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Summary This paper provides a set of sufficient conditions that point identify a quantile
regression model with fixed effects. It also proposes a simple transformation of the data that
gets rid of the fixed effects under the assumption that these effects are location shifters. The
new estimator is consistent and asymptotically normal as both n and T grow.
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1. INTRODUCTION

Panel data models and quantile regression models are both widely used in applied econometrics
and popular topics of research in theoretical papers. Quantile regression models allow the
researcher to account for unobserved heterogeneity and heterogeneous covariates effects, while
the availability of panel data potentially allows the researcher to include fixed effects to control
for some unobserved covariates. There has been little but growing work at the intersection of
these two methodologies (e.g. Koenker, 2004, Geraci and Bottai, 2007, Abrevaya and Dahl, 2008,
Galvao, 2008, Rosen, 2009, and Lamarche, 2010). This initial lack of attention is possibly due to
a fundamental issue associated with conditional quantiles. This is, as it is the case with non-linear
panel data models, standard demeaning (or differencing) techniques do not result in feasible
approaches. These techniques rely on the fact that expectations are linear operators, which is
not the case for conditional quantiles. This paper provides sufficient conditions under which the
parameter of interest is identified for fixed T and shows that there is a simple transformation of the
data that eliminates the fixed effects as T → ∞, when the fixed effects are viewed as location shift
variables (i.e. variables that affect all quantiles in the same way). The resulting two-step estimator
is consistent and asymptotically normal when both n and T go to infinity. Also, the new estimator
is extremely simple to compute and can be implemented in standard econometrics packages.

The paper is organized as follows. Section 2 presents the model. Section 3 provides an
identification result based on deconvolution arguments. Section 4 introduces a two-step estimator
for panel data quantile regression models. Asymptotic properties of the new estimator are
presented in the same section. Section 5 includes a small Monte Carlo experiment to study
the finite sample properties of the two-step estimator. Finally, Section 6 concludes. Appendix
A provides proofs of results. An estimator of the covariance kernel and the bootstrap method are
given in Appendix B.
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2. THE MODEL

Consider the following model

Yit = X′
it θ (Uit ) + αi, t = 1, . . . , T , i = 1, . . . , n, (2.1)

where (Yit , Xit ) ∈ R × R
k are observable variables and (Uit , αi) ∈ R × R are unobservable.

Throughout the paper the vector Xit is assumed to include a constant term, i.e. X′
it = (1, Xs′

it )
with Xs

it ∈ R
k−1. The function τ �→X′θ (τ ) is assumed to be strictly increasing in τ ∈ (0, 1) and

the parameter of interest is assumed to be θ (τ ). If αi were observable it would follow that

P
[
Yit ≤ X′

it θ (τ ) + αi | Xi, αi

] = τ, (2.2)

under the assumption that Uit ∼ U[0, 1] conditional on Xi = (X′
i1, . . . , X

′
iT )′ and αi. This type

of representation has been extensively used in the literature (e.g. Chernozhukov and Hansen,
2006, 2008). The difference with the model in equation (2.1) and the standard quantile regression
model introduced by Koenker and Bassett (1978) lies in the presence of the unobserved αi. This
random variable could be arbitrarily related to the rest of the random variables in equation (2.1)
(i.e. αi = αi(Uit, Xi, ηi) for some i.i.d. sequence ηi) rendering condition (2.2) as not particularly
useful in terms of identification. The question is under what additional conditions on (Uit, αi) the
parameter θ (τ ) can be identified and consistently estimated from the data.

Rosen (2009) recently showed that conditional on covariates quantile restriction alone
does not identify θ (τ ). That is, let QZ(τ | A) denote the τ -quantile of a random variable Z
conditional on another random variable A, let eit (τ ) ≡ X′

it [θ (Uit ) − θ (τ )], and write the model
in equation (2.1) as

Yit = X′
it θ (τ ) + αi + eit (τ ), Qeit (τ )(τ | Xi) = 0. (2.3)

Then, the conditional quantile restriction Qeit (τ )(τ | Xi) = 0 does not have sufficient identification
power.1 Rosen (2009) then provides different assumptions, i.e. support conditions and some form
of conditional independence of eit(τ ) across time, that (point and partially) identify θ (τ ).

Abrevaya and Dahl (2008) use the correlated random-effects model of Chamberlain (1982,
1984) as a way to get an estimator of θ (τ ). This model views the unobservable αi as a linear
projection onto the observables plus a disturbance, i.e.

αi (τ,Xi, ηi) = X′
i�T (τ ) + ηi.

The authors view the model as an approximation to the true conditional quantile and proceed to
get estimates of θ (τ ) and �T (τ ) by running a quantile regression of Yit on Xit and Xi. In cases
where there is no disturbance ηi, such a regression identifies θ (τ ). However, it is immediate to see
that a quantile restriction alone does not identify θ (τ ) whenever ηi is present non-trivially since
the conditional behaviour of X′

it θ (Uit ) + X′
i�T (τ ) + ηi depends on the joint distribution of the

unobservables Uit and ηi. This is problematic since not even a correctly specified function for
αi(τ , Xi, ηi) helps in identifying θ (τ ), meaning that the correlated random-effects model might
work poorly in many contexts. The simulations of Section 5 illustrate this point.

1 Note that the distribution of eit(τ ) need not be identical across t even when Uit is i.i.d., but that eit(τ ) has the same
τ -quantile for all t.
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Koenker (2004) takes a different approach and treats {αi}ni=1 as parameters to be jointly
estimated with θ (τ ) for q different quantiles. He proposes the penalized estimator

(
θ̃ , {α̃i}ni=1

) ≡ argmin
(θ,{αi }ni=1)

q∑
k=1

n∑
i=1

T∑
t=1

ρτk

[
Yit − X′

it θ (τk) − αi

] + λ

n∑
i=1

|αi |, (2.4)

where ρτ (u) = u[τ − I(u < 0)], I(·) denotes the indicator function, and λ ≥ 0 is a
penalization parameter that shrinks the α̃s towards a common value. Solving equation (2.4)
can be computationally demanding when n is large (even for λ = 0) and has the additional
complication involved in the choice of λ.2

Finally, there is a related literature on non-separable panel data models. These type of models
are flexible enough to provide quantile treatment effects (see, e.g. Chernozhukov et al., 2010,
and Graham and Powell, 2010). For example, Chernozhukov et al. (2010) show that the quantile
treatment effect of interest is partially identified (for fixed T) and provide bounds for those effects
in the model

Yit = g0(Xit , αi, Uit ), Uit | Xi, αi =d Uit ′ | Xi, αi, (2.5)

where Xit is assumed discrete. They also derive rates of shrinkage of the identified set to a point
as T goes to infinity. The model in Chernozhukov et al. (2010) is more general than the one in
equation (2.1) as it is non-separable in αi and it involves weaker assumptions on the unobservable
Uit. However, it leads to less powerful identification results and more complicated estimators.

In this context this paper contributes to the literature in two ways. The next section shows
that when the model in equation (2.1) is viewed as a deconvolution model, a result from
Neumann (2007) can be applied to show that θ (τ ) is identified when there are at least two
time periods available and αi has a pure location shift effect.3 This identification result could be
potentially used to construct estimators of θ (τ ) based on non-parametric estimators of conditional
distribution functions. Such non-parametric estimators would rarely satisfy the end-goal of
this paper, that is, to provide an easy-to-use estimator that can be implemented in standard
econometric packages, would suffer from the common curse of dimensionality, and would
typically involve a delicate choice of tuning parameters for their implementation.4 Thus, when
moving from identification to estimation, this paper takes a different approach and shows that
there exists a simple transformation of the data that eliminates the fixed effects αi as T → ∞.
The transformation leads to an extremely simple asymptotically normal estimator for θ (τ ) that
can be easily computed even for very large values of n. Standard errors for this new estimator
can be computed from the asymptotically normal representation.

