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Abstract

This paper introduces a bootstrap-based inference method for functions of the parameter vector in a

moment (in)equality model. These functions are restricted to be linear for two-sided testing problems,

but may be non-linear for one-sided testing problems. In the most common case, this function selects a

subvector of the parameter, such as a single component. The new inference method we propose controls

asymptotic size uniformly over a large class of data distributions and improves upon the two existing

methods that deliver uniform size control for this type of problem: projection-based and subsampling

inference. Relative to projection-based procedures, our method presents three advantages: (i) it weakly

dominates in terms of finite sample power, (ii) it strictly dominates in terms of asymptotic power, and

(iii) it is typically less computationally demanding. Relative to subsampling, our method presents two

advantages: (i) it strictly dominates in terms of asymptotic power (for reasonable choices of subsample

size), and (ii) it appears to be less sensitive to the choice of its tuning parameter than subsampling is to

the choice of subsample size.
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1 Introduction

In recent years, substantial interest has been drawn to partially identified models defined by moment

(in)equalities of the following generic form,

EF [mj(Wi, θ)] ≥ 0 for j = 1, . . . , p ,

EF [mj(Wi, θ)] = 0 for j = p+ 1, . . . , k , (1.1)

where {Wi}ni=1 is an i.i.d. sequence of random variables with distribution F and m = (m1, · · · ,mk)′ :

Rd × Θ → Rk is a known measurable function of the finite dimensional parameter vector θ ∈ Θ ⊆ Rdθ .
Methods to conduct inference on θ have been proposed, for example, by Chernozhukov et al. (2007), Romano

and Shaikh (2008), Andrews and Guggenberger (2009), and Andrews and Soares (2010).1 As a common

feature, these papers construct joint confidence sets (CS’s) for the vector θ by inverting hypothesis tests for

H0 : θ = θ0 versus H1 : θ 6= θ0. However, in empirical work, researchers often report marginal confidence

intervals for each coordinate of θ, either to follow the tradition of standard t-test-based inference or because

only few individual coordinates of θ are of interest. The current practice appears to be reporting projections

of the joint CS’s for the vector θ, e.g., Ciliberto and Tamer (2010) and Grieco (2014).

Although convenient, projecting joint CS’s suffers from three problems. First, when interest lies in

individual components of θ, projection methods are typically conservative (even asymptotically). This may

lead to confidence intervals that are unnecessarily wide, a problem that gets exacerbated when the dimension

of θ becomes reasonably large. Second, the projected confidence intervals do not necessarily inherit the

good asymptotic power properties of the joint CS’s. Yet, the available results in the literature are mostly

limited to asymptotic properties of joint CS’s. Finally, computing the projections of a joint CS is typically

unnecessarily burdensome if the researcher is only interested in individual components. This is because one

needs to compute the joint CS first, which itself requires searching over a potentially large dimensional space

Θ for all the points not rejected by a hypothesis test.

In this paper, we address the practical need for marginal CS’s by proposing a test to conduct inference

directly on individual coordinates, or more generally, on a function λ : Θ → Rdλ of the parameter vector

θ. The function λ(·) is assumed to be linear in two-sided testing problems like (1.2) below, but may be

quasi-convex in one-sided testing problems like those described in Remark 4.2. We then construct a CS for

λ(θ) by inverting tests for the hypotheses

H0 : λ(θ) = λ0 vs. H1 : λ(θ) 6= λ0 , (1.2)

given a hypothetical value λ0 ∈ Rdλ . Our test controls asymptotic size uniformly over a large class of data

distributions (Theorem 4.1) and has several attractive properties for practitioners: (i) it has finite sample

power that weakly dominates that of projection-based tests for all alternative hypothesis (Theorem 4.2), (ii)

it has asymptotic power that strictly dominates that of projection-based tests under reasonable assumptions

(see Remark 4.6), and (iii) it is less computationally demanding than projection-based tests whenever the

function λ(·) introduces dimension reduction, i.e., dλ << dθ. In addition, one corollary of our analysis is

that our marginal CS’s are always a subset of those constructed by projecting joint CS’s (see Remark 4.5).

1Additional references include Imbens and Manski (2004), Beresteanu and Molinari (2008), Rosen (2008), Stoye (2009),
Bugni (2010), Canay (2010), Romano and Shaikh (2010), Galichon and Henry (2011), Pakes et al. (2014), Bontemps et al.
(2012), Bugni et al. (2012), and Romano et al. (2014), among others.
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The test we propose in this paper employs a profiled test statistic, similar to the one suggested by Romano

and Shaikh (2008) for testing the hypotheses in (1.2) via subsampling. However, our analysis of the testing

problem in (1.2) and the properties of our test goes well beyond that in Romano and Shaikh (2008). First,

one of our technical contributions is the derivation of the limit distribution of this profiled test statistic,

which is an important step towards proving the validity of our bootstrap based test. This is in contrast to

Romano and Shaikh (2008, Theorem 3.4), as their result follows from a high-level condition regarding the

relationship between the distribution of size n and that of size bn (the subsample size), and thus avoids the

need of a characterization of the limiting distribution of the profiled test statistic. Second, as opposed to

Romano and Shaikh (2008), we present formal results on the properties of our test relative to projection-

based inference. Third, we derive the following results that support our bootstrap-based inference over the

subsampling inference in Romano and Shaikh (2008): (i) we show that our test is no less asymptotically

powerful than the subsampling test under reasonable assumptions (see Theorem 4.3); (ii) we formalize the

conditions under which our test has strictly higher asymptotic power (see Remark 4.9); and (iii) we note

that our test appears to be less sensitive to the choice of its tuning parameter κn than subsampling is to the

choice of subsample size (see Remark 4.10). All these results are in addition to the well-known challenges

behind subsampling inference that make some applied researchers reluctant to use it when other alternatives

are available. In particular, subsampling inference is known to be very sensitive to the choice of subsample

size and, even when the subsample size is chosen to minimize the error in the coverage probability, it is more

imprecise than its bootstrap alternatives, see Politis and Romano (1994); Bugni (2010, 2014).

As previously mentioned, the asymptotic results in this paper hold uniformly over a large class of nuisance

parameters. In particular, the test we propose controls asymptotic size over a large class of distributions

F and can be inverted to construct uniformly valid CS’s (see Remark 4.5). This represents an important

difference with other methods that could also be used for inference on components of θ, such as Pakes et al.

(2014), Chen et al. (2011), Kline and Tamer (2013), and Wan (2013). The test proposed by Pakes et al.

(2014) is, by construction, a test for each coordinate of the parameter θ. However, such test controls size

over a much smaller class of distributions than the one we consider in this paper (c.f. Andrews and Han,

2009). The approach recently introduced by Chen et al. (2011) is especially useful for parametric models with

unknown functions, which do not correspond exactly with the model in (1.1). In addition, the asymptotic

results in that paper hold pointwise and so it is unclear whether it controls asymptotic size over the same

class of distributions we consider. The method in Kline and Tamer (2013) is Bayesian in nature, requires

either the function m(Wi, θ) to be separable (in Wi and θ) or the data to be discretely-supported, and focuses

on inference about the identified set as opposed to identifiable parameters. Finally, Wan (2013) introduces

a computationally attractive inference method based on MCMC, but derives pointwise asymptotic results.

Due to these reasons, we do not devote special attention to these papers.

We view our test as an attractive alternative to practitioners and so we start by presenting a step by step

algorithm to implement our test in Section 2. We then present a simple example in Section 3 that illustrates

why a straight application of the Generalized Moment Selection approach to the hypotheses in (1.2) does

not deliver a valid test in general. The example also gives insight on why the test we propose does not suffer

from similar problems. Section 4 presents all formal results on asymptotic size and power, while Section 5

presents Monte Carlo simulations that support all our theoretical findings. Proofs are in Appendix C and

the Supplemental Material to this paper (Bugni, Canay, and Shi, 2016).
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2 Implementing the Minimum Resampling Test

The Minimum Resampling test (Test MR) we propose in this paper rejects the null hypothesis in (1.2) for

large values of a profiled test statistic, denoted by Tn(λ0). Specifically, it takes the form

φMR
n (λ0) ≡ 1

{
Tn(λ0) > ĉMR

n (λ0, 1− α)
}
, (2.1)

where 1{·} denotes the indicator function, α ∈ (0, 1) is the significance level, and ĉMR
n (λ0, 1 − α) is the

minimum resampling critical value that we formalize below. In order to describe how to implement this test,

we need to introduce some notation. To this end, define

m̄n,j(θ) ≡
1

n

n∑
i=1

mj(Wi, θ) (2.2)

σ̂2
n,j(θ) ≡

1

n

n∑
i=1

(mj(Wi, θ)− m̄n,j(θ))
2 , (2.3)

for j = 1, . . . , k, to be the sample mean and sample variance of the moment functions in (1.1). Denote by

Θ(λ0) = {θ ∈ Θ : λ(θ) = λ0} (2.4)

the subset of elements in Θ satisfying the null hypothesis in (1.2). Given this set, the profiled test statistic

is

Tn(λ0) = inf
θ∈Θ(λ0)

Qn(θ) , (2.5)

where

Qn(θ) = n


p∑
j=1

[
m̄n,j(θ)

σ̂n,j(θ)

]2

−
+

k∑
j=p+1

(
m̄n,j(θ)

σ̂n,j(θ)

)2
 (2.6)

and [x]− ≡ min{x, 0}. The function Qn(θ) in (2.6) is the so-called Modified Method of Moments (MMM)

test statistic and it is frequently used in the construction of joint CS’s for θ. The results we present in

Section 4 hold for a large class of possible test statistics, but to keep the exposition simple we use the MMM

test statistic throughout this section and in all examples. See Section 4 for other test statistics.

