)}+ P{S > q − bq(α)} = 2Ψq(bq(α)− 1) ,

where we used that bq(α) ∈ {0, 1, . . . , b q2c} and P{S < b} = P{S > q − b} for any b ∈ {0, . . . , b q2c} when

πf = 1
2 . In addition,

aq(α) (P{S = bq(α)}+ P{S = q − bq(α)}) = 2aq(α)
1

2q

(
q

bq(α)

)
,

where we used that
(
q
C

)
=
(

q
q−C

)
for any C ∈ {0, . . . , q}. Therefore,

E[φ(S)] = 2Ψq(bq(α)− 1) +
aq(α)

2q−1

(
q

bq(α)

)
= α , (A-5)

where the last equality follows by definition of aq(α).

By Lehmann and Romano (2005, Example 4.2.1) (with p0 = 1/2), φ(·) in (11) is an unbiased test for

(3). From this and (A-5), it follows that E[φ(S)] ≥ α under H1 in (3), as desired. �

A.3 Proof of Theorem 4.3

For Sn as in (6) and S∗n as in (A-1), let

ξq(π) ≡ √q
(

1

q
Sn − π

)
and ξ∗q (π) ≡ √q

(
1

q
S∗n − π

)
.

For any π ∈ (0, 1) and for S ∼ Bi(q, π), let Ψq(x|π) denote the CDF of S and let

Jq(x|π) ≡ P
{
√
q

(
1

q
S − π

)
≤ x

}
.

It suffices to show that for any η > 0, there exists N such that ∀n ≥ N ,∣∣∣∣∣P{ξq(πf ) ≤ x} − Φ

(
x√

πf (1− πf )

)∣∣∣∣∣ ≤ η .
Let {εq : q ≥ 1} be a sequence in (0, δ/2) that satisfies

√
qεq → 0 and εq

n
q → ∞. Since q3/2

n → 0

these conditions occur for all q sufficiently large if we set εq = 1
q1/2

(
log
(

n
q3/2

))−1

. Consider the following

decomposition for x ∈ R,

P{ξq(πf ) ≤ x} = R̄n,1 + R̄n,2 + R̄n,3 , (A-6)
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with

R̄n,1 ≡ P{ξq(πf ) ≤ x} − P{ξ∗q (πf ) ≤ x}

R̄n,2 ≡ E[P{ξ∗q (πf ) ≤ x | |Z∗g,(q+1)|}I{|Z
∗
g,(q+1)| > εq}]

R̄n,3 ≡ E[P{ξ∗q (πf ) ≤ x | |Z∗g,(q+1)|}I{|Z
∗
g,(q+1)| ≤ εq}] .

First, Lemma B.3(b) implies that R̄n,1 = o(1). Second, R̄n,2 = o(1) follows from

0 ≤ R̄n,2 ≤ P{|Z∗g,(q+1)| > εq} = P
{n
q
|Z∗g,(q+1)| > εq

n

q

}
= o(1) ,

where the last equality follows from Lemma B.5 and εq
n
q → ∞. Finally, let π+

q ≡ πf + 1
2

εqCP

f+
Z (0)+f−

Z (0)
and

consider the following derivation,

R̄n,3 ≥ P{|Z∗g,(q+1)| ≤ εq} inf
r≤εq

P
{
S∗n ≤

√
qx+ qπf

∣∣∣ |Z∗g,(q+1)| = r
}

= P{|Z∗g,(q+1)| ≤ εq} inf
r≤εq

Ψq

(√
qx+ qπf

∣∣∣π(r)
)

≥ P{|Z∗g,(q+1)| ≤ εq}Ψq

(√
qx+ qπf

∣∣∣π+
q

)
= P{|Z∗g,(q+1)| ≤ εq}Jq

(
x−√q(π+

q − πf )
∣∣∣π+
q

)
= P{|Z∗g,(q+1)| ≤ εq}Jq

(
x− 1

2

√
qεqCP

f+
Z (0) + f−Z (0)