3. IDENTIFICATION

In this section, I prove that the parameter of interest θ (τ ) is identified for T ≥ 2 under
independence restrictions and existence of moments. The intuition behind the result is quite

2 Lamarche (2010) proposes a method to chose λ under the additional assumption that αi and Xi are independent.
Galvao (2008) further extends this idea to dynamic panels.

3 This means that if αi captures unobserved covariates Z′
iβ(τ ) that enter the model and are constant over time, such

variables must have coefficients that are constant across τ , that is, β = β(τ ) for all τ .
4 The advantage of such non-parametric estimators would be their consistency for asymptotics in which n → ∞ and T

remains fixed.
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simple. Letting St ≡ X′
t θ (Ut ) (the dependence on i is omitted for convenience here), it follows

from equation (2.1) that Yt = St + α is a convolution of St and α conditional on X, provided α

and Ut are independent conditional on X. It then follows that the conditional distributions of St

and α can be identified from the conditional distribution of Yt by using a deconvolution argument
similar to that in Neumann (2007). This in turn results in identification of θ (τ ) after exploiting
the fact that Ut is conditionally U[0, 1] together with some regularity conditions.

For ease of exposition let T = 2 and consider the following assumption where the lower case
x = (x1, x2) denotes a realization of the random variable X = (X1, X2).

ASSUMPTION 3.1. Denote by φSt |x and φα|x the conditional on X = x characteristic functions
of the distributions PSt |x and Pα|x, respectively. Then (a) conditional on X = x the random
variables S1, S2 and α are independent for all x ∈ X̄ , where X̄ denotes the support of X =
(X1, X2); (b) the set � ≡ {ω : φSt |x(ω2−k) �= 0 for t ∈ {1, 2} and φα|x(ω2−k) �= 0, k = 0, 1, . . .}
is dense in R for all x ∈ X̄ .

Assumption 3.1 follows Neumann (2007), but it does not impose PS1 | x = PS2 | x for all x ∈
X̄ , which does not hold in equation (2.1). Assumption 3.1(a) implies that αi does not change
across quantiles as αi is independent of (U1, U2). Assumption 3.1(b) excludes characteristic
functions that vanish on non-empty open subsets of R but allows the characteristic function to
have countably many zeros. This includes cases ruled out in the deconvolution analysis of Li and
Vuong (1998) and Evdokimov (2010), among others. More generally, any deconvolution analysis
based on Kotlarski’s Lemma (which has been widely applied to identify and estimate a variety of
models in economics) will fail to include such cases.5 For example, if α ∼ U[ − 1, 1], or if α is
discrete uniform, φα has countably many zeros and so Kotlarski’s Lemma would not apply while
Assumption 3.1(b) would be satisfied. Having this extra dimension of generality is important
here as the distribution of αi is left unspecified in this paper.

Assumption 3.1 implies that Yt is a convolution of St and α conditional on X = x and so

φ(Y1,Y2) | x(ω1, ω2) = E[exp(iω′Y )] = E[exp(iω1S1 + iω2S2 + i(ω1 + ω2)α) | X = x]
(3.1)

= φS1 | x(ω1)φS2 | x(ω2)φα|x(ω1 + ω2). (3.2)

LEMMA 3.1. Suppose that PSt |x and Pα|x are distributions with characteristic functions φSt |x
and φα|x satisfying Assumption 3.1. Let P̃α|x and P̃St |x be further distributions with respective
characteristic functions φ̃α|x and φ̃St |x . If now

φS1 | x(ω1)φS2 | x(ω2)φα|x(ω1 + ω2) = φ̃S1 | x(ω1)φ̃S2 | x(ω2)φ̃α|x(ω1 + ω2), ∀ω1, ω2 ∈ R,
(3.3)

and all x ∈ X̄ , then there exist constants cx ∈ R such that

P̃St |x = P(St−cx ) | x and P̃α|x = P(α+cx ) | x. (3.4)

5 An extension of the result by Kotlarski for the case of characteristic functions with zeros was recently proposed by
Evdokimov and White (2010) by using conditions on the derivatives of the characteristic functions.

C© 2011 The Author(s). The Econometrics Journal C© 2011 Royal Economic Society.



372 I. A. Canay

That is, P̃St |x and PSt |x for t ∈ {1, 2} as well as P̃α|x and Pα|x are equal up to a location
shift.

REMARK 3.1. Lemma 3.1 extends immediately to models that are slightly more general than
the one in equation (2.1). For example, consider the case where Yit = q(Uit, Xit) + αi and q(τ ,
x) is strictly increasing in τ for all x ∈ X̄ . This model reduces to equation (2.1) if q(Uit , Xit ) =
X′

it θ (Uit ). Lemma 3.1 holds in this case by letting St = q(Ut, Xt). Another example would be a
random coefficients model where Yit = X′

it θi(Uit ) and θi(Uit ) = θ (Uit ) + α̃i . This model can be
written as Yit = X′

it θ (Uit ) + αit and so the additional generality relative to equation (2.1) comes
from αit ≡ X′

it α̃i varying across i and t. Lemma 3.1 also applies to this model conditional on the
event X1 = X2.

REMARK 3.2. It is worth noting that the identification result in Lemma 3.1 also applies to the
correlated random effects model in Abrevaya and Dahl (2008) where

Yt = θ (Ut )Xt + α(Ut,X, η), α(Ut,X, η) = �1(Ut )X1 + �2(Ut )X2 + η. (3.5)

Here Assumption 3.1 must hold for φSt |x and φη|x where St = (θ (Ut) + �t(Ut))Xt + �−t(Ut)X−t.

Lemma 3.1 identifies the distributions up to location. Typically, to be able to identify
the entire distribution one would need to add a location assumption. In the case of quantile
regression the standard cross-section specification assumes that U ∼ U[0, 1] independent of
X. The extension of this assumption to the panel case together with some additional regularity
conditions allows identification of the location of St conditional on X = x as well as the parameter
θ (τ ). This is the role of Assumption 3.2.

ASSUMPTION 3.2. (a) Uit⊥(Xi, αi) and Uit ∼ U[0, 1]; (b) UU ≡ E[(θ (Uit) − θμ)(θ (Uit) −
θμ)′], where θμ ≡ E[θ (Uit)], is non-singular with finite norm; (c) letting Xt = (1, Xs

t ) for t = 1,
2, there exists no A ⊆ R

k−1 such that A has probability 1 under the distribution of Xs
2 − Xs

1 and
A is a proper linear subspace of R

k−1; (d) (Yt, Xt) have finite first moments for t = {1, 2}.

Assumption 3.2(a) is standard in quantile regression models except that here Uit is also
assumed independent of αi. Assumption 3.2(b) implies that θμ ∈ R

k exists and this implies that
the location of St is well defined. The restriction on UU is not used in Lemma 3.2 but it is
important for the derivation of the asymptotic variance of the two-step estimator of the next
section. Assumption 3.2(c) is a standard rank-type condition on the subvector of regressors that
excludes the constant term. Assumption 3.2(d) is implied by Assumption 4.1 in the next section.

It is immediate to see that Assumption 3.2(a) (b) implies E[Y2 − Y1 | X] = (Xs
2 − Xs

1)′θs
μ

and θ0
μ = E[Y1] − E[Xs

1]′θs
μ, where θ ′

μ = (θ0
μ, θs′

μ ). Assumption 3.2(c) (d) then implies that θμ is
identified.6 Since E(St | X) = X′

t θμ, the location of St conditional on X = x is identified. Also,
note that Assumption 3.2 implies

QSt |X=x(t | x) = θ [QUt |X=x(t | x)]x = θ (τ )x. (3.6)

The following Lemma then follows immediately.