We now describe the minimum resampling critical value, ĉMR
n (λ0, 1−α). This critical value requires two

approximations to the distribution of the profiled test statistic Tn(λ0) that share the common structure

inf
θ∈Θ̃


p∑
j=1

[
v∗n,j(θ) + `j(θ)

]2
− +

k∑
j=p+1

(
v∗n,j(θ) + `j(θ)

)2 , (2.7)

for a given set Θ̃, stochastic process v∗n,j(θ), and slackness function `j(θ). Both approximations use the same

stochastic process v∗n,j(θ), which is defined as

v∗n,j(θ) =
1√
n

n∑
i=1

(mj(Wi, θ)− m̄n,j(θ))

σ̂n,j(θ)
ζi (2.8)
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for j = 1, . . . , k, where {ζi ∼ N(0, 1)}ni=1 is i.i.d. and independent of the data. However, they differ in the

set Θ̃ and slackness function `j(θ) they use.

The first approximation to the distribution of Tn(λ0) is

TDRn (λ0) ≡ inf
θ∈Θ̂I(λ0)


p∑
j=1

[
v∗n,j(θ) + ϕj(θ)

]2
− +

k∑
j=p+1

(
v∗n,j(θ) + ϕj(θ)

)2 , (2.9)

where

Θ̂I(λ0) ≡ {θ ∈ Θ(λ0) : Qn(θ) ≤ Tn(λ0)} (2.10)

and

ϕj(θ) =

∞ if κ−1
n

√
nσ̂−1

n,j(θ)m̄n,j(θ) > 1 and j ≤ p

0 if κ−1
n

√
nσ̂−1

n,j(θ)m̄n,j(θ) ≤ 1 or j > p
. (2.11)

The set Θ̂I(λ0) is the set of minimizers of the original test statistic Tn(λ0) in (2.5). For our method to work,

it is enough for this set to be an approximation to the set of minimizers in the sense discussed in Remark

4.1. The function ϕj(θ) in (2.11) is one of the Generalized Moment Selection (GMS) functions in Andrews

and Soares (2010). This function uses the information in the sequence

κ−1
n

√
nσ̂−1

n,j(θ)m̄n,j(θ) (2.12)

for j = 1, . . . , k, to determine whether the jth moment is binding or slack in the sample. Here κn is a tuning

parameter that satisfies κn →∞ and κn/
√
n→ 0, e.g., κn =

√
lnn. Although the results in Section 4 hold

for a large class of GMS functions, we restrict our discussion here to the function in (2.11) for simplicity.

The second approximation to the distribution of Tn(λ0) is

TPRn (λ0) ≡ inf
θ∈Θ(λ0)


p∑
j=1

[
v∗n,j(θ) + `j(θ)

]2
− +

k∑
j=p+1

(
v∗n,j(θ) + `j(θ)

)2 , (2.13)

with

`j(θ) = κ−1
n

√
nσ̂−1

n,j(θ)m̄n,j(θ) (2.14)

for j = 1, . . . , k. This approximation employs the set Θ(λ0) and a slackness function `j(θ) that is not in

the class of GMS functions. The reason why `j(θ) is not a GMS function in Andrews and Soares (2010) is

two-fold: (i) it can take negative values (while ϕj(θ) ≥ 0), and (ii) it penalizes moment equalities (while

ϕj(θ) = 0 for j = p+ 1, . . . , k).

In the context of the common structure in (2.7), the first approximation sets Θ̃ = Θ̂I(λ0) and `j(θ) =

ϕj(θ) for j = 1, . . . , k, while the second approximation sets Θ̃ = Θ(λ0) and `j(θ) = κ−1
n

√
nσ̂−1

n,j(θ)m̄n,j(θ)

for j = 1, . . . , k. Given these two approximations, the minimum resampling critical value ĉn(λ0, 1 − α) is

defined to be the (conditional) 1− α quantile of

TMR
n (λ0) ≡ min

{
TDRn (λ0), TPRn (λ0)

}
, (2.15)

where TDRn (λ0) and TPRn (λ0) are as in (2.9) and (2.13), respectively. Algorithm 2.1 below summarizes in a
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succinct way the steps required to implement Test MR, i.e., φMR
n (λ0) in (2.1).

Algorithm 2.1 Algorithm to Implement the Minimum Resampling Test

1: Inputs: λ0, Θ, κn, B, λ(·), ϕ(·), m(·), α . κn =
√

lnn recommended by Andrews and Soares (2010).
2: Θ(λ0)← {θ ∈ Θ : λ(θ) = λ0}
3: ζ ← n×B matrix of independent N(0, 1)

4: function Qstat(type, θ, {Wi}ni=1, {ζi}ni=1) . Computes criterion function for a given θ
5: m̄n(θ)← n−1

∑n
i=1m(Wi, θ). . Moments for a given θ

6: D̂n(θ)← Diag(var(m(Wi, θ))). . Variance matrix for a given θ
7: if type=0 then . Type 0 is for Test Statistic

8: v(θ)←
√
nD̂
−1/2
n (θ)m̄n(θ)

9: `(θ)← 0k×1 . Test Statistic does not involve `
10: else if type=1 then . Type 1 is for TDRn (λ)

11: v(θ)← n−1/2D̂
−1/2
n (θ)

∑n
i=1(m(Wi, θ)− m̄n(θ))ζi

12: `(θ)← ϕ(κ−1
n

√
nD̂
−1/2
n (θ)m̄n(θ))

13: else if type=2 then . Type 2 is for TPRn (λ)

14: v(θ)← n−1/2D̂
−1/2
n (θ)

∑n
i=1(m(Wi, θ)− m̄n(θ))ζi

15: `(θ)← κ−1
n

√
nD̂
−1/2
n (θ)m̄n(θ)

16: end if
17: return Q(θ)←

{∑p
j=1 [vj(θ) + `j(θ)]

2
− +

∑k
j=p+1 (vj(θ) + `j(θ))

2
}

18: end function

19: function TestMR(B, {Wi}ni=1, ζ, Θ(λ0), α) . Test MR
20: Tn ← minθ∈Θ(λ0) Qstat(0, θ, {Wi}ni=1) . Compute test statistic

21: Θ̂I(λ0)← {θ ∈ Θ(λ0) : Qstat(0, θ, {Wi}ni=1) ≤ Tn} . Estimated set of minimizers
22: for b=1,. . . ,B do
23: TDR[b]← minθ∈Θ̂I(λ0) Qstat(1, θ, {Wi}ni=1, ζ[, b]) . type=1. Uses bth column of ζ

24: TPR[b]← minθ∈Θ(λ0) Qstat(2, θ, {Wi}ni=1, ζ[, b]) . type=2. Uses bth column of ζ
25: TMR[b]← min{TDR[b], TPR[b]}
26: end for
27: ĉMR

n ← quantile(TMR, 1− α) . TMR is B × 1. Gets 1− α quantile
28: return φMR ← 1{Tn > ĉMR

n }
29: end function

Remark 2.1. Two aspects about Algorithm 2.1 are worth emphasizing. First, note that in Line 3 a matrix

of n×B of independent N(0, 1) is simulated and the same matrix is used to compute TDRn (λ0) and TPRn (λ0)

(Lines 23 and 24). Here B denotes the number of bootstrap replications. Second, the algorithm involves

2B + 1 optimization problems (Lines 20, 23, and 24) that can be implemented via optimization packages

available in standard computer programs. This is typically faster than projecting a joint confidence set for

θ, which requires computing a test statistic and approximating a quantile for each θ ∈ Θ.