∣∣∣∣∣π+
q

)
, (A-7)

where the first equality uses π(r) = P{Z > 0 | |Z| < r} and follows from Lemma B.4, the second inequality

follows from Ψq(x|π) being decreasing in π and π(r) ≤ π+
q for r ≤ εq from Lemma B.6, and the last equality

follows from the definition of π+
q . By an analogous argument,

R̄n,3 ≤ P{|Z∗g,(q+1)| ≤ εq} sup
r≤εq

P
{
S∗n ≤

√
qx+ qπf

∣∣∣ |Z∗g,(q+1)| = r
}

≤ P{|Z∗g,(q+1)| ≤ εq}Ψq

(√
qx+ qπf

∣∣∣π−q )
≤ P{|Z∗g,(q+1)| ≤ εq}Jq

(
x+

1

2

√
qεqCP

f+
Z (0) + f−Z (0)

∣∣∣∣∣π−q
)
, (A-8)

where in this case we define π−q ≡ πf − 1
2

εqCP

f+
Z (0)+f−

Z (0)
. To complete the proof, it suffices to show that that

the right-hand side expressions of (A-7) and (A-8) converge to Φ

(
x√

πf (1−πf )

)
. We only show the result for

(A-7), as the result for (A-8) is analogous.

It follows by the Berry-Esseen theorem that∣∣∣∣∣∣Jq
(
x− 1

2

√
qεqCP

f+
Z (0) + f−Z (0)

∣∣∣∣∣π+
q

)
− Φ

x− 1
2

√
qεqCP

f+
Z (0)+f−

Z (0)√
π+
q (1− π+

q )

∣∣∣∣∣∣ ≤ 1

2
√
q

((π+
q )2 + (1− π+

q )2)√
π+
q (1− π+

q )
→ 0 , (A-9)

where the convergence follows from q → ∞ and π+
q → πf ∈ (0, 1). Since

√
qεq → 0, the continuity of the

standard normal CDF implies that∣∣∣∣∣∣Φ
x− 1

2

√
qεqCP

f+
Z (0)+f−

Z (0)√
π+
q (1− π+

q )

− Φ

(
x√

πf (1− πf )

)∣∣∣∣∣∣→ 0 . (A-10)
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Finally, Lemma B.5 and εq
n
q →∞ imply that

P{|Z∗g,(q+1)| ≤ εq} = P
{n
q
|Z∗g,(q+1)| ≤

n

q
εq

}
→ 1 . (A-11)

By combining (A-9), (A-10), and (A-11), (18) follows.

We now conclude the proof by showing parts (a)-(c) of the theorem. By the definition of cq(α) in (9)

and the central limit theorem, it follows that for any α ∈ (0, 1),

cq(α)→ 1

2
zα/2 (A-12)

as q → ∞, where zα/2 is the (1 − α
2 )-quantile of N(0, 1). Since q → ∞ as n → ∞, this implies that cq(α)

converges to the (1− α/2)-quantile of N(0, 1/4) as n→∞. Next, notice that

√
q

(
1

q
Sn −

1

2

)
=
√
q

(
1

q
Sn − πf

)
+
√
q

(
πf −

1

2

)
. (A-13)

Under H0 in (3), πf = 1
2 , and so (18) implies that the expression in (A-13) converges in distribution to

N(0, 1/4) as n→∞. From here, part (a) follows. Parts (b) and (c) follow from analogous arguments based

on (18), (A-13), and the convergence of cq(α) to the (1− α/2)-quantile of N(0, 1/4) as n→∞. �

B Auxiliary Results

Lemma B.1. Let δ > 0 be as in Assumption 4.1 and let {υi : 1 ≤ i ≤ n} be an i.i.d. sample such that

υi ∼ U(− δ2 ,
δ
2 ) independent of Z(n). Define the sequence of i.i.d. random variables {Z∗i : 1 ≤ i ≤ n} as

Z∗i ≡ Zi + υiI{|Zi| ≥ δ} .

Then,

(a) The distribution function of |Z∗| is continuous on R.

(b) For any r ∈ (0, δ2 ),

P{Z∗ ≥ 0 | |Z∗| < r} = P{Z ≥ 0 | |Z| < r} . (B-14)

(c) For any r > 0, P{|Z∗| < r} > 0.

Proof. To prove part (a), let E ⊂ R be a set of zero Lebesgue measure and note that

P{|Z∗| ∈ E} = P{|Z + υI{|Z| ≥ δ}| ∈ E}

= P{|Z + υI{|Z| ≥ δ}| ∈ E ∩ |Z| ≥ δ}+ P{|Z + υI{|Z| ≥ δ}| ∈ E ∩ |Z| < δ}

= P{|Z + υ| ∈ E ∩ |Z| ≥ δ}+ P{|Z| ∈ E ∩ |Z| < δ}

≤ P{|Z + υ| ∈ E}+ P{|Z| ∈ E ∩ (0, δ)} = 0 ,

where the last equality holds because the distribution function of |Z + υ| is continuous and E ∩ (0, δ) is a

subset of zero Lebesgue measure in the set where the distribution function of |Z| is assumed to be continuous.