6 This follows from A = {x ∈ R
k−1 : x′(θ∗

μ − θ∗∗
μ ) = 0} being a proper linear subspace of R

k−1 if θ∗
μ �= θ∗∗

μ . In
addition, if Xt does not include a constant then Assumption 3.2(c) must hold for X2 − X1.
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LEMMA 3.2. Under Assumptions 3.1 and 3.2 the location θμ and the function θ (τ ) for τ ∈
(0, 1) are identified.

REMARK 3.3. The extension to the case T > 2 is straightforward under the same assumptions.
The exception is Assumption 3.1(ii), which should be replaced by � ≡ {ω : φSt |x(ω(T − 1)−k) �=
0, for t = 1, . . . , T , k = 0, 1, . . .} is dense in R for all x ∈ X̄ ; see Neumann (2007).

The results of this section show that the parameter of interest θ (τ ) is point identified from the
distribution of the observed data and Assumptions 3.1 and 3.2. The next step then is to derive a
consistent estimator for this parameter and study its asymptotic properties. Section 4 presents a
two-step estimator that follows a different intuition relative to the one behind the identification
result, but has the virtue of being extremely simple to compute and has an asymptotically normal
distribution as both n and T go to infinity.

4. TWO-STEP ESTIMATOR

The two-step estimator that I introduce in this section exploits two direct consequences of
Assumption 3.2 and the fact that αi is a location shift (Assumption 3.1(a)). The first implication
is in equation (2.3), where only θ (τ ) and eit(τ ) depend on τ . The second implication arises by
letting uit ≡ X′

it [θ (Uit ) − θμ] and writing a conditional mean equation for Yit as follows7

Yit = X′
it θμ + αi + uit , E(uit | Xi, αi) = 0. (4.1)

Equation (4.1) implies that αi is also present in the conditional mean of Yit. Therefore, from
equation (4.1) I can compute a

√
T -consistent estimator of αi given a

√
nT -consistent estimator

of θμ. This includes for example the standard within estimator of θμ given in equation (A.17) in
Appendix A. Then, using equation (2.3) I estimate θ (τ ) by a quantile regression of the random
variable Ŷit ≡ Yit − α̂i on Xit. To be precise, the two steps are described below where I use the
notation ET (·) ≡ T −1 ∑T

t=1 (·) and EnT (·) ≡ (nT )−1 ∑T
t=1

∑n
i=1 (·).

Step 1. Let θ̂μ be a
√

nT -consistent estimator of θμ. Define α̂i ≡ ET [Yit − X′
it θ̂μ].

Step 2. Let Ŷit ≡ Yit − α̂i and define the two-step estimator θ̂ (τ ) as:

θ̂ (τ ) ≡ argmin
θ∈�

EnT

[
ρτ

(
Ŷit − X′

it θ
)]

. (4.2)

Intuitively, the two-step estimator in equation (4.2) works because Ŷit � Y ∗
it ≡ Yit − αi as

T → ∞, where � denotes weak convergence. This is so because Ŷit ≡ Y ∗
it + r̂i , where

r̂i ≡ (αi − α̂i) = ET (Xit )
′ (θ̂μ − θμ) − ET [Y ∗

it − X′
it θμ] →p 0, as T → ∞. (4.3)

Then, the random variable Ŷit converges in probability, as T → ∞, to the variable Y ∗
it

which implies weak convergence, Ŷit � Y ∗
it . The next proposition shows that the two-step

estimator defined in equation (4.2) is consistent and asymptotically normal under the following
assumptions.

7 Note that E(eit (τ ) |Xi ) = X′
it [θμ − θ (τ )] �= 0 unless θμ = θ (τ ). Also, Pr(uit ≤ 0 | Xi ) = Pr(X′

it θ (Uit ) ≤
X′

it θμ | Xi ) � τ , depending on whether θ (Uit)�θμ.
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ASSUMPTION 4.1. Let ϕτ (u) = τ − I(u < 0), I(·) denote the indicator function, W =
(Y∗, X), and gτ (W, θ , r) ≡ ϕτ (Y∗ − X′θ + r)X. (a) (Y ∗

it , Xit , αi) are i.i.d. defined on the
probability space (W, F , P ), take values in a compact set Y × X × A, and E(αi) = 0; (b) for
all τ ∈ T , θ (τ ) ∈ int �, where � is compact and convex and T is a closed subinterval of (0,
1); (c) Y ∗ ∈ Y has bounded conditional on X density a.s., supỹ∈Y f (ỹ) < K, and �(θ , τ , r) ≡
E[gτ (W, θ , r)] has Jacobian matrix J1(θ, τ, r) = ∂

∂θ ′ �(θ, τ, r) that is continuous and has full
rank uniformly over � × T × R, and J2(θ, τ, r) = ∂

∂r
�(θ, τ, r) is uniformly continuous over

� × T × R.

Assumption 4.1 imposes similar conditions to those in Chernozhukov and Hansen (2006).
Note that 4.1(a) imposes i.i.d. on the unobserved variable Y ∗

it and not on Yit. Condition 4.1(c) is
used for asymptotic normality. Finally, in order to derive the expression for the covariance kernel
of the limiting Gaussian process provided in equation (4.7), I use the following assumption on
the preliminary estimator θ̂μ.

ASSUMPTION 4.2. The preliminary estimator θ̂μ admits the expansion
√

nT (θ̂μ − θμ) =
√

nT EnT (ψit ) + op(1), (4.4)

where ψ it is an i.i.d. sequence of random variables with E[ψ it] = 0 and finite ψψ = E[ψitψ
′
it ].

THEOREM 4.1. Let n/Ts → 0 for some s ∈ (1, ∞). Under Assumptions 3.2, 4.1 and 4.2

sup
τ∈T

‖θ̂ (τ ) − θ (τ )‖ →p 0,

and √
nT (θ̂(·) − θ (·)) = [−J1(·)]−1

√
nT EnT {ϕτ (εit (τ ))Xit + J2(·)ξit } + op(1), (4.5)

� G(·) in �∞(T ), (4.6)

where εit (τ ) ≡ Y ∗
it − X′

it θ (τ ), ξit ≡ μ′
Xψit − uit , uit ≡ Y ∗

it − X′
it θμ, μX ≡ E[Xit], J1(τ ) ≡

J1(θ (τ ), τ , 0), J2(τ ) ≡ J2(θ (τ ), τ , 0), G(·) is a mean-zero Gaussian process with covariance
function EG(τ )G(τ ′)′ = J1(τ )−1�(τ, τ ′)[J1(τ ′)−1]′, �(τ , τ ′) is defined in equation (4.7) below,
and �∞(T ) in the set of all uniformly bounded functions on T . The matrix �(τ , τ ′) is given by

�(τ, τ ′) = S(τ, τ ′) + J2(τ )ξg(τ ′) + gξ (τ )J2(τ ′) + J2(τ )ξξJ2(τ ′)′, (4.7)

where S(τ , τ ′) ≡ (min{τ , τ ′} − ττ ′)E(XX′), gξ (τ ) ≡ E[gτ (W, θ (τ ))ξ ], and ξξ ≡ E[ξ 2].

The asymptotic expansion for
√

nT (θ̂ (·) − θ (·)) presented in Theorem 4.1 has two terms.
The first term is the standard term in quantile regressions while the second term captures the
fact αi is being estimated by α̂i . Assumption 4.2 is not necessary for convergence to a limit
Gaussian process but it is used to derive the expression of �(τ , τ ′) in equation (4.7). This is a
mild assumption as, for example, the usual within estimator of θμ satisfies Assumption 4.2 under
Assumptions 3.2 and 4.1 (see Lemma A.4 in Appendix A).

Appendix B contains expressions for estimating each element entering the covariance
function J1(τ )−1�(τ , τ ′)[J1(τ ′)−1]′ that can be used to make inference on θ̂ (τ ). Alternatively,
I conjecture that the standard i.i.d. bootstrap on (Yi, Xi) would work in this context and therefore
provide a different approach to inference (Appendix B). The proof of this conjecture is however
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beyond the scope of this paper and the supporting evidence is limited to the simulations of the
Section 5.