Remark 2.2. The leading application of our inference method is the construction of marginal CS’s for

coordinates of θ, which is done by setting λ(θ) = θs for some s ∈ {1, . . . , dθ} in (1.2) and collecting all values

of λ0 for which H0 is not rejected. For this case, the set Θ(λ0) in (2.4) becomes

Θ(λ0) = {θ ∈ Θ : θs = λ0} . (2.16)

This is, optimizing over Θ(λ0) is equivalent to optimizing over the dθ − 1 dimensional subspace of Θ that

includes all except the sth coordinate.
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3 Failure of Näıve GMS and Intuition for Test MR

Before we present the formal results on size and power for Test MR, we address two natural questions

that may arise from Section 2. The first one is: why not simply use a straight GMS approximation to the

distribution of Tn(λ0) in (2.5)? We call this approach the näıve GMS approximation and denote it by

T naive
n (λ0) ≡ inf

θ∈Θ(λ0)


p∑
j=1

[
v∗n,j(θ) + ϕj(θ)

]2
− +

k∑
j=p+1

(
v∗n,j(θ) + ϕj(θ)

)2 , (3.1)

where v∗n,j(θ) is as in (2.8) and ϕj(θ) is as in (2.11). This approximation shares the common structure in

(2.7) with Θ̃ = Θ(λ0) and `j(θ) = ϕj(θ) for j = 1, . . . , k. After showing that this approximation does not

deliver a valid test, the second question arises: how is that the two modifications in (2.9) and (2.13), which

may look somewhat arbitrary ex-ante, eliminate the problems associated with T naive
n (λ0)? We answer these

two questions in the context of the following simple example.

Let {Wi}ni=1 = {(W1,i,W2,i)}ni=1 be an i.i.d. sequence of random variables with distribution F =

N(02, I2), where 02 is a 2-dimensional vector of zeros and I2 is the 2× 2 identity matrix. Let (θ1, θ2) ∈ Θ =

[−1, 1]2 and consider the following moment inequality model

EF [m1(Wi, θ)] = EF [W1,i − θ1 − θ2] ≥ 0

EF [m2(Wi, θ)] = EF [θ1 + θ2 −W2,i] ≥ 0 .

If we denote by ΘI(F ) the so-called identified set, i.e., the set of all parameter in Θ that satisfy the moment

inequality model above, it follows that

ΘI(F ) = {θ ∈ Θ : θ1 + θ2 = 0} .

We are interested in testing the hypotheses

H0 : θ1 = 0 vs. H1 : θ1 6= 0 , (3.2)

which corresponds to choosing λ(θ) = θ1 and λ0 = 0 in (1.2). In this case, the set Θ(λ0) is given by

Θ(λ0) = {θ ∈ Θ : θ1 = 0, θ2 ∈ [−1, 1]} ,

which is a special case of the one described in Remark 2.2. Since the point θ = (0, 0) belongs to Θ(λ0) and

ΘI(F ), the null hypothesis in (3.2) is true in this example.

Profiled test statistic. The profiled test statistic Tn(λ0) in (2.5) here takes the form

Tn(0) = inf
θ2∈[−1,1]

Qn(0, θ2) = inf
θ2∈[−1,1]

n

{[
W̄n,1 − θ2

σ̂n,1

]2

−
+

[
θ2 − W̄n,2

σ̂n,2

]2

−

}
,

where we are implicitly using the fact that σ̂n,j(θ) does not depend on θ for j = 1, 2 in this example.
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Simple algebra shows that the infimum is attained at

θ?2 =
σ̂2
n,2W̄n,1 + σ̂2

n,1W̄n,2

σ̂2
n,2 + σ̂2

n,1

w.p.a.1 , (3.3)

and this immediately leads to

Tn(0) = Qn(0, θ?2) =
1

σ̂2
n,2 + σ̂2

n,1

[√
nW̄n,1 −

√
nW̄n,2

]2
−

d→ 1

2
[Z1 − Z2]2− , (3.4)

where (Z1, Z2) ∼ N(02, I2). Thus, the profiled test statistic has a limiting distribution where both moments

are binding and asymptotically correlated, something that arises from the common random element θ?2

appearing in both moments.

Näıve GMS. This approach approximates the limiting distribution in (3.4) using (3.1). To describe this

approach, first note that v∗n,j(θ) in (2.8) does not depend on θ in this example since

v∗n,1 (θ) =
1√
n

n∑
i=1

[
(W1,i − θ1 − θ2)−

(
W̄n,1 − θ1 − θ2

)]
ζi

σ̂n,1
= Z∗n,1

v∗n,2 (θ) =
1√
n

n∑
i=1

[
(θ1 + θ2 −W2,i)−

(
θ1 + θ2 − W̄n,2

)]
ζi

σ̂n,2
= −Z∗n,2 ,

and Z∗n,j = 1√
n
σ̂−1
n,j

∑n
i=1

(
Wj,i − W̄n,j

)
ζi for j = 1, 2. In addition,

{
Z∗n,1, Z

∗
n,2| {Wi}ni=1

} d→ Z = (Z1, Z2) ∼ N(02, I2) w.p.a.1 .

It follows that the näıve approximation in (3.1) takes the form

T naive
n (0) = inf

θ2∈[−1,1]

[
Z∗n,1 + ϕ1(0, θ2)

]2
− +

[
−Z∗n,2 + ϕ2(0, θ2)

]2
− ,

where (Z∗n,1, Z
∗
n,2) does not depend on θ and ϕj(θ) is defined as in (2.11). Some algebra shows that

{T naive
n (0)| {Wi}ni=1}

d→ min{[Z1]2−, [−Z2]2−} w.p.a.1 . (3.5)

This result intuitively follows from the fact that the GMS functions depend on

κ−1
n

√
nσ̂−1

n,1m̄n,1(0, θ2) = κ−1
n

√
n
W̄n,1

σ̂n,1
− κ−1

n

√
n
θ2

σ̂n,1

κ−1
n

√
nσ̂−1

n,2m̄n,2(0, θ2) = κ−1
n

√
n
θ2

σ̂n,2
− κ−1

n

√
n
W̄n,2

σ̂n,2
.

It thus follows that (ϕ1(0, θ2), ϕ2(0, θ2)) →p (0,∞) when θ2 > 0 and (ϕ1(0, θ2), ϕ2(0, θ2)) →p (∞, 0)

when θ2 < 0. In other words, the näıve GMS approximation does not penalize large negative values of

κ−1
n

√
nσ̂−1

n,j(θ)m̄n,j(θ) (due to the fact that ϕj(θ) ≥ 0) and thus can afford to treat an inequality as slack by

making the remaining inequality very negative (and treat it as binding). When α = 10%, the 1−α quantile

of the distribution in (3.4) is 1.64, while the 1− α quantile of the distribution in (3.5) is 0.23. This delivers
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a näıve GMS test with null rejection probability converging to 31%, which clearly exceeds 10%. It is worth

noting that the results in Andrews and Soares (2010) do not cover profiled test statistics like the one in (2.5),

so this example simply illustrates that their idea cannot be näıvely extended.

Test MR. Now consider the two approximations in (2.9) and (2.13) that lead to Test MR. The first

approximation takes the form

TDRn (0) = inf
θ∈Θ̂I(0)

[
Z∗n,1 + ϕ1(θ1, θ2)

]2
− +

[
−Z∗n,2 + ϕ2(θ1, θ2)

]2
− ,

where, for θ?2 defined as in (3.3), it is possible to show that

Θ̂I(0) =
{
θ ∈ Θ : θ1 = 0 and θ2 = θ?2 if W̄n,1 ≤ W̄n,2 or θ2 ∈ [W̄n,2, W̄n,1] if W̄n,1 > W̄n,2

}
.

We term this the “Discard Resampling” approximation for reasons explained below. Some algebra shows

that

{TDRn (0)| {Wi}ni=1}
d→ [Z1]2− + [−Z2]2− w.p.a.1 , (3.6)

where (Z1, Z2) ∼ N(02, I2). Since 1
2 [Z1−Z2]2− ≤ [Z1]2−+[−Z2]2−, using the 1−α quantile of TDRn (0) delivers

an asymptotically valid (and possibly conservative) test. This approximation does not exhibit the problem

we found in the näıve GMS approach because the set Θ̂I(0) does not allow the approximation to choose

values of θ2 far from zero, which make one moment binding and the other one slack. In other words, the set

Θ̂I(0) “discards” the problematic points from Θ(λ0) and this is precisely what leads to a valid approximation.

The second approximation takes the form

TPRn (0) = inf
θ2∈[−1,1]

[
Z∗n,1 + κ−1

n

√
nσ̂−1

n,1m̄n,1(0, θ2)
]2
− +

[
−Z∗n,2 + κ−1

n

√
nσ̂−1

n,2m̄n,2(0, θ2)
]2
− .