For part (b), note that for any r ∈ (0, δ2 ), |Z∗| < r implies that Z = Z∗ and (B-14) follows.
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For part (c), use again that P{|Z∗| < r} = P{|Z| < r} whenever r ∈ (0, δ2 ). By Assumption 4.1, for any

0 < ε < δ,
1

ε
P{|Z| < ε} =

1

ε

∫ ε

−ε
fZ(z)dz .

Taking limits as ε ↓ 0, using L’Hôpital’s rule, and invoking Assumption 4.1(ii) shows that limε↓0
1
εP{|Z| <

ε} = f+
Z (0) + f−Z (0) > 0. Thus, there exists ε̄ < δ such that P{|Z| < ε} > 0 for all ε ∈ (0, ε̄) and so

P{|Z| < r} > 0 for all r ∈ R. This completes the proof.

Lemma B.2. Let Assumptions 4.1(i) and 4.1(ii) hold and let πf be defined as in Theorem 4.1. Then, for

all µ > 0, there exists ε > 0 s.t.

sup
r≤ε
|P{Z ≥ 0 | |Z| < r} − πf | ≤ µ .

Proof. First note that, under Assumption 4.1(ii), the proof of Lemma B.1 shows that P{|Z| < r} > 0 for all

r ∈ R. It follows that

P{Z ≥ 0 | |Z| < ε} =
1
ε

∫ ε
0
fZ(z)dz

1
ε

∫ ε
−ε fZ(z)dz

=
f+
Z (0)

f+
Z (0) + f−Z (0)

+ ∆ε ,

where the last equality holds for ∆ε → 0 as ε → 0 by using L’Hôpital’s rule and Assumption 4.1(ii). The

result then follows by definition of πf .

Lemma B.3. Let Assumptions 4.1(i) and 4.1(ii) hold and q
n → 0 as n→∞. Then,

(a) For any ε ∈ (0, δ2 ), P{lim infn→∞{|Z∗g,(q+1)| ≤ ε}} = P{lim infn→∞{|Zg,(q+1)| ≤ ε}} = 1.

(b) P{lim infn→∞{Sn = S∗n}} = 1, where Sn is as in (6) and S∗n is as in (A-1).

Proof. Fix ε ∈ (0, δ2 ) arbitrarily and set Nn ≡
∑n
i=1 I{|Zi| ≤ ε}. Note that Nn ≥ q+ 1 implies that Z∗i = Zi

and Z∗g,(j) = Zg,(j) for at least q + 1 observations that are within an ε-neighborhood of zero. It follows that

for all these observations, Ag,(j) = A∗g,(j), Z
∗
g,(j) ≤ ε, and Zg,(j) ≤ ε. We conclude that Nn ≥ q + 1 implies

Sn = S∗n, Z∗g,(q+1) ≤ ε, and Zg,(q+1) ≤ ε .

Parts (a)-(b) thus follow from proving that P{lim infn→∞{Nn ≥ q + 1}} = 1. To show this, note that

Nn ∼ Bi(n, P{|Z| ≤ ε}). Now set µ ≡ 1
2P{|Z| ≤ ε}, which is positive by the proof of Lemma B.1. It follows

that

P{lim inf
n→∞

{Nn ≥ q + 1}} = P

{
lim inf
n→∞

{
Nn
n
≥ q + 1

n

}}
≥ P

{
lim inf
n→∞

{
Nn
n
≥ µ

}}
= 1 ,

where the inequality holds for all n > (q + 1)/µ, and the last equality follows by the strong law of large

numbers, i.e., Nn/n
a.s.→ 2µ > 0.

Lemma B.4. Let Assumptions 4.1(i) and 4.1(ii) hold. Fix r ∈ (0, δ2 ) and q ∈ {1, . . . , n − 1} arbitrarily.