5. SIMULATIONS

To illustrate the performance of the two-step estimator I conduct a small simulation study.
Tables 1 and 2 summarize the results by reporting percentage bias (%Bias) and mean squared
error (MSE) for each estimator considered. The simulated model is

Yit = (εit − 1) + εitXit + αi,

αi = γ (Xi1 + · · · + XiT + ηi) − E(αi),
(5.1)

Table 1. Bias and MSE for Model 5.1: γ = 2 and 0.25.

n = 100 n = 5000

θ (·) ∼ N(2, 1), θ [1](τ ) = 1.3255 θ (·) ∼ N(2, 1), θ [1](τ ) = 1.3255

Estimator QR CRE INFE 2-STEP QR CRE INFE 2-STEP

T = 5 %Bias 1.7569 0.2157 0.0068 0.1494 1.7444 0.2074 0.0004 0.1496

MSE 5.8220 0.2794 0.1032 0.1473 5.3543 0.0798 0.0020 0.0414

T = 10 %Bias 1.7660 0.2127 0.0025 0.0793 1.7687 0.2063 −0.0020 0.0757

MSE 5.7557 0.1639 0.0494 0.0605 5.5021 0.0765 0.0010 0.0111

T = 20 %Bias 1.7750 0.1903 0.0032 0.0377 1.8084 0.2070 −0.0001 0.0397

MSE 5.7678 0.1044 0.0228 0.0264 5.7506 0.0762 0.0005 0.0032

θ (·) ∼ exp(1) + 2, θ [1](τ ) = 2.2877 θ (·) ∼ exp(1) + 2, θ [1](τ ) = 2.2877

Estimator QR CRE INFE 2-STEP QR CRE INFE 2-STEP

T = 5 %Bias 1.0202 0.1291 −0.0003 0.0976 1.0285 0.1367 −0.0000 0.0961

MSE 5.8106 0.2066 0.0174 0.1003 5.5434 0.1002 0.0003 0.0493

T = 10 %Bias 1.0310 0.1184 −0.0002 0.0487 1.0393 0.1368 −0.0001 0.0489

MSE 5.8306 0.1198 0.0087 0.0286 5.6593 0.0990 0.0002 0.0128

T = 20 %Bias 1.0524 0.0919 0.0008 0.0215 1.0593 0.1361 −0.0001 0.0209

MSE 6.0432 0.0641 0.0045 0.0087 5.8777 0.0975 0.0001 0.0024

θ (·) ∼ Mixture, θ [1](τ ) = 1.3097 θ (·) ∼ Mixture, θ [1](τ ) = 1.3097

Estimator QR CRE INFE 2-STEP QR CRE INFE 2-STEP

T = 5 %Bias 2.0565 0.5369 0.0190 0.2561 2.1061 0.5370 0.0012 0.1897

MSE 7.6837 0.7855 0.5115 0.4963 7.5625 0.4965 0.0036 0.0682

T = 10 %Bias 2.1221 0.5683 0.0026 0.0424 2.1433 0.5413 0.0023 0.0280

MSE 7.9763 0.6679 0.1450 0.2088 7.8295 0.5016 0.0018 0.0046

T = 20 %Bias 2.1770 0.6010 −0.0039 −0.0008 2.1750 0.5412 −0.0013 −0.0032

MSE 8.3200 0.6744 0.0536 0.0763 8.0616 0.5001 0.0009 0.0013

Note: 1000 MC replications. QR: standard quantile regression estimator; CRE: correlated random effect estimator; INFE:
infeasible estimator, 2-STEP: two-step estimator from 4.2. All regressions include an intercept term.
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Table 2. Bias and MSE for Model 5.1: γ = 2 and 0.90.

n = 100 n = 5000

θ (·) ∼ N(2, 1), θ [1](τ ) = 3.2815 θ (·) ∼ N(2, 1), θ [1](τ ) = 3.2815

Estimator QR CRE INFE 2-STEP QR CRE INFE 2-STEP

T = 5 %Bias 0.4069 −0.1697 −0.0065 −0.1223 0.4321 −0.1575 −0.0002 −0.1144

MSE 2.4048 0.6455 0.1509 0.3162 2.0220 0.2743 0.0032 0.1439

T = 10 %Bias 0.4039 −0.1547 −0.0069 −0.0645 0.4079 −0.1594 −0.0006 −0.0603

MSE 2.1894 0.3995 0.0763 0.1228 1.8001 0.2768 0.0015 0.0406

T = 20 %Bias 0.3777 −0.1307 0.0013 −0.0280 0.3833 −0.1579 0.0001 −0.0301

MSE 1.8410 0.2466 0.0393 0.0479 1.5884 0.2700 0.0008 0.0105

θ (·) ∼ exp(1) + 2, θ [1](τ ) = 4.3026 θ (·) ∼ exp(1) + 2, θ [1](τ ) = 4.3026

Estimator QR CRE INFE 2-STEP QR CRE INFE 2-STEP

T = 5 %Bias 0.3120 −0.1517 −0.0015 −0.0814 0.3134 −0.1366 −0.0002 −0.0804

MSE 2.5781 0.9598 0.4730 0.4583 1.8333 0.3566 0.0095 0.1264

T = 10 %Bias 0.2911 −0.1442 0.0012 −0.0407 0.2984 −0.1361 −0.0005 −0.0417

MSE 2.0493 0.6100 0.2337 0.2444 1.6585 0.3479 0.0049 0.0363

T = 20 %Bias 0.2748 −0.1261 0.0008 −0.0224 0.2823 −0.1371 −0.0003 −0.0216

MSE 1.8136 0.4023 0.1166 0.1181 1.4834 0.3501 0.0023 0.0107

θ (·) ∼ Mixture, θ [1](τ ) = 3.335 θ (·) ∼ Mixture, θ [1](τ ) = 3.335

Estimator QR CRE INFE 2-STEP QR CRE INFE 2-STEP

T = 5 %Bias 0.4921 −0.0843 −0.0040 −0.0984 0.4922 −0.0948 0.0004 −0.0958

MSE 3.2573 0.2499 0.0196 0.1751 2.7050 0.1047 0.0004 0.1034

T = 10 %Bias 0.4779 −0.0808 −0.0005 −0.0584 0.4784 −0.0949 0.0009 −0.0568

MSE 2.9631 0.1275 0.0101 0.0590 2.5542 0.1021 0.0002 0.0363

T = 20 %Bias 0.4556 −0.0732 −0.0002 −0.0319 0.4585 −0.0953 0.0006 −0.0325

MSE 2.6537 0.0784 0.0048 0.0191 2.3448 0.1018 0.0001 0.0119

Note: 1000 MC replications. QR: standard quantile regression estimator; CRE: correlated random effect estimator; INFE:
infeasible estimator, 2-STEP: two-step estimator from 4.2. All regressions include an intercept term.

where Xit ∼ Beta(1, 1), ηi ∼ N(0, 1) and the distribution of εit changes with the model
specification. In Model 1, εit ∼ N(2, 1); in Model 2, εit ∼ exp(1) + 2; while in
Model 3, εit ∼ BitN(1, .1) + (1 − Bit)N(3, .1) with Bit ∼ Bernoulli(p = 0.3). The conditional τ th
quantiles are given by θ [0](τ ) + θ [1](τ )X + α. In Model 1, for example, θ [0](τ ) = �−1(τ ) + 1 and
θ [1](τ ) = �−1(τ ) + 2 for �−1(τ ) the inverse of the normal CDF evaluated at τ . For all models
I set n = {100, 5000}, T = {5, 10, 20}, τ = {0.25, 0.90}, γ = 2 and consider four estimators.
These are a standard quantile regression estimator of Yit on Xit (QR), a correlated random effect
estimator (CRE) from Abrevaya and Dahl (2008), an infeasible estimator of Y ∗

it ≡ Yit − αi on
Xit (INFE) and the two-step estimator (2-STEP) from Section 4.8 Note that QR and CRE are
inconsistent estimators. Finally, I set the number of Monte Carlo simulations to 1000.