We term this the “Penalize Resampling” approximation for reasons explained below. Some algebra shows

that

{TPRn (0)| {Wi}ni=1}
d→ 1

2
[Z1 − Z2]2− w.p.a.1 , (3.7)

and thus using the 1 − α quantile of TPRn (0) delivers an asymptotically valid (and exact in this case) test.

This approximation does not exhibit the problem we found in the näıve GMS approach because the slackness

function `j(θ) = κ−1
n

√
nσ̂−1

n,j(θ)m̄n,j(θ), which may take negative values, “penalizes” the problematic points

from Θ(λ0). This feature implies that the infimum in TPRn (0) is attained at

θ†2 = θ?2 +
(κn/

√
n)
(
σ̂2
n,2Z

∗
n,1 + σ̂2

n,1Z
∗
n,2

)
σ̂2
n,2 + σ̂2

n,1

w.p.a.1 , (3.8)

where θ?2 is as in (3.3). Hence, using a slackness function that is not restricted to be non-negative introduces

a penalty when violating the inequalities that mimics the behavior of the profiled test statistic Tn(λ0).

Putting all these results together shows that

{TMR
n (0)| {Wi}ni=1}

d→ 1

2
[Z1 − Z2]2− w.p.a.1 , (3.9)
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and thus Test MR, as defined in (2.1), has null rejection probability equal to α in this example, i.e., it is

an asymptotically valid test. We note that in this example the quantile of Test MR coincides with the one

from the second resampling approximation. In general, the two resampling approximations leading to Test

MR do not dominate each other, see Remark 4.11.

Remark 3.1. The example does not include moment equalities and thus does not illustrate why the “Penalize

Resampling” approximation includes penalties for the moment equalities as well. However, the intuition

behind it is analogous to the one in the example. Using a slackness function that affects moment equalities

enforces that the approximation cannot be determined by parameter values that are far from the identified

set ΘI(F ), therefore mimicking the behavior of the profiled test statistic Tn(λ0).

Remark 3.2. In the next section we present formal results that show that tests that reject the null in (1.2)

when the profiled test statistic in (2.5) exceeds the 1−α quantile of either TDRn (λ0), TPRn (λ0), or TMR
n (λ0),

control asymptotic size uniformly over a large class of distributions. We however recommend to use Test

MR on the grounds that this test delivers the best power properties relative to tests based on TDRn (λ0),

TPRn (λ0), projections, and subsampling.

4 Main Results on Size and Power

4.1 Minimum Resampling Test

We now describe the minimum resampling test in (2.1) for a generic test statistic and generic GMS slackness

function. In order to do this, we introduce the following notation. Let m̄n(θ) ≡ (m̄n,1(θ), . . . , m̄n,k(θ)) where

m̄n,j(θ) is as in (2.2) for j = 1, . . . , k. Denote by

D̂n(θ) ≡ diag{σ̂2
n,1(θ), . . . , σ̂2

n,k(θ)}

the diagonal matrix of variances, where σ̂2
n,j(θ) is as in (2.3), and let Ω̂n(θ) be the sample correlation matrix

of the vector m(Wi, θ). For a given λ ∈ Λ, the profiled test statistic is

Tn(λ) ≡ inf
θ∈Θ(λ)

Qn(θ) , (4.1)

where

Qn(θ) = S(
√
nD̂−1/2

n (θ)m̄n(θ), Ω̂n(θ)) , (4.2)

and S(·) is a test function satisfying Assumptions M.1-M.9. In the context of the moment (in)equality

model in (1.1), it is convenient to consider functions Qn(θ) that take the form in (4.2) (see, e.g., Andrews

and Guggenberger, 2009; Andrews and Soares, 2010; Bugni et al., 2012). Some common examples of test

functions satisfying all of the required conditions are the MMM function in (2.6), the maximum test statistic

in Romano et al. (2014), and the adjusted quasi-likelihood ratio statistic in Andrews and Barwick (2012).

The critical value of Test MR requires two resampling approximations to the distribution of Tn(λ). The
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“discard” resampling approximation uses the statistic

TDRn (λ) ≡ inf
θ∈Θ̂I(λ)

S(v∗n(θ) + ϕ(κ−1
n

√
nD̂−1/2

n (θ)m̄n(θ)), Ω̂n(θ)) , (4.3)

where Θ̂I(λ) is as in (2.10), ϕ = (ϕ1, . . . , ϕk), and ϕj , for j = 1, . . . , k, a GMS function satisfying assumption

A.1. Examples of functions ϕj satisfying our assumptions include the one in (2.11), ϕj(xj) = max{xj , 0},
and several others, see Remark B.1. We note that the previous sections treated ϕj as a function of θ when

in fact these are mappings from κ−1
n

√
nσ̂−1

n,jm̄n,j(θ) to R+,∞. We did this to keep the exposition as simple

as possible in those sections, but in what follows we properly view ϕj as a function of κ−1
n

√
nσ̂−1

n,jm̄n,j(θ).

Using TDRn (λ) to approximate the quantiles of the distribution of Tn(λ) is based on an approximation

that forces θ to be close to the identified set

ΘI(F ) ≡ {θ ∈ Θ : EF [mj(Wi, θ)] ≥ 0 for j = 1, . . . , p and EF [mj(Wi, θ)] = 0 for j = p+ 1, . . . , k} . (4.4)

This is achieved by using the approximation Θ̂I(λ) to the intersection of Θ(λ) and ΘI(F ), i.e.

Θ(λ) ∩ΘI(F ) = {θ ∈ ΘI(F ) : λ(θ) = λ} .

The approximation therefore “discards” the points in Θ(λ) that are far from ΘI(F ). Note that replacing

Θ̂I(λ) with Θ(λ) while keeping the function ϕ(·) in (4.3) leads to the näıve GMS approach. As illustrated

in Section 3, such an approach does not deliver a valid approximation.

Remark 4.1. The set Θ̂I(λ) could be defined as Θ̂I(λ) ≡ {θ ∈ Θ(λ) : Qn(θ) ≤ Tn(λ) + δn}, with δn ≥ 0

and δn = op(1), without affecting our results. This is relevant for situations where the optimization is only

guaranteed to approximate exact minimizers. In addition, the set Θ̂I(λ) in not required to contain all the

minimizers of Qn(θ), in the sense that our results hold as long as Θ̂I(λ) approximates at least one of the

possible minimizers. More specifically, all we need is that

PF (Θ̂I(λ) ⊆ Θ(λ) ∩Θlnκn
I (F ))→ 1 , (4.5)

uniformly over the parameter space defined in the next section, where Θlnκn
I (F ) is a non-random expansion

of ΘI(F ) defined in Table 1. It follows from Bugni et al. (2014, Lemma D.13) that all the variants of Θ̂I(λ)

just discussed satisfy the above property.

The “penalize” resampling approximation uses the statistic

TPRn (λ) ≡ inf
θ∈Θ(λ)

S(v∗n(θ) + κ−1
n

√
nD̂−1/2

n (θ)m̄n(θ), Ω̂n(θ)) . (4.6)

This second approximation does not require the set Θ̂I(λ) and it uses a slackness function that does not

belong to the class of GMS functions. This is so because GMS functions are assumed to satisfy ϕj(·) ≥ 0

for j = 1, . . . , p and ϕj(·) = 0 for j = p + 1, . . . , k in order for GMS tests to have good power properties,

see Andrews and Soares (2010, Assumption GMS6 and Theorem 3). As illustrated in Section 3, the fact

that κ−1
n

√
nσ̂−1

n,j(θ)m̄n,j(θ) may be negative for j = 1, . . . , p and κ−1
n

√
nσ̂−1

n,j(θ)m̄n,j(θ) may be non-zero for

j = p + 1, . . . , k is fundamental for how this approximation to work. This is because using this slackness
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function penalizes θ values away from the identified set (for equality and inequality restrictions) and thus

automatically restricts the effective infimum range to a neighborhood of the identified set.

Definition 4.1 (Minimum Resampling Test). Let TDRn (λ) and TPRn (λ) be defined as in (4.3) and (4.6)

respectively, where v∗n(θ) is defined as in (2.8) and is common to both resampling statistics. Let the critical

value ĉMR
n (λ, 1− α) be the (conditional) 1− α quantile of

TMR
n (λ) ≡ min

{
TDRn (λ), TPRn (λ)

}
.

The minimum resampling test (or Test MR) is

φMR
n (λ) ≡ 1

{
Tn(λ) > ĉMR

n (λ, 1− α)
}
.

The profiled test statistic Tn(λ) is standard in point identified models. It has been considered in the

context of partially identified models for a subsampling test by Romano and Shaikh (2008), although Romano

and Shaikh (2008, Theorem 3.4) did not derive asymptotic properties of Tn(λ) and proved the validity of

their test under high-level conditions. The novelty in Test MR lies in the critical value ĉMR
n (λ, 1 − α).