Then, for all s ∈ Nq ≡ {0, 1, . . . , q},

P{S∗n = s | |Z∗g,(q+1)| = r} = pq(s|π(r))

where pq(s|π(r)) is the pmf defined in (A-2) with π(r) ≡ P{Z ≥ 0 | |Z| < r}.
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Proof. Let X ≡ (|Z∗|, A∗) with A∗ = I{Z∗ ≥ 0} and note that the g-order statistics we defined in Section 3

using g = | · |, could be alternatively obtained using X and g̃-order statistics where g̃ is now the projection

into the first component of X, i.e.

g̃(X) = |Z∗| .

In this way, and for this particular choice of g̃, g̃-order statistics on X deliver

Xg̃,(1) ≡ (|Z∗|(1), A
∗
[1]) ≤g̃ (|Z∗|(2), A

∗
[2]) ≤g̃ · · · ≤g̃ (|Z∗|(n), A

∗
[n]) ≡ Xg̃,(n) ,

where the random variables (A∗[1], . . . , A
∗
[n]) are called induced order statistics or concomitants of order

statistics, see David and Galambos (1974); Bhattacharya (1974).

Let X̃1, . . . , X̃q be i.i.d. bivariate random variables such that X̃
d
= {X | g̃(X) < r}. Theorem 1 in

Kaufmann and Reiss (1992) states that

{(Xg̃,(1), . . . , Xg̃,(q)) | g̃(Xg̃,(q+1)) = r} d
= {X̃g̃,(1), . . . , X̃g̃,(q)} , (B-15)

with X̃g̃,(1), . . . , X̃g̃,(q) being the g̃-order statistics of X̃1, . . . , X̃q, provided that (i) g̃(X) has a continuous

distribution and (ii) P{g̃(X) < r} > 0. Since g̃(X) = |Z∗| has a continuous distribution by Lemma B.1(a)

and P{g̃(X) < r} = P{|Z∗| < r} > 0 by Lemma B.1(c), we use (B-15) to prove our result.

Next, note that we can re-write S∗n in (A-1) as a function of (Xg̃,(1), . . . , Xg̃,(q)) by using the function h

that projects into the second component of X, i.e.

S∗n =

q∑
j=1

A∗g,(j) =

q∑
j=1

A∗[j] =

q∑
j=1

h(Xg̃,(j)) ,

where in the second equality we used that A∗g,(j) = A∗[j] by definition. Using this characterization, it follows

that

P{S∗n = s | |Z∗g,(q+1)| = r} = P
{ q∑
j=1

h(Xg̃,(j)) = s | |g̃(Xg̃,(q+1))| = r
}

= P
{ q∑
j=1

h(X̃g̃,(j)) = s
}

= P
{ q∑
j=1

h(X̃j) = s
}

= pq(s|π(r)) ,

where the second equality follows from (B-15), the third equality follows from
∑q
j=1 h(X̃g̃,(j)) =

∑q
j=1 h(X̃j),

and the last equality follows from h(X̃1), . . . , h(X̃q) being i.i.d. bivariate random variables such that h(X̃)
d
=

{h(X) | g̃(X) < r} and {h(X) | g̃(X) < r} = {I{Z∗ ≥ 0} | |Z∗| < r} being distributed Bernoulli with

parameter π(r) = P{Z∗ ≥ 0 | |Z∗| < r}. Since P{Z∗ ≥ 0 | |Z∗| < r} = P{Z ≥ 0 | |Z| < r} for r ∈ (0, δ2 ) by

Lemma B.1(b), this completes the proof.

Lemma B.5. Let Assumptions 4.1(i’) and 4.1(ii) hold and suppose q →∞ and q
n → 0 as n→∞. Then

n

q
|Z∗g,(q)|

P→ 1

f+
Z (0) + f−Z (0)

.
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Proof. For any ε > 0, it suffices to show that

P
{n
q
|Z∗g,(q)| >

1

f+
Z (0) + f−Z (0)

+ ε
}
→ 0 and P

{n
q
|Z∗g,(q)| <

1

f+
Z (0) + f−Z (0)

− ε
}
→ 0 . (B-16)

We only show the first result in (B-16), as the second one follows from symmetric arguments. By definition,

|Z∗g,(q)| = |Z
∗|(q) where |Z∗|(q) denotes the q-th order statistic of the absolute value of Z∗. Denote by Q the