8 I use the within estimator of equation (A.17) as first step estimator.
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Table 3. Bias and MSE for Model 5.1: γ = 2 and n = 100.

Model 1 Model 2 Model 3

τ = 0.25 Estimator %Bias MSE Time %Bias MSE Time %Bias MSE Time

T = 5 2-STEP 0.1494 0.1469 0.009 0.0976 0.1003 0.009 0.2561 0.4963 0.009

KOEN 0.1084 0.1473 0.133 −0.0014 0.0219 0.136 0.5038 0.5565 0.135

T = 10 2-STEP 0.0722 0.0579 0.017 0.0487 0.0286 0.018 0.0424 0.2088 0.019

KOEN 0.0504 0.0545 0.258 −0.0061 0.0086 0.254 0.3488 0.2841 0.284

T = 20 2-STEP 0.0377 0.0264 0.016 0.0215 0.0087 0.020 −0.0008 0.0763 0.015

KOEN 0.0223 0.0268 0.240 −0.0024 0.0048 0.241 0.1924 0.1129 0.233

τ = 0.90 Estimator %Bias MSE Time %Bias MSE Time %Bias MSE Time

T = 5 2-STEP −0.1223 0.3162 0.009 −0.0814 0.4583 0.013 −0.0984 0.1751 0.011

KOEN −0.1860 0.5377 0.137 −0.2382 1.2574 0.187 −0.0617 0.0691 0.158

T = 10 2-STEP −0.0645 0.1228 0.019 −0.0407 0.2444 0.018 −0.0584 0.0590 0.022

KOEN −0.0555 0.1371 0.262 −0.0850 0.3708 0.239 −0.0177 0.0180 0.270

T = 20 2-STEP −0.0280 0.0479 0.021 −0.0224 0.1181 0.024 −0.0319 0.0191 0.026

KOEN −0.0280 0.0543 0.241 −0.0484 0.1594 0.253 −0.0081 0.0068 0.275

Note: 1000 MC replications. KOEN: Koenker’s estimator for panel data quantile regression, 2-STEP: two-step estimator
from 4.2. All regressions include an intercept term. Time is reported in seconds.

Tables 1 and 2 show equivalent patterns. CRE has a larger bias than 2-STEP and its bias does
not improve as T grows.9 2-STEP does show a bias that decreases as T grows. This is consistent
with the analysis presented in Sections 2 and 4. Also, it is worth noticing that the bias of
2-STEP is not affected as N increases and T remains fixed. Comparisons based on MSE arrive to
similar conclusions. Finally, additional simulations not reported show that these results also hold
for other quantiles, and that the two-step estimator performs similarly when αi is specified as a
non-linear function of Xi and ηi.

Table 3 reports bias, MSE and computational time for 2-STEP and KOEN, the estimator
proposed by Koenker (2004), see equation (2.4). Only the case n = 100 is shown since KOEN
had problems handling the big matrices for the case n = 5000. The results are quite mixed. 2-
STEP performs better than KOEN in about half of the cases. However, the worst performance of
2-STEP (bias: 25%, MSE: 0.50) is better than that of KOEN (bias: 50%, MSE: 1.26). Note also
that 2-STEP is about 15 times faster than KOEN.

Finally, Table 4 reports standard errors and 95% confidence intervals computed using the
formulas provided in Appendix B. The coverage is very close to the nominal level when T =
20 and below the nominal level for T = 5. It is worth noting that the coverage is expected to
deteriorate in two circumstances. Given a value of n, a smaller T implies a larger finite sample
bias and so a finite sample distribution centred further away from the truth. In addition, given a
value of T , a larger value of n keeps the finite sample bias unaffected but implies a finite sample
distribution that is more concentrated about the wrong place. However, even for a case with 12%
of bias (model 1, T = 5), the actual coverage levels are about 85%, which look very decent for
such small values of T and bias above 10%.

9 The performance of CRE depends on the parameter γ , so as γ grows its performance deteriorates.
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Table 4. Standard Errors and 95% Confidence Intervals for Model 5.1: γ = 2 and
n = 100.

τ = 0.25 τ = 0.90

T = 5 T = 10 T = 20 T = 5 T = 10 T = 20

Estimator 1.5329 1.4194 1.3719 Estimator 2.9057 3.0995 3.1822

Asy SE 0.2934 0.2162 0.1555 Asy SE 0.3503 0.2620 0.1901

Model 1 Boot SE 0.2868 0.2131 0.1537 Boot SE 0.3689 0.2713 0.1944

Asy Cov 0.8540 0.9230 0.9420 Asy Cov 0.7600 0.8920 0.9240

Boot Cov 0.8320 0.9030 0.9340 Boot Cov 0.7930 0.8870 0.9240

Estimator 2.5028 2.4046 2.3369 Estimator 3.9575 4.1257 4.2009

Asy SE 0.1961 0.1231 0.0773 Asy SE 0.5336 0.4290 0.3254

Model 2 Boot SE 0.1904 0.1181 0.0738 Boot SE 0.5697 0.4447 0.3335

Asy Cov 0.7760 0.8240 0.8910 Asy Cov 0.8620 0.9090 0.9220

Boot Cov 0.7260 0.7980 0.8910 Boot Cov 0.8720 0.9090 0.9220

Estimator 1.6305 1.3778 1.3110 Estimator 3.0058 3.1488 3.2298

Asy SE 0.4751 0.3943 0.2630 Asy SE 0.2218 0.1320 0.0822

Model 3 Boot SE 0.5364 0.4494 0.2918 Boot SE 0.2333 0.1368 0.0842

Asy Cov 0.8630 0.9290 0.9460 Asy Cov 0.6520 0.7050 0.7400

Boot Cov 0.8720 0.9310 0.9460 Boot Cov 0.6800 0.7050 0.7400

Note: 1000 MC replications. Asy SE: asymptotic standard errors. Boot SE: bootstrap standard errors. Asy Cov: Coverage
of the asymptotic confidence interval. Boot Cov: Coverage of the Bootstrap percentile interval.

6. DISCUSSION

This paper provided an identification result for quantile regression in panel data models and
introduced a two-step estimator that is attractive for its computational simplicity. There are many
issues that remain to be investigated. First, several panels available have a short time span and
therefore approximations taking T to infinity might result in poor approximations for those cases.
However, a computationally simple estimator that works for fixed T and large N is extremely
challenging since, even under the assumption that αi is independent of the rest of the variables of
the model, we would still have to face similar problems to those discussed in Sections 2 and 3.
Second, the assumption that αi does not depend on the quantiles restricts the type of unobserved
heterogeneity that the model can handle. Improvements in any of these directions are important
for future research.
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APPENDIX A: PROOF OF THE LEMMAS AND THEOREMS

Throughout the Appendix I use the following notation. For W = (Y∗, X),

g �→ EnT g(W ) ≡ 1

nT

T∑
t=1

n∑
i=1

g(Wit ), g �→ GnT g(W ) ≡ 1√
nT

T∑
t=1

n∑
i=1

[g(Wit ) − Eg(Wit )].

In addition, � denotes weak convergence, CMT refers to the Continuous Mapping Theorem and LLN
refers to the Law of Large Numbers. The symbols o, O, op and Op denote the usual order of magnitudes for
non-random and random sequences.