This is because each of the two basic resampling approximations we combine - embedded in TDRn (λ) and

TPRn (λ) - has good power properties in particular directions and neither of them dominate each other in

terms of asymptotic power - see Example 4.1. By combining the two approximations into the resampling

statistic TMR
n (λ), the test φMR

n (λ) not only dominates each of these basic approximations; it also dominates

projection based tests and subsampling tests. We formalize these properties in the following sections.

Remark 4.2. Test MR and all our results can be extended to one-sided testing problems where

H0 : λ(θ) ≤ λ0 v.s. H1 : λ(θ) > λ0 .

The only modification lies in the definition of Θ(λ), which should now be {θ ∈ Θ : λ(θ) ≤ λ}. This change

affects the profiled test statistic and the two approximations, TDRn (λ) and TPRn (λ), leading to Test MR.

4.2 Asymptotic Size

In this section we show that Test MR controls asymptotic size uniformly over an appropriately defined

parameter space. We define the parameter space after introducing some additional notation. First, we

assume that F , the distribution of the observed data, belongs to a baseline distribution space denoted by P.

Definition 4.2 (Baseline Distribution Space). The baseline space of distributions P is the set of distributions

F satisfying the following properties:

(i) {Wi}ni=1 are i.i.d. under F .

(ii) σ2
F,j(θ) = VarF (mj(Wi, θ)) ∈ (0,∞), for j = 1, . . . , k and all θ ∈ Θ.

(iii) For all j = 1, . . . , k, {σ−1
F,j(θ)mj(·, θ) :W → R} is a measurable class of functions indexed by θ ∈ Θ.
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(iv) The empirical process vn(θ) with jth-component as in Table 1 is asymptotically ρF -equicontinuous

uniformly in F ∈ P in the sense of van der Vaart and Wellner (1996, page 169). This is, for any ε > 0,

lim
δ↓0

lim sup
n→∞

sup
F∈P

P ∗F

(
sup

ρF (θ,θ′)<δ

||vn(θ)− vn(θ′)|| > ε

)
= 0 ,

where P ∗F denotes outer probability and ρF is the coordinate-wise intrinsic variance semimetric in (A-1).

(v) For some constant a > 0 and all j = 1, . . . , k.

sup
F∈P

EF

[
sup
θ∈Θ

∣∣∣∣mj(W, θ)

σF,j(θ)

∣∣∣∣2+a
]
<∞ .

(vi) For ΩF (θ, θ′) being the k × k correlation matrix with [j1, j2]-component as defined in Table 1,

lim
δ↓0

sup
‖(θ1,θ′1)−(θ2,θ′2)‖<δ

sup
F∈P
‖ΩF (θ1, θ

′
1)− ΩF (θ2, θ

′
2)‖ = 0 .

Parts (i)-(iii) in Definition 4.2 are mild conditions. In fact, the kind of uniform laws large numbers we

need for our analysis would not hold without part (iii) (see van der Vaart and Wellner, 1996, page 110). Part

(iv) is a uniform stochastic equicontinuity assumption which, in combination with the other requirements, is

used to show that the class of functions {σ−1
F,j(θ)mj(·, θ) : W → R} is Donsker and pre-Gaussian uniformly

in F ∈ P (see Lemma S.3.1). Part (v) provides a uniform (in F and θ) envelope function that satisfies a

uniform integrability condition. This is essential to obtain uniform versions of the laws of large numbers and

central limit theorems. Finally, part (vi) requires the correlation matrices to be uniformly equicontinuous,

which is used to show pre-Gaussianity.

Second, we introduce a parameter space for the tuple (λ, F ). Note that inference for the entire parameter

θ requires a parameter space for the tuple (θ, F ), see, e.g., Andrews and Soares (2010). Here the hypotheses

in (1.2) are determined by the function λ(·) : Θ→ Λ, and so the relevant tuple becomes (λ, F ).

Definition 4.3 (Parameter Space for (λ, F )). The parameter space for (λ, F ) is given by

L ≡ {(λ, F ) : F ∈ P, λ ∈ Λ} .

The subset of L that is consistent with the null hypothesis, referred to as the null parameter space, is

L0 ≡ {(λ, F ) : F ∈ P, λ ∈ Λ,Θ(λ) ∩ΘI(F ) 6= ∅} .

The following theorem states that Test MR controls asymptotic size uniformly over parameters in L0.

Theorem 4.1. Let Assumptions A.1-A.3 hold and φMR
n (λ) be the test in Definition 4.1. Then, for α ∈ (0, 1

2 ),

lim sup
n→∞

sup
(λ,F )∈L0

EF [φMR
n (λ)] ≤ α .

All the assumptions we use throughout the paper can be found in Appendix B. Assumptions A.1 restricts
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the class of GMS functions we allow for, see Remark B.1. Assumption A.2 is a continuity assumption on

the limit distribution of Tn(λ), see Remark B.2. Finally, Assumption A.3 is a key sufficient condition for

the asymptotic validity of our test that requires the population version of Qn(θ) to satisfy a minorant-

type condition as in Chernozhukov et al. (2007) and the normalized population moments to be sufficiently

smooth. This assumption also requires Θ(λ) to be convex, which is satisfied for linear λ(·) in two-sided testing

problems, and quasi-convex λ(·) for one-sided testing problems. See Remark B.3 for a detailed discussion.

We verified that all these assumptions hold in the examples we use throughout the paper.

Remark 4.3. We can construct examples where Assumption A.3 is violated and Test MR over-rejects.

Interesting enough, in those examples the subsampling based test proposed by Romano and Shaikh (2008),

and discussed in Section 4.4, also exhibits over-rejection. We conjecture that Assumption A.3 is part of the

primitive conditions that may be required to satisfy the high-level conditions stated in Romano and Shaikh

(2008). This is, however, beyond the scope of this paper as here we recommend Test MR.

Remark 4.4. The proof of Theorem 4.1 relies on Theorem S.2.4 in the Appendix, which derives the limiting

distribution of Tn(λ) along sequences of parameters (λn, Fn) ∈ L0. The expression of this limit distribution

is not particularly insightful, so we refer the reader to the appendix for it. We do emphasize that the result

in Theorem S.2.4 is new, represents an important milestone into Theorem 4.1, and is part of the technical

contributions of this paper.

Remark 4.5. By exploiting the well-known duality between tests and confidence sets, Test MR may be

inverted to construct confidence sets for the parameter λ. This is, if we let

CSλn(1− α) ≡ {λ ∈ Λ : TMR
n (λ) ≤ ĉMR

n (λ, 1− α)} ,

it follows from Theorem 4.1 that

lim inf
n→∞

inf
(λ,F )∈L0

PF
(
λ ∈ CSλn(1− α)

)
≥ 1− α . (4.7)

In particular, by choosing λ(θ) = θs for some s ∈ {1, . . . , dθ}, CSλn(1 − α) constitutes a confidence interval

for the component θs.

4.3 Power Advantage over Projection Tests

To test the hypotheses in (1.2), a common practice in applied work involves projecting joint CS’s for the

entire parameter θ into the image of the function λ(·). This practice requires one to first compute

CSθn(1− α) ≡ {θ ∈ Θ : Qn(θ) ≤ ĉn(θ, 1− α)} , (4.8)

where Qn(θ) is as in (4.2) and ĉn(θ, 1 − α) is such that CSθn(1 − α) has the correct asymptotic coverage.

CS’s that have the structure in (4.8) and control asymptotic coverage have been proposed by Romano and

Shaikh (2008); Andrews and Guggenberger (2009); Andrews and Soares (2010); Canay (2010); and Bugni

(2010, 2014), among others. The projection test then rejects the null hypothesis in (1.2) when the image of
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CSθn(1− α) under λ(·) does not include the value λ0. Formally,

φBPn (λ) ≡ 1
{
CSθn(1− α) ∩Θ(λ) = ∅

}
. (4.9)

We refer to this test as projection tests, or Test BP, to emphasize the fact that this test comes as a By-

Product of constructing CS’s for the entire parameter θ. Applied papers using this test include Ciliberto

and Tamer (2010), Grieco (2014), Dickstein and Morales (2015), and Wollmann (2015), among others.

Test BP inherits its size and power properties from the properties of CSθn(1 − α). These properties

depend on the particular choice of test statistic and critical value entering CSθn(1−α) in (4.8). All the tests

we consider in this paper are functions of the same Qn(θ) and thus their relative power properties do not

depend on the choice of test function S(·). However, the performance of Test BP tightly depends on the

critical value used in CSθn(1− α). Bugni (2014) shows that GMS tests have more accurate asymptotic size

than subsampling tests. Andrews and Soares (2010) show that GMS tests are more powerful than Plug-in

asymptotics or subsampling tests. This means that, asymptotically, Test BP implemented with a GMS CS

will be less conservative and more powerful than the analogous test implemented with plug-in asymptotics

or subsampling. We therefore adopt the GMS version of Test BP as the “benchmark version”. This is stated

formally in the maintained Assumption M.4 in Appendix B.