CDF of |Z∗| and by U(q) the q-th order statistic of a U [0, 1] distributed random variable. Lemma B.1(a)

implies that Q(·) is a continuous CDF. Then, for M̄ = 1
f+
Z (0)+f−

Z (0)
+ ε, note that

P
{n
q
|Z∗g,(q)| > M̄

}
= P

{
|Z∗|(q) >

q

n
M̄
}

= P
{
U(q) > Q

( q
n
M̄
)}

= P
{n1/2

en
(U(q) − µn) >

n1/2

en

(
Q
( q
n
M̄
)
− µn

)}
, (B-17)

where e2
n = µn(1− µn) and µn = q/(n+ 1). Letting

γn = enn
1/2 1

e2
n

(
Q
( q
n
M̄
)
− µn

)
,

it follows from (B-17) and Reiss (1989, Eq. (3.1.2) in Lemma 3.1.1) that

P
{n
q
|Z∗g,(q)| > M̄

}
≤ exp

(
− γ2

n

3(1 + γn/(enn1/2))

)
.

To complete the proof it suffices to show that the right-hand side expression in the display above converges

to zero. To this end, it suffices to show that γn → ∞ and γn/(enn
1/2) converges to a positive constant. In

turn, this follows from showing that

enn
1/2 →∞ and

1

e2
n

(
Q
( q
n
M̄
)
− µn

)
→ ε

(
f+
Z (0) + f−Z (0)

)
> 0 , (B-18)

where the limit of the second expression is positive by Assumption 4.1(ii). To show the first result in (B-18),

note that q
n → 0 implies (enn

1/2)2

q = µn(1−µn)
q/n = n

n+1 (1− q
n+1 )→ 1. Combined with q →∞, this then implies

that enn
1/2 →∞. To show the second result in (B-18), note that q

n → 0 implies that for n sufficiently large

we obtain q
nM̄ < δ and so Q

(
q
nM̄

)
=
∫ q

n M̄

− q
n M̄

fZ(z)dz since Z∗ = Z on (−δ, δ). Then,

1

e2
n

(
Q
( q
n
M̄
)
− µn

)
=

q/n

µn(1− µn)

(
n

q

∫ q
n M̄

− q
n M̄

fZ(z)dz − n

q
µn

)

=
q/n

µn(1− µn)

(
n

q

∫ q
n M̄

0

(fZ(z)− f+
Z (0))dz +

n

q

∫ 0

− q
n M̄

(fZ(z)− f−Z (0))dz

)

+
q/n

µn(1− µn)

(
n

q

∫ q
n M̄

0

f+
Z (0)dz +

n

q

∫ 0

− q
n M̄

f−Z (0)dz − n

q
µn

)
→ M̄

(
f+
Z (0) + f−Z (0)

)
− 1 = ε

(
f+
Z (0) + f−Z (0)

)
,

where the convergence follows from Assumption 4.1(i’) and q
n → 0, which imply that∣∣∣n

q

∫ q
n M̄

0

(fZ(z)− f+
Z (0))dz

∣∣∣ ≤ CP M̄2 q

n
→ 0 and

∣∣∣n
q

∫ 0

− q
n M̄

(fZ(z)− f−Z (0))dz
∣∣∣ ≤ CP M̄2 q

n
→ 0 ,

and q/n
µn(1−µn) → 1.
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Lemma B.6. Let Assumption 4.1(i’) hold, πf be as in Theorem 4.1, and π(r) = P{Z > 0 | |Z| < r}. Then,

for any r ∈ (0, δ),

|π(r)− πf | ≤
r

2

CP

f+
Z (0) + f−Z (0)

.

Proof. Fix r ∈ (0, δ) arbitrarily. Start by re-writing π(r) as follows,

π(r) =
1
r

∫ r
0
fZ (z) dz

1
r

∫ 0

−r fZ(z)dz + 1
r

∫ r
0
fZ(z)dz

=

(
1
r

∫ 0

−r fZ(z)dz
1
r

∫ r
0
fZ(z)dz

+ 1

)−1

=

(
f−Z (0) + 1

r

∫ 0

−r(fZ(z)− f−Z (0))dz

f+
Z (0) + 1

r

∫ r
0

(fZ(z)− f+
Z (0))dz

+ 1

)−1

. (B-19)

Next, note that Assumption 4.1(i’) implies that∣∣∣∣1r
∫ r

0

(fZ(z)− f+
Z (0))dz

∣∣∣∣ ≤ r

2
CP and

∣∣∣∣1r
∫ 0

−
(fZ(z)− f−Z (0))dz

∣∣∣∣ ≤ r

2
CP .

Combining these two derivations we conclude that

π(r) ≤

(
f−Z (0)− r

2CP

f+
Z (0) + r

2CP
+ 1

)−1

= πf +
r
2CP

f+
Z (0) + f−Z (0)

,

π(r) ≥

(
f−Z (0) + r

2CP

f+
Z (0) r2rCP

+ 1

)−1

= πf −
r
2CP

f+
Z (0) + f−Z (0)

.