Proof of Lemma 3.1: The proof is a simple extension of the result Lemma 2.1 from Neumann (2007). I
write it here for completeness. Since φSt |x and φα|x are characteristic functions there exists an ω0 > 0 such
that φSt |x(ω) �= 0 for t ∈ {1, 2} and φα|x(2ω) �= 0 if |ω| ≤ ω0 (In this case, ω0 might depend on x but we
omit this dependence for simplicity). For |ω| ≤ 2ω0 define,

gα|x(ω) = φ̃α|x(ω)/φα|x(ω),

a continuous complex function which equals 1 at 0. It follows from equation (3.3), for ω1, ω2 ∈ [ − ω0, ω0],
that

φα|x(ω1 + ω2)

φα|x(ω1)φα|x(ω2)
= φα|x(ω1 + ω2)φS1 | x(ω1)φS2 | x(ω2)

φα|x(ω1 + 0)φS1 | x(ω1)φS2 | x(0)φα|x(0 + ω2)φS1 | x(0)φS2 | x(ω2)

= φ̃α|x(ω1 + ω2)φ̃S1 | x(ω1)φ̃S2 | x(ω2)

φ̃α|x(ω1 + 0)φ̃S1 | x(ω1)φ̃S2 | x(0)φ̃α|x(0 + ω2)φ̃S1 | x(0)φ̃S2 | x(ω2)

= φ̃α|x(ω1 + ω2)

φ̃α|x(ω1)φ̃α|x(ω2)
,

(A.1)

which implies

gα|x(ω1 + ω2) = gα|x(ω1)gα|x(ω2) ∀ω1, ω2 ∈ [−ω0, ω0].

The unique solution to this equation satisfying gα|x(0) = 1 and gα|x(−ω) = gα|x(ω) (a Hermitian function)
is gα|x(ω) = eicω, from some real c. Therefore we conclude that,

φ̃α|x(ω) = eicωφα|x(ω) ∀ω ∈ [−2ω0, 2ω0]. (A.2)

Furthermore, equation (3.3) yields that for ω2 = 0,

φS1 | x(ω1)φα|x(ω1) = eicω1φα|x(ω1)φ̃S1 | x(ω1), ∀ω1 ∈ [−2ω0, 2ω0],

so that,

φ̃S1 | x(ω) = e−icωφS1 | x(ω) ∀ω ∈ [−2ω0, 2ω0]. (A.3)

Setting ω1 = 0 it follows that equation (A.3) holds for S2 as well. Now it remains to extend these results to
the whole real line. Let ω ∈ � be arbitrary. We obtain, analogously to equation (A.1), that

φα|x(ω)

(φα|x(ω/2))2
= φ̃α|x(ω)

(φ̃α|x(ω/2))2
and

φα|x(ω)

(φα|x(ω2−k))2k
= φ̃α|x(ω)

(φ̃α|x(ω2−k))2k
,
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after iterating. Using this equation with a k large enough such that |ω2−k| ≤ 2ω0 we conclude from
equation (A.2) that

φ̃α|x(ω) = φα|x(ω)

(
φ̃α|x(ω2−k)

φα|x(ω2−k)

)2k

= eicωφα|x(ω).

Since � is dense in R and {ω : φ̃α|x(ω) = eicωφα|x(ω)} is a closed set, we conclude that φ̃α|x(ω) =
eicωφα|x(ω), ∀ω ∈ R, this is, P̃α|x = P(α+c)|x . This implies, again by equation (3.3) that φ̃St |x(ω) =
e−icωφSt |x(ω), ∀ω ∈ R, which yields P̃St |x = P(St −c)|x for t ∈ {1, 2}. �
LEMMA A.1. Under Assumptions 3.2 and 4.1, the following statements are true. (a) GnT g·(W, θ (·)) �
G

∗
1(·) in �∞(T ), where G

∗
1 is a Gaussian process with covariance function EG

∗
1(τ )G∗

1(τ ′)′ = (min{τ, τ ′} −
ττ ′)E(XX′). (b) If supτ∈T ‖θ̃ (τ ) − θ (τ )‖ = op(1) and maxi≤n |̃ri | = op(1), then

sup
τ∈T

‖GnT gτ (W, θ̃ (τ ), r̃i) − GnT gτ (W, θ (τ ), 0)‖ = op(1).

Proof: The proof follows by similar arguments to those in Lemma B.2 of Chernozhukov and Hansen
(2006) after noticing that the class of functions, H = {h = (θ, τ, r) �→ ϕτ (Y ∗ − X′θ + r)X, θ ∈ �, τ ∈
T , r ∈ R} is Donsker (it is formed by taking products and sums of bounded Donsker classes) by Theorem
2.10.6 in van der Vaart and Wellner (1996). �
LEMMA A.2. Under Assumptions 3.2 and 4.1, maxi≤n | r̂i | ≡ maxi≤n | αi − α̂i | → 0 provided n

T s → 0
for some s ∈ (1, ∞).

Proof: Let uit ≡ Y ∗
it − X′

it θμ and note that by the triangle inequality,

|αi − α̂i | ≤ |ET (Xit )|′|θ̂μ − θμ| + |ET (uit )|.
Xit and Yit have compact support so that maxi≤n|Xit| ≤ Cx < ∞ and maxi≤n|uit| ≤ Cz < ∞. It is immediate
then that

max
i≤n

|ET (Xit )|′|θ̂μ − θμ| = op(1).

Since E(uit) = 0 and E(|uit |2s) ≤ C2s
z < ∞ for all s ∈ (1, ∞), it follows from the Markov inequality that

for any η > 0, Pr(|ET (uit ) | > η) = O(T −s) and then

Pr

(
max
i≤n

|ET (uit )| > η

)
≤ n Pr(|ET (uit )| > η) = O(n/T s) = o(1).

�
Proof of Theorem 4.1: Consistency. Define the following two criterion functions,

QnT (θ, τ ) = EnT

[
ρτ

(
Ŷit − X′

it θ
)]

and Q(θ, τ ) = E
[
ρτ

(
Y ∗

it − X′
it θ

)]
.

The first step shows that QnT (θ , τ ) converge uniformly to Q(θ , τ ). To this end, note that since Ŷit � Y ∗
it , it

follows from van der Vaart (1998, Lemma 2.2) that∣∣E [
ρτ

(
Ŷit − X′

it θ
)] − E

[
ρτ

(
Y ∗

it − X′
it θ

)]∣∣ → 0, as T → ∞,

since ρτ (·) is a bounded Lipschitz function (it is bounded due to 4.1(a) and 4.1(b)). Due to the compactness
of � × T and the continuity of E[ρτ (Ŷit − X′

it θ )] and E[ρτ (Y ∗
it − X′

it θ )] implied by 4.1(c), the above
convergence is also uniform,
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sup
(θ,τ )∈�×T

|E[ρτ (Ŷ − X′θ )] − E[ρτ (Y ∗ − X′θ )]| → 0, as T → ∞. (A.4)

Next note that functions in the class F = [(θ, τ ) �−→ ρτ (Y − X′θ )] are bounded, uniformly Lipschitz
over � × T and form a Donsker class. This also means that F is Glivenko-Cantelli so that,

sup
(θ,τ )∈�×T

sup|EnT [ρτ (Ŷ − X′θ )] − E[ρτ (Ŷ − X′θ )]| →p 0, as n, T → ∞. (A.5)

It follows from equations (A.4) and (A.5) that QnT (θ , τ ) converges uniformly to Q(θ , τ ) as both n
and T go to infinity. Under Assumption 4.1(c) θ (τ ) uniquely solves θ (τ ) ≡ arg infθ∈� E[ρτ (Y ∗ − X′θ )] and
Q(θ , τ ) is continuous over � × T so that

sup
τ∈T

‖θ̂ (τ ) − θ (τ )‖ →p 0,

after invoking Chernozhukov and Hansen (2006, Lemma B.1).
Asymptotic Normality. From the properties of standard quantile regression it follows that√

nT EnT g·(W, θ̂ (·), r̂i) is op(1), and then the following expansion is valid,

op(1) = GnT g·(W, θ̂ (·), r̂i) + 1√
nT

T∑
t=1

n∑
i=1

Eg·(W, θ̂ (·), r̂i)

(1)= GnT g·(W, θ(·)) + op(1) + 1√
nT

T∑
t=1

n∑
i=1

Eg·(W, θ̂ (·), r̂i) in �∞(T ).