The next theorem formalizes the power advantage of Test MR over Test BP.

Theorem 4.2. Let φMR
n (λ) and φBPn (λ) be implemented with the same sequence {κn}n≥1 and GMS function

ϕ(·). Then, for any (λ, F ) ∈ L and all n ∈ N it follows that φMR
n (λ) ≥ φBPn (λ).

Corollary 4.1. For any sequence {(λn, Fn) ∈ L}n≥1, lim infn→∞(EFn [φMR
n (λn)]− EFn [φBPn (λn)]) ≥ 0.

Theorem 4.2 is a statement for all n ∈ N and (λ, F ) ∈ L, and thus it is a result about finite sample power

and size. This theorem also implies that the CS for λ defined in Remark 4.5 is always a subset of the one

produced by projecting the joint CS in (4.8).

To describe the mechanics behind Theorem 4.2, let ĉDRn (λ, 1− α) be the (conditional) 1− α quantile of

TDRn (λ) in (4.3) and

φDRn (λ) ≡ 1
{
Tn(λ) > ĉDRn (λ, 1− α)

}
(4.10)

be the test associated with the Discard Resampling approximation leading to Test MR. To prove the theorem

we first modify the arguments in Bugni et al. (2014) to show that φDRn (λ) ≥ φBPn (λ), provided these tests

are implemented with the same sequence {κn}n≥1 and GMS function ϕ(·). We then extend the result to

φMR
n (λ) by using

φMR
n (λ) ≥ φDRn (λ) , (4.11)

for all (λ, F ) ∈ L and n ∈ N, which in turn follows from ĉMR
n (λ, 1− α) ≤ ĉDRn (λ, 1− α).

Remark 4.6. Under a condition similar to Bugni et al. (2014, Assumption A.9), φDRn (λ) has asymptotic

power that is strictly higher than that of φBPn (λ) for certain local alternative hypotheses. The proof is similar

to that in Bugni et al. (2014, Theorem 6.2) and so we omit it here. We do illustrate this in Example 4.1.

Remark 4.7. The test φDRn (λ) in (4.10) corresponds to one of the tests introduced by Bugni et al. (2014)

to test the correct specification of the model in (1.1). By (4.11), this test controls asymptotic size for the
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null hypothesis in (1.2). However, φDRn (λ) presents two disadvantages relative to φMR
n (λ). First, the power

results we present in the next section for φMR
n (λ) do not necessarily hold for φDRn (λ). This is, φDRn (λ) may

not have better power than the subsampling test proposed by Romano and Shaikh (2008). Second, φMR
n (λ)

has strictly higher asymptotic power than φDRn (λ) in some cases - see Example 4.1 for an illustration.

We conclude this section with two aspects that go beyond Theorem 4.2. First, when the function

λ(·) selects one of several elements of Θ, and so dim(Θ) > dim(Λ), the implementation of Test MR is

computationally attractive as it involves inverting a test over a smaller dimension. In those cases, Test

MR has power and computational advantages over Test BP. Second, Test BP requires fewer assumptions to

control asymptotic size relative to Test MR. It is fair to say then that Test BP is more “robust” than Test

MR, in the sense that if some of the Assumptions A.1-A.3 fail, Test BP may still control asymptotic size.

4.4 Power Advantage over Subsampling Tests

In this section we show that Test MR dominates subsampling based tests by exploiting its connection to the

second resampling approximation TPRn (λ) in (4.6). We follow a proof approach analogous to the one in the

previous section, first deriving results for the test associated with TPRn (λ), and then extending these results

to φMR
n (λ) by exploiting the finite sample inequality in (4.15) below.

We start by describing subsampling based tests. Romano and Shaikh (2008, Section 3.4) propose to test

the hypothesis in (1.2) using Tn(λ) in (4.1) with a subsampling critical value. Concretely, the test they

propose, which we denote by Test SS, is

φSSn (λ) ≡ 1
{
Tn(λ) > ĉSSn (λ, 1− α)

}
, (4.12)

where ĉSSn (λ, 1 − α) is the (conditional) 1 − α quantile of the distribution of TSSbn (λ), which is identical

to Tn(λ) but computed using a random sample of size bn without replacement from {Wi}ni=1. We assume

the subsample size satisfies bn → ∞ and bn/n → 0. Romano and Shaikh (2008, Remark 3.11) note that

projection based tests may lead to conservative inference, and use this as a motivation for introducing Test

SS. However, neither they provide formal comparisons between their test and projection based tests nor

provide primitive conditions for their test to control asymptotic size, see Remark 4.3.

To compare Test MR and Test SS, we define a class of distributions in the alternative hypotheses that are

local to the null hypothesis. After noticing that the null hypothesis in (1.2) can be written as Θ(λ0)∩ΘI(F ) 6=
∅, we do this by defining sequences of distributions Fn for which Θ(λ0)∩ΘI(Fn) = ∅ for all n ∈ N, but where

Θ(λn) ∩ ΘI(Fn) 6= ∅ for a sequence {λn}n≥1 that approaches the value λ0 in (1.2). These alternatives are

conceptually similar to those in Andrews and Soares (2010), but the proof of our result involves additional

challenges that are specific to the infimum present in the definition of our test statistic. The following

definition formalizes the class of local alternative distributions we consider.

Definition 4.4 (Local Alternatives). Let λ0 ∈ Λ be the value in (1.2). The sequence {Fn}n≥1 is a sequence

of local alternatives if there is {λn ∈ Λ}n≥1 such that {(λn, Fn) ∈ L0}n≥1 and

(a) For all n ∈ N, ΘI(Fn) ∩Θ(λ0) = ∅.
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(b) dH(Θ(λn),Θ(λ0)) = O(n−1/2).

(c) For any θ ∈ Θ, GFn(θ) = O(1), where GF (θ) ≡ ∂D−1/2
F (θ)EF [m(W, θ)]/∂θ′.

Under the assumption that Fn is a local alternative (Assumption A.5), a restriction on κn and bn

(Assumption A.4), and smoothness conditions (Assumptions A.3 and A.6), we show the following result.

Theorem 4.3. Let Assumptions A.1-A.6 hold. Then,

lim inf
n→∞

(EFn [φMR
n (λ0)]− EFn [φSSn (λ0)]) ≥ 0 . (4.13)

To describe the mechanics behind Theorem 4.3, let ĉPRn (λ, 1− α) be the (conditional) 1− α quantile of

TPRn (λ) and

φPRn (λ) ≡ 1
{
Tn(λ) > ĉPRn (λ, 1− α)

}
(4.14)

be the test associated with the Penalize Resampling approximation leading to Test MR. The test in (4.14)

is not part of the tests discussed in Bugni et al. (2014) but has recently been used for a different testing

problem in Gandhi et al. (2013). By construction, ĉMR
n (λ, 1− α) ≤ ĉPRn (λ, 1− α), and thus

φMR
n (λ) ≥ φPRn (λ) , (4.15)

for all (λ, F ) ∈ L and n ∈ N. To prove the theorem we first show that (4.13) holds with φPRn (λ0) in place of

φMR
n (λ0), and then use (4.15) to complete the argument.

Remark 4.8. To show that the asymptotic power of Test MR weakly dominates that of Test SS, Theorem

4.3 relies on Assumption A.4, which requires

lim sup
n→∞

κn
√
bn/n ≤ 1 . (4.16)

For the problem of inference on the entire parameter θ, Andrews and Soares (2010) show the analogous result

that the asymptotic power of the GMS test weakly dominates that of subsampling tests, based on the stronger

condition that limn→∞ κn
√
bn/n = 0. Given that Theorem 4.3 allows for lim supn→∞ κn

√
bn/n = K ∈ (0, 1],

we view our result as relatively more robust to the choice of κn and bn.2 We notice that Theorem 4.3

is consistent with the possibility of a failure of (4.13) whenever Assumption A.4 is violated, i.e., when

lim supn→∞ κn
√
bn/n > 1. Remark 4.13 provides a concrete example in which this possibility occurs. In

any case, for the recommended choice of κn =
√

lnn in Andrews and Soares (2010, Page 131), a violation

of this assumption implies a bn larger than O(nc) for all c ∈ (0, 1), which can result in Test SS having poor

finite sample power properties, as discussed in Andrews and Soares (2010, Page 137).