This implies the desired result.

C Results under a mass point at the cut-off

In this section, we consider the asymptotic behavior of the proposed test when there is a mass point at the

cut-off z̄ = 0. As mentioned in Section 2, this mass point implies a violation of Assumption 4.1, and so our

formal results do not apply. On the other hand, a mass point at the cutoff is usually considered an extreme

form of violation of the continuity of the density at the cut-off and, thus, should be regarded as part of H1

in (3). The following result shows that the proposed test rejects with probability approaching one whenever

there is a mass point zero.

Theorem C.1. Assume that P{Z = 0} > 0 and let α ∈ (0, 1). If q ≥ q∗(α) as in (13) and q
n → 0,

(a) Sn = q with probability approaching one.

(b) limn→∞E[φ(Sn)] = 1.

Proof. Let Nn ≡
∑n
i=1 I{Zi = 0}. Note that Nn ≥ q + 1 implies that Sn = q so Tq(Sn) =

√
q/2. By this

and q ≥ q∗(α), cq(α) <
√
q/2 = Tq(Sn) and so φ(Sn) = 1. Therefore, the desired results follow from showing

that P{lim infn→∞{Nn ≥ q + 1}} = 1. To this end, note that Nn ∼ Bi(n, P{Z = 0}) so

P
{

lim inf
n→∞

{Nn ≥ q + 1}
}

= P

{
lim inf
n→∞

{
Nn
n
≥ q + 1

n

}}
≥ P

{
lim inf
n→∞

{
Nn
n
≥ P{Z = 0}

2

}}
= 1 ,

where the inequality holds for all n large enough such that P{Z = 0}/2 > (q + 1)/n → 0, and the last

equality follows by the strong law of large numbers, i.e., Nn/n
a.s.→ P{Z = 0} > 0.
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It is relevant to note that Theorem C.1 applies to both asymptotic frameworks considered in the paper,

i.e., it applies to fixed q case as long as q ≥ q∗(α), and it applies to large q case provided that q/n→ 0.

D Computational details on the data-dependent rule for q

In the simulations of Section 5 and in the companion Stata package, the feasible informed rule of thumb is

computed as follows. First, we compute

q̂rot =

max

q∗(α), n1/2

(
σ̂

4φ2
µ̂,σ̂(z̄)

φµ̂,σ̂(µ̂+ σ̂)

)2/3

 ,

where q∗(α) = 1 − logα
log 2 , µ̂ is the sample mean of {Z1, . . . , Zn}, σ̂2 is the sample variance of {Z1, . . . , Zn},

z̄ is the cut-off point, and n is the sample size. In principle, the value q̂rot could be used to implement our

test. However, this would ignore the non-monotonicity of the limiting null rejection probability of the non-

randomized version of our test, which according to Theorem 4.2, equals 2Ψq(bq(α)−1) with bq(α) defined in

(10). Figure 3 displays 2Ψq(bq(α)− 1) for α = 5% as a function of q. The figure shows that 2Ψq(bq(α)− 1)

takes values very close to α for q as low as 17 (i.e., 4.9%), but could be far from α for q = 19 (i.e., 1.9%).

We therefore propose an additional layer in the data-dependent way of choosing q that guarantees that such

a value delivers a local “peak” of 2Ψq(bq(α)− 1) in Figure 3.
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Figure 3: The solid line is the limiting null rejection probability (in %) of the non-randomized version of the test,

2Ψq(bq(α)− 1), as a function of q. The dotted line is the nominal level of the test.