Here =(1) follows from Lemma A.1. Now, expand Eg·(W, θ̂ (·), r̂i).

1√
nT

T∑
t=1

n∑
i=1

Eg·(W, θ̂ (·), r̂i) = 1√
nT

T∑
t=1

n∑
i=1

{
J1

(
θ∗(·), ·, r∗

i

)
(θ̂ (·) − θ (·)) + J2

(
θ∗(·), ·, r∗

i

)
r̂i

}
= J1(·)

√
nT (θ̂ (·) − θ (·)) + J2(·) 1√

nT

T∑
t=1

n∑
i=1

r̂i + op(1),

where θ∗ is on the line connecting θ̂ (τ ) and θ (τ ) for each τ and r∗
i is on the line connecting 0 and r̂i . The

second equality follows from

sup
i≤n,τ∈T

∣∣Jk

(
θ∗(·), τ, r∗

i

) − Jk(θ (τ ), τ, 0)
∣∣ = op(1), for k = 1, 2, (A.6)

which in turn follows from the uniform continuity assumption, and the fact that maxi≤n |r̂i | = op(1) by
Lemma A.2. Solving for

√
nT (θ̂ (·) − θ (·)),

√
nT (θ̂ (·) − θ (·)) = [−J1(·)]−1

GnT gτ (W, θ (·)) + [−J1(·)]−1 J2(·) 1√
n

n∑
i=1

√
T r̂i + op(1)

� G(·), in �∞(T ),

where G(·) is a gaussian process with covariance kernel J1(τ )−1�(τ , τ ′)[J1(τ ′)−1]′, where �(τ , τ ′)
is defined in equation (A.10). This follows from the first term converging to a Gaussian process by
Lemma A.1, and the second term

1√
n

n∑
i=1

√
T r̂i = 1√

n

n∑
i=1

√
T

[
ET (Xit )

′(θ̂μ − θμ) − ET

[
Y ∗

it − X′
it θμ

]]
,

= EnT (Xit )
′√nT (θ̂μ − θμ) −

√
nT EnT

(
Y ∗

it − X′
it θμ

)
,

C© 2011 The Author(s). The Econometrics Journal C© 2011 Royal Economic Society.



A simple approach to quantile regression for panel data 383

being asymptotically normal due to
√

nT (θ̂μ − θμ), and 1√
nT

∑T
t=1

∑n
i=1(Y ∗

it − X′
it θμ) both being

asymptotically normal.
Covariance Kernel. We first need to derive the expression for �(τ , τ ′). Under Assumption 4.2 we can

write the expansion
√

nT (θ̂ (·) − θ (·)) as

√
nT (θ̂ (·) − θ (·)) = [−J1(·)]−1

{
GnT gτ (W, θ (·)) + J2(·) 1√

n

n∑
i=1

√
T r̂i

}
+ op(1),

= [−J1(·)]−1
√

nT EnT {g·(Wit , θ (·)) + J2(·)ξit } + op(1), (A.7)

where ξit ≡ μ′
Xψit − uit , μX ≡ E(X), and uit ≡ Y ∗

it − X′
it θμ. In addition,

J1(τ ) = E[fε(τ )(0 | X)XX′],

where f ε(τ )(0|X) denotes the conditional on X density of ε(τ ) ≡ Y∗ − X′θ (τ ) at 0 and

J2(τ ) = E[fε(τ )(0 | X)X].

Under Assumptions 3.2 and 4.1 it follows that

√
nT EnT

(
g·(Wit , θ (·))

ξit

)
� G

∗(·), in �∞(T ), (A.8)

where G
∗(·) is a zero-mean gaussian process with covariance kernel

(τ, τ ′) ≡
(

S(τ, τ ′) gξ (τ )

ξg(τ ′) ξξ

)
, (A.9)

and S(τ , τ ′) ≡ (min{τ , τ ′} − ττ ′)E(XX′), gξ (τ ) ≡ E[gτ (W, θ (τ ))ξ ], and ξξ ≡ E[ξ 2]. The above result
implies that

�(τ, τ ′) ≡ E[(gτ (W, θ(τ )) + J2(τ )ξit )(gτ ′ (W, θ (τ ′)) + J2(τ ′)ξit )
′]

= S(τ, τ ′) + J2(τ )ξg(τ ′) + gξ (τ )J2(τ ′) + J2(τ )ξξJ2(τ ′)′. (A.10)

We can conclude from equation (A.7) that
√

nT (θ̂ (·) − θ (·)) � G(·), in �∞(T ), (A.11)

where G(·) is a gaussian process with covariance kernel

EG(τ )G(τ ′)′ = J1(τ )−1�(τ, τ ′)[J1(τ ′)−1]′. (A.12)

�
LEMMA A.3. If ||vi,T − v|| → 0 a.s. uniformly in i as T → ∞, and there exists a function qi ≥ 0 such
that ||vi,T || ≤ qi for all i and T with E[supi qi] < ∞, then supi E‖vi,T − v‖ → 0, as T → ∞.

Proof: Let hi,T = ||vi,T − v|| and note that 0 ≤ supi hi,T ≤ 2 supi qi . By Fatou’s Lemma

2E

[
sup

i

qi

]
= E

[
lim inf
T →∞

(
2 sup

i

qi − sup
i

hi,T

)]
≤ lim inf

T →∞
E

(
2 sup

i

qi − sup
i

hi,T

)
, (A.13)

≤ 2E

[
sup

i

qi

]
− lim sup

T →∞
E

[
sup

i

hi,T

]
, (A.14)
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meaning that lim supT →∞ E[supi hi,T ] ≤ 0. Then, the result directly follows from

0 ≤ lim sup
T →∞

sup
i

E[hi,T ] ≤ lim sup
T →∞

E

[
sup

i

hi,T

]
≤ 0. (A.15)

�
LEMMA A.4. Assume XX ≡ E[(Xs

it − μs
X)(Xs

it − μs
X)′] is non-singular with finite norm, n

T a → 0 for
some a ∈ (0, ∞) and let Assumptions 3.2 and 4.1 hold. The within estimator of θμ satisfies Assumption 4.2
with the influence function

ψit =
(

ψ0
it

ψs
it

)
≡

(
Yit − μY − μs′

X−1
XX

(
Xs

it − μs
X

)
uit

−1
XX

(
Xs

it − μs
X

)
uit

)
, (A.16)

where X′
it = (1, Xs′

it ), μs
X ≡ E(Xs

it ), μY ≡ E(Yit), uit is i.i.d. with E[uit | Xi] = 0 and E[u2
it | Xi] =

X′
itUUXit , and UU non-singular with finite norm.