Remark 4.9. The inequality in (4.13) can be strict for certain sequences of local alternatives. Lemma S.3.10

proves this result under the conditions in Assumption A.7. Intuitively, we require a sequence of alternative

hypotheses in which one or more moment (in)equality is slack by magnitude that is o(b
−1/2
n ) and larger than

O(κnn
−1/2). We provide an illustration of Assumption A.7 in Example 4.2.

2We would like to thank a referee for suggesting this generalization.
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Remark 4.10. There are reasons to support Test MR over Test SS that go beyond asymptotic power. First,

we find in our simulations that Test SS is significantly more sensitive to the choice of bn than Test MR is

to the choice of κn. Second, in the context of inference on the entire parameter θ, subsampling tests have

been shown to have an error in rejection probability (ERP) of order O(bn/n + b
−1/2
n ) ≥ O(n−1/3), while

GMS-type tests have an ERP of order O(n−1/2) (c.f. Bugni, 2014). We expect an analogous result to hold

for the problem of inference on λ(θ), but a formal proof is well beyond the scope of this paper.

4.5 Understanding the Power Results

Theorems 4.2 and 4.3 follow by proving weak inequalities for φDRn (λ) and φPRn (λ), and then using the weak

inequalities in (4.11) and (4.15) to extend the results to φMR
n (λ). In this section we present two examples

that illustrate how each of these weak inequalities may become strict in some cases. Example 4.1 illustrates

a case where φMR
n (λ) has strictly better asymptotic power than both φDRn (λ) and φPRn (λ). Example 4.2

illustrates a case where φPRn (λ) - and so φMR
n (λ) - has strictly better asymptotic power than φSSn (λ).

Example 4.1. Let {Wi}ni=1 = {(W1,i,W2,i,W3,i)}ni=1 be an i.i.d. sequence of random variables with dis-

tribution Fn, VFn [W ] = I3, EFn [W1] = µ1κn/
√
n, EFn [W2] = µ2κn/

√
n, and EFn [W3] = µ3/

√
n for some

µ1 > 1, µ2 ∈ (0, 1), and µ3 ∈ R. Consider the following model with Θ = [−1, 1]3,

EFn [m1(Wi, θ)] = EFn [W1,i − θ1] ≥ 0

EFn [m2(Wi, θ)] = EFn [W2,i − θ2] ≥ 0 (4.17)

EFn [m3(Wi, θ)] = EFn [W3,i − θ3] = 0 .

We are interested in testing the hypotheses

H0 : θ = (0, 0, 0) vs. H1 : θ 6= (0, 0, 0) ,

which implies that λ(θ) = θ, Θ(λ) = {(0, 0, 0)}, and Θ̂I(λ) = {(0, 0, 0)}.3 Note that H0 is true if and only

if µ3 = 0. The model in (4.17) is linear in θ and so several expressions do not depend on θ. These include

σ̂n,j(θ) = σ̂n,j and v∗n,j(θ) = v∗n,j for j = 1, 2, 3, where v∗n,j(θ) is defined in (2.8). As in Section 3, we use the

MMM test statistic in (2.6) and the GMS function in (2.11). Below we also use Z = (Z1, Z2, Z3) ∼ N(03, I3).

Simple algebra shows that the test statistic satisfies

Tn(λ) = inf
θ∈Θ(λ)

Qn(θ) =
[√
nσ̂−1

n,1W̄n,1

]2
− +

[√
nσ̂−1

n,2W̄n,2

]2
− +

(√
nσ̂−1

n,3W̄n,3

)2 d→ (Z3 + µ3)2 .

Test MR. Consider the approximations leading to Test MR. The discard approximation takes the form

TDRn (λ) =
[
v∗n,1 + ϕ1(κ−1

n

√
nσ̂−1

n,1W̄n,1)
]2
− +

[
v∗n,2 + ϕ2(κ−1

n

√
nσ̂−1

n,2W̄n,2)]
]2
− +

(
v∗n,3

)2
,

3In this example we use λ(θ) = θ for simplicity, as it makes the infimum over Qn(θ) trivial. We could generate the same
conclusions using a different function by adding some complexity to the structure of the example.
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since Θ̂I(λ) = {(0, 0, 0)}. Using that µ1 > 1 and µ2 < 1 (which imply ϕ1 →∞ and ϕ2 → 0), it follows that

{TDRn (λ)| {Wi}ni=1}
d→ [Z2]2− + (Z3)2 w.p.a.1 .

The penalize approximation takes the form

TPRn (λ) =
[
v∗n,1 + κ−1

n

√
nσ̂−1

n,1W̄n,1

]2
− +

[
v∗n,2 + κ−1

n

√
nσ̂−1

n,2W̄n,2

]2
− + (v∗n,3 + κ−1

n

√
nσ̂−1

n,3W̄n,3)2 ,

since Θ(λ) = {(0, 0, 0)}. Simple algebra shows that

{TPRn (λ)| {Wi}ni=1}
d→ [Z1 + µ1]

2
− + [Z2 + µ2]

2
− + (Z3)

2
w.p.a.1 .

Putting all these results together shows that

{TMR
n (λ)| {Wi}ni=1}

d→ min{[Z1 + µ1]
2
− + [Z2 + µ2]

2
− , [Z2]

2
−}+ (Z3)

2
w.p.a.1 .

�

The example provides important lessons about the relative power of all these tests. To see this, note that

P ([Z1 + µ1]
2
− + [Z2 + µ2]

2
− < [Z2]

2
−) ≥ P (Z1 + µ1 ≥ 0)P (Z2 < 0) > 0 ,

P ([Z1 + µ1]
2
− + [Z2 + µ2]

2
− > [Z2]

2
−) ≥ P (Z1 + µ1 < 0)P (Z2 ≥ 0) > 0 , (4.18)

which implies that whether TMR
n (λ) equals TDRn (λ) or TPRn (λ) is random, conditionally on {Wi}ni=1. This

means that using Test MR is not equivalent to using either φDRn (λ) in (4.10) or φPRn (λ) in (4.14).

Example 4.1 and (4.18) also show that the conditional distribution of TMR
n (λ) is (asymptotically) strictly

first order stochastically dominated by the conditional distributions of TDRn (λ) or TPRn (λ). Since all these

tests reject for large values of Tn(λ), their relative asymptotic power depends on the limit of their respective

critical values. In the example above, we can numerically compute the 1−α quantiles of the limit distributions

of TDRn (λ), TPRn (λ), and TMR
n (λ) after fixing some values for µ1 and µ2. Setting both of these parameters

close to 1 results in asymptotic 95% quantiles of TDRn (λ), TPRn (λ), and TMR
n (λ) equal to 5.15, 4.18, and

4.04, respectively.

Remark 4.11. Example 4.1 illustrates that the two resampling approximations leading to Test MR do not

dominate each other in terms of asymptotic power. For example, if we consider the model in (4.17) with the

second inequality removed, it follows that

TDRn (λ)
d→ (Z3)2 and TPRn (λ)

d→ [Z1 + µ1]2− + (Z3)2 .

In this case φDRn (λ) has strictly better asymptotic power than φPRn (λ): taking µ1 close to 1 gives asymptotic

95% quantiles of φDRn (λ) and φPRn (λ) equal to 3.84 and 4.00, respectively. On the other hand, if we consider

the model in (4.17) with the first inequality removed, it follows that

TDRn (λ)
d→ [Z2]2− + (Z3)2 and TPRn (λ)

d→ [Z2 + µ2]2− + (Z3)2 .
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Since [Z2 +µ2]2− ≤ [Z2]2− (with strict inequality when Z2 < 0), this case represents a situation where φDRn (λ)

has strictly worse asymptotic power than φPRn (λ): taking µ2 close to 1 results in asymptotic 95% quantiles

of φDRn (λ) and φDRn (λ) equal to 5.13 and 4.00, respectively.

Example 4.2. Let {Wi}ni=1 = {(W1,i,W2,i,W3,i)}ni=1 be an i.i.d. sequence of random variables with distri-

bution Fn, VFn [W ] = I3, EFn [W1] = µ1κn/
√
n, EFn [W2] = µ2/

√
n, and EFn [W3] = 0 for some µ1 ≥ 0 and

µ2 ≤ 0. Consider the model in (4.17) with Θ = [−1, 1]3 and the hypotheses

H0 : λ(θ) = (θ1, θ2) = (0, 0) vs. H1 : λ(θ) = (θ1, θ2) 6= (0, 0) .

In this case Θ(λ) = {(0, 0, θ3) : θ3 ∈ [−1, 1]} and H0 is true if and only if µ2 = 0. The model in (4.17) is

linear in θ and so several expressions do not depend on θ. These include σ̂n,j(θ) = σ̂n,j and v∗n,j(θ) = v∗n,j

for j = 1, 2, 3, where v∗n,j(θ) is defined in (2.8). As in Section 3, we use the MMM test statistic in (2.6) and

the GMS function in (2.11). Below we also use Z = (Z1, Z2, Z3) ∼ N(03, I3).