To be concrete, we define q̂irot as

q̂irot = argmax
q∈N (q̂rot)

Ψq(bq(α)− 1) , (D-20)

where

N (q̂rot) ≡ {q ∈ N : max{q∗(α), q̂rot − d4 log(q̂rot)e} ≤ q ≤ q̂rot + d4 log(q̂rot)e} . (D-21)
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The value of window size d4 log(q̂rot)e is the minimum number of points that are required to reach a local

peak of 2Ψq(bq(α)− 1) for values of α ∈ {1%, 5%, 10%} and is such that, for large values of q̂rot, the window

gets larger to improve the chances of getting one of the peaks closer to α as q̂rot increases. A smaller window

size may not guarantee one actually reaches a local peak. The value q̂irot defined in (D-20) is the one we use

in the simulations of Section 5 and the default value in the companion Rdcont Stata package.

E Surveyed papers on RDD

Table 4 displays the list of papers we surveyed in leading journals that use regression discontinuity designs.

For a description on the criteria used to compile the list of papers in Table 4, see Canay and Kamat (2018,

Appendix E).

Authors (Year) Journal (i): Mean Test (ii): Density Test

Schmieder et al. (2016) AER X X

Feldman et al. (2016) AER X X

Jayaraman et al. (2016) AER × ×
Dell (2015) AER X X

Hansen (2015) AER X X

Anderson (2014) AER × ×
Martin et al. (2014) AER × ×
Dahl et al. (2014) AER X X

Shigeoka (2014) AER X ×
Crost et al. (2014) AER X ×
Kostol and Mogstad. (2014) AER X X

Clark and Royer (2013) AER X ×
Brollo et al. (2013) AER X X

Bharadwaj et al. (2013) AER X X

Pop-Eleches and Urquiola (2013) AER X X

Lacetera et al. (2012) AER × X

Duflo et al. (2012) AER × ×
Gopinath et al. (2011) AER X X

Auffhammer and Kellogg (2011) AER × ×
Duflo et al. (2011) AER × ×
Ferraz and Finan (2011) AER × ×
McCrary and Royer (2011) AER X ×
Beland (2015) AEJ:AppEcon X X

Buser (2015) AEJ:AppEcon X X

Fack and Grenet (2015) AEJ:AppEcon X X

Cohodes and Goodman (2014) AEJ:AppEcon X X

Haggag and Paci (2014) AEJ:AppEcon X X

Dobbie and Fryer (2014) AEJ:AppEcon X X

Sekhri (2014) AEJ:AppEcon X X

Schumann (2014) AEJ:AppEcon X X

Lucas and Mbiti (2014) AEJ:AppEcon X X

Authors (Year) Journal (i): Mean Test (ii): Density Test

Miller et al. (2013) AEJ:AppEcon X X

Litschig and Morrison (2013) AEJ:AppEcon X X

Dobbie and Skiba (2013) AEJ:AppEcon X X

Kazianga et al. (2013) AEJ:AppEcon X X

Magruder (2012) AEJ:AppEcon × ×
Dustmann and Schnberg (2012) AEJ:AppEcon × ×
Clots-Figueras (2012) AEJ:AppEcon X X

Manacorda et al. (2011) AEJ:AppEcon X X

Chetty et al. (2014) QJE X X

Michalopoulos and Papaioannou (2014) QJE X ×
Fredriksson et al. (2013) QJE X X

Schmieder et al. (2012) QJE X X

Lee and Mas (2012) QJE × ×
Saez et al. (2012) QJE × ×
Barreca et al. (2011) QJE × ×
Almond et al. (2011) QJE X X

Malamud and Pop-Eleches (2011) QJE X X

Fulford (2015) ReStat X ×
Snider and Williams (2015) ReStat × ×
Doleac and Sanders (2015) ReStat × ×
Coşar et al. (2015) ReStat × ×
Avery and Brevoort (2015) ReStat × ×
Carpenter and Dobkin (2015) ReStat X ×
Black et al. (2014) ReStat X X

Anderson et al. (2014) ReStat × ×
Alix-Garcia et al. (2013) ReStat X ×
Albouy (2013) ReStat × ×
Garibaldi et al. (2012) ReStat X X

Manacorda (2012) ReStat X X

Martorell and McFarlin (2011) ReStat X X

Grosjean and Senik (2011) ReStat × ×

Table 4: Survey of RDD empirical papers from 2011–2015 in the following journals: American Eco-

nomic Review (AER), American Economic Journal: Applied Economics (AEJ:AppEcon), Quarterly

Journal of Economics (QJE), and Review of Economics and Statistics (ReStat). Implications (i)

and (ii) denote the testable implications proposed by Lee (2008) described in page 1. A checkmark

indicates that the corresponding implication has been tested and a cross indicates otherwise.
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