Proof: Use the partition θ ′
μ = (θ 0

μ, θs′
μ ), where θ 0

μ ∈ R and θs
μ ∈ R

k−1. Then

θ̂ s
μ ≡ (

EnT

[
X̃s

it X̃
s′
it

])−1
EnT

[
X̃s

itYit

]
, and θ̂ 0

μ ≡ EnT (Yit ) − EnT

(
Xs

it

)′
θ̂ s
μ, (A.17)

where X̃s
it ≡ Xs

it − X̄s
i and X̄s

i ≡ ET (Xs
it ). By equations (4.1) and (A.17) it follows that

√
nT

(
θ̂ s
μ − θs

μ

) = (
EnT

[
X̃s

it X̃
s′
it

])−1 √
nT EnT

[
X̃s

ituit

]
, (A.18)

where uit ≡ X′
it (θ (Uit ) − θμ). By Assumption 3.2, E[uit] = 0, E[u2

it | Xit ] = X′
itUUXit , and UU is non-

singular and has finite norm. By Assumptions 3.2 and 4.1

1

nT

n∑
i=1

T∑
t=1

X̃s
it X̃

s′
it = XX + op(1), as n, T → ∞, (A.19)

for XX non-singular and therefore

√
nT

(
θ̂ s
μ − θs

μ

) = −1
XX

1√
nT

n∑
i=1

T∑
t=1

X̃s
ituit + op(1). (A.20)

Next note that

√
nT

(
θ̂ s
μ − θs

μ

) = −1
XX

{
1√
nT

n∑
i=1

T∑
t=1

(
Xs

it − μs
X

)
uit − 1√

nT

n∑
i=1

T∑
t=1

(
X̄s

i − μs
X

)
uit

}
+ op(1),

≡ 1√
nT

n∑
i=1

T∑
t=1

ψs
it − −1

XX

1√
nT

n∑
i=1

T∑
t=1

(
X̄s

i − μs
X

)
uit + op(1), (A.21)

meaning that the result for the slope coefficients would follow provided the second term in equation (A.21)
is op(1). To show this, write this term as

1√
nT

n∑
i=1

T∑
t=1

(
X̄s

i − μs
X

)
uit = 1√

n

n∑
i=1

(
X̄s

i − μs
X

) 1√
T

T∑
t=1

uit = 1√
n

n∑
i=1

ςi,T , (A.22)

where ς i,T is i.i.d. across i for all T and satisfies E[ς i,T ] = 0 and

E‖ςi,T ‖2 = E

∥∥∥∥∥(
X̄s

i − μs
X

) 1√
T

T∑
t=1

uit

∥∥∥∥∥
2

≤ E
∥∥X̄s

i − μs
X

∥∥ E

∥∥∥∥∥ 1√
T

T∑
t=1

uit

∥∥∥∥∥ (A.23)

C© 2011 The Author(s). The Econometrics Journal C© 2011 Royal Economic Society.



A simple approach to quantile regression for panel data 385

≤ sup
i

E
∥∥X̄s

i − μs
X

∥∥ × O(1) → 0, as T → ∞, (A.24)

since supi E‖X̄s
i − μs

X‖ → 0 as T → ∞ by Lemma A.4 (note that by Assumption 4.1, the function qi is
just the upper bound of the support X ) and the fact that X̄s

i →p μs
X uniformly over i as T → ∞ by similar

arguments to those in Lemma A.2 provided n
T a → 0 for some a ∈ (0, ∞).

Finally, from equation (A.17), θ 0
μ = μY − μs′

Xθs
μ, the expansion in equation (A.21), and a few algebraic

manipulations, it follows that

√
nT (θ̂ 0

μ − θ 0
μ) =

√
nT

(
EnT (Yit ) − μY + μs′

Xθs
μ − EnT

(
Xs

it

)′
θ̂ s
μ

)
=

√
nT EnT [Yit − μY ] − μs′

X

√
nT

(
θ̂ s
μ − θs

μ

) + op(1)

=
√

nT EnT

[
Yit − μY − μs′

Xψs
it

] + op(1). (A.25)

Letting ψ0
it ≡ Yit − μY − μs′

Xψs
it = Yit − μY − μs′

X−1
XX(Xs

it − μs
X)uit , the result follows. �

APPENDIX B: ESTIMATOR OF THE COVARIANCE KERNEL AND THE
BOOTSTRAP

The components of the asymptotic variance in equation (A.10) can be estimated using sample analogs.
The expressions below correspond to the case where θ̂μ is the within estimator and so ψ it is given
by equation (A.16). They can be naturally extended to cover any other preliminary estimator satisfying
Assumption 4.2.

The matrix S(τ , τ ′) can be estimated by its sample counterpart

Ŝ(τ, τ ′) ≡ (min{τ, τ ′} − ττ ′)
1

nT

n∑
i=1

T∑
t=1

XitX
′
it . (B.1)

For the matrices J1(τ ) and J2(τ ), I follow Powell (1991) and propose

Ĵ1(τ ) ≡ 1

2nT hn

n∑
i=1

T∑
t=1

I (|ε̂it (τ )| ≤ hn)XitX
′
it ,

Ĵ2(τ ) ≡ 1

2nT hn

n∑
i=1

T∑
t=1

I (|ε̂it (τ )| ≤ hn)Xit ,

where ε̂it (τ ) ≡ Ŷit − X′
it θ̂ (τ ), Ŷit ≡ Yit − α̂i , and hn is an appropriately chosen bandwidth such that hn →

0 and nT h2
n → ∞. Following Koenker (2005, pp. 81 and 140), one possible choice is

hn = κ(�−1(τ + bn) − �−1(τ − bn)), bn = (nT )−1/3z2/3
α

[
1.5φ2(�−1(τ ))

2�−1(τ )2 + 1

]1/3

, (B.2)

where κ is a robust estimate of scale, zα = �−1(1 − α/2) and α denotes the desired size of the test.
For the terms involving ξ it and gτ (W, θ (τ )) define

ψ̂it ≡
(

Yit − μ̂Y − μ̂s′
X̂−1

XXX̃s
it ûit

̂−1
XXX̃s

it ûit

)
, (B.3)

where X̃s
it ≡ Xs

it − X̄s
i , ûit ≡ Ŷit − X′

it θ̂μ, μ̂Y ≡ Ent (Yit ), μ̂s
X ≡ EnT (Xs

it ) and ̂XX ≡ EnT [X̃s
it X̃

s′
it ]. This

way, we can define ξ̂it ≡ μ̂′
Xψ̂it − ûit , where μ̂X ≡ EnT (Xit ). Finally, letting ĝτ,it ≡ ϕτ (ε̂it (τ ))Xit we have
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the following sample counterparts for the remaining terms

̂gξ ≡ 1

nT

n∑
i=1

T∑
t=1

ĝτ,it ξ̂it , and ̂ξξ ≡ 1

nT

n∑
i=1

T∑
t=1

ξ̂ 2
it . (B.4)

The estimator of the covariance matrix would then be Ĵ1(τ )−1�̂(τ, τ ′)[Ĵ1(τ ′)−1]′, where �̂(τ, τ ′) is the
matrix in equation (A.10) where all matrices have been replaced by their respective sample analogs.

In the simulations of Section 5 I use the following bootstrap algorithm to compute standard errors and
confidence intervals for θ̂ (τ ). Let {Y ∗

i , X∗
i }n

i=1, j = 1, . . . , B, denote the jth i.i.d. sample of size n distributed
according to P̂n, the empirical measure of {Yi, Xi}n

i=1, where Yi = (Yi1, . . . , YiT ) and Xi = (Xi1, . . . , XiT ).
For each j = 1, . . . , B compute the two step estimator as described in Section 4 and denote this estimator by
θ̂∗
j (τ ). This involves computing preliminary estimators θ̂∗

μ,j and fixed effects α̂∗
i,j for each bootstrap sample

j = 1, . . . , B.
The bootstrap estimate of the variance covariance matrix for θ̂ (τ ) is given by

1

B

B∑
j=1

(
θ̂∗
j (τ ) − θ̄∗(τ )

) (
θ̂∗
j (τ ) − θ̄∗(τ )

)′
, (B.5)

where θ̄∗(τ ) ≡ 1
B

∑B
j=1 θ̂∗

j (τ ). In the simulations of Section 5 I also report the coverage of the 1 − α

percentile interval

C∗
n(τ ) = [

q∗
n (α/2, τ ), q∗

n (1 − α/2, τ )
]
, (B.6)

where q∗
n (α, τ ) is the α-quantile of the empirical distribution of {θ̂∗

j (τ )}B
j=1. This confidence interval is

translation invariant, which is a good property when working with quantile regressions. Symmetric and
equally-tailed intervals can be alternatively computed using the same algorithm.
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