Simple algebra shows that the test statistic satisfies

Tn(λ) = inf
θ∈Θ(λ)

Qn(θ) = inf
θ3∈[−1,1]

[√
nσ̂−1

n,1W̄n,1

]2
− +

[√
nσ̂−1

n,2W̄n,2

]2
− +

(√
nσ̂−1

n,3(W̄n,3 − θ3)
)2

,

d→ [Z1]2−1{µ1 = 0}+ [Z2 + µ2]2− ,

where we used Θ(λ) = {(0, 0, θ3) : θ3 ∈ [−1, 1]}.

Penalize Resampling Test: This test uses the (conditional) (1− α) quantile of

TPRn (λ) = inf
θ3∈[−1,1]

{[
v∗n,1 + κ−1

n

√
nσ̂−1

n,1W̄n,1

]2
− +

[
v∗n,2 + κ−1

n

√
nσ̂−1

n,2W̄n,2

]2
− +

(√
nσ̂−1

n,3(W̄n,3 − θ3)
)2}

,

where we used Θ(λ) = {(0, 0, θ3) : θ3 ∈ [−1, 1]}. Simple arguments shows that

{TPRn (λ)| {Wi}ni=1}
d→ [Z1 + µ1]

2
− + [Z2]

2
− w.p.a.1 .

Test SS: This test draws {W ?
i }

bn
i=1 i.i.d. with replacement from {Wi}ni=1 and computes v?bn(θ) ≡

1√
bn

∑bn
i=1 D̂

?,−1/2
bn

(θ)m(W ?
i , θ), where D̂?

bn
(θ) is as D̂n(θ) but based on {W ?

i }
bn
i=1. Letting

ṽ?bn(θ) ≡ 1√
bn

bn∑
i=1

D̂
?,−1/2
bn

(θ){m(W ?
i , θ)− EFn [m(Wi, θ)]} ,

and noting that ṽ?bn(θ) = ṽ?bn , Politis et al. (Theorem 2.2.1, 1999) implies that {ṽ?bn |{Wi}ni=1}
d→ N(0, 1) a.s.

Test SS uses the conditional (1− α) quantile of the following random variable

TSSbn (λ) = inf
θ3∈[−1,1]

{
[
√
bnσ̂

?,−1
bn,1

W̄ ?
bn,1]2− + [

√
bnσ̂

?,−1
bn,2

W̄ ?
bn,2]2− + (

√
bnσ̂

?,−1
bn,3

(W̄ ?
bn,3 − θ3))2

}
,

where we used Θ(λ) = {(0, 0, θ3) : θ3 ∈ [−1, 1]}. Simple arguments show that

{TSSn (λ)| {Wi}ni=1}
d→ [Z1 +Kµ1]2− + [Z2]2− w.p.a.1 ,

19



where, for simplicity, we assume that κn
√
bn/n→ K. �

Remark 4.12. In Example 4.2, TPRn (λ) and TSSbn (λ) have the same asymptotic distribution, conditionally on

{Wi}ni=1, when µ1 = 0 or K = 1. However, if µ1 > 0 and K < 1, it follows that TPRn (λ) is (asymptotically)

strictly first order stochastically dominated by TSSbn (λ), conditionally on {Wi}ni=1. Specifically,

P
(
[Z2 + µ2]2− > q1−α([Z1 + µ1]2− + [Z2]2−)

)
> P

(
[Z2 + µ2]2− > q1−α([Z1 +Kµ1]2− + [Z2]2−)

)
,

where q1−α(X) denotes the 1 − α quantile of X. Thus, Test MR is strictly less conservative under H0 (i.e.

when µ2 = 0) and strictly more powerful under H1 (i.e. when µ2 < 0).

Remark 4.13. Example 4.2 shows that Test SS could deliver higher power than φPRn (λ) if µ1 > 0 and

K > 1, i.e., if Assumption A.4 is violated. However, for the recommended choice of κn =
√

lnn in Andrews

and Soares (2010, Page 131), a violation of this assumption can result in Test SS having poor finite sample

power properties, as already discussed in Remark 4.8.

5 Monte Carlo simulations

In this section we consider an entry game model similar to that in Canay (2010) with the addition of market-

type fixed effects. Consider a firm j ∈ {1, 2} deciding whether to enter (Aj,i = 1) a market i ∈ {1, ..., n} or

not (Aj,i = 0) based on its profit function

πj,i =

(
εj,i − θjA−j,i +

dX∑
q=0

βqXq,i

)
1{Aj,i = 1} ,

where εj,i is firm j’s’ benefit of entry in market i, A−j,i is the decision of the rival firm, and Xq,i,

q ∈ {0, . . . , dX}, are observed market type indicators with distribution P (Xq,i = 1) = pq (assumed to

be known for simplicity). We normalize (p0, β0) to (1, 0) and let εj,i ∼ Uniform(0, 1) conditional on all

market characteristics. We also assume that the parameter space for the vector θ = (θ1, θ2, β1, . . . , βdX ) is

Θ = {θ ∈ RdX+2 : (θ1, θ2) ∈ (0, 1)2 and βq ∈ [0,min{θ1, θ2}] for all q ∈ {1, . . . , dX}} .

This space guarantees that there are three pure strategy Nash equilibria (NE), conditional on a given market

type. To be clear, the four possible outcomes in market q are: (i) Ai ≡ (A1,i, A2,i) = (1, 1) is the unique NE

if εj,i > θj −βq for all j; (ii) Ai = (1, 0); is the unique NE if ε1,i > θ1−βq and ε2,i < θ2−βq; (iii) Ai = (0, 1)

is the unique NE if ε1,i < θ1 − βq and ε2,i > θ2 − βq and; (iv) there are multiple equilibria if εj,i < θj − βq
for all j as both Ai = (1, 0) and Ai = (0, 1) are NE. Without further assumptions, this model implies

EF [m1,q(Wi, θ)] = EF [A1,iA2,iXq,1/pq − (1− θ1 + βq)(1− θ2 + βq)] = 0

EF [m2,q(Wi, θ)] = EF [A1,i(1−A2,i)Xq,1/pq − (θ2 − βq)(1− θ1 + βq)] ≥ 0 (5.1)

EF [m3,q(Wi, θ)] = EF [θ2 − βq −A1,i(1−A2,i)Xq,1/pq] ≥ 0 ,

where Wi ≡ (Ai, Xi), Xi ≡ (X0,i, . . . , XdX ,i), and q ∈ {0, . . . , dX}. This model delivers dX + 1 unconditional

moment equalities and 2(dX + 1) unconditional moment inequalities. The identified set for (θ1, θ2), which
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are the parameters of interest, is a curve in R2 and the shape of this curve depends on the values of the

nuisance parameters (β1, . . . , βdX ).

We generate data using dX = 3, (θ1, θ2, β1, β2, β3) = (0.3, 0.5, 0.05, 0, 0), and δ = 0.6, where δ is the

probability of selecting Ai = (1, 0) in the region of multiple equilibria. The identified set for each coordinate

of (θ1, θ2, β1, β2, β3) is given by

θ1 ∈ [0.230, 0.360], θ2 ∈ [0.455, 0.555], β1 ∈ [0.0491, 0.0505], and β2 = β3 = 0 .

Having a five dimensional parameter θ already presents challenges for projection based tests and represents a

case of empirical relevance, e.g., see Dickstein and Morales (2015) and Wollmann (2015). For example, a grid

with 100 points in the (0, 1) interval for each element in θ (imposing the restrictions in Θ for (β1, β2, β3)),

involves 1025 million evaluations of test statistics and critical values. This is costly for doing Monte Carlo

simulations so we do not include Test BP in this exercise. However, in simulations not reported for the case

where dX = 0, Test BP is always dominated by Test MR in terms of size control and power.

We set n = 1, 000 and α = 0.10, and simulate the data by taking independent draws of εj,i ∼ Uniform(0, 1)

for j ∈ {1, 2} and computing the equilibrium according to the region in which εi ≡ (ε1,i, ε2,i) falls. We

consider subvector inference for this model, with

H0 : λ(θ) = θ1 = λ0 vs H1 : λ(θ) = θ1 6= λ0 ,

and perform MC = 2, 000 Monte Carlo replications. We report results for Test MR1 (with κn =
√

lnn = 2.63

as recommended by Andrews and Soares (2010)), Test MR2 (with κn = 0.8
√

lnn = 2.10), Test SS1 (with

bn = n2/3 = 100 as considered in Bugni, 2010, 2014), and Test SS2 (with bn = n/4 = 250 as considered in

Ciliberto and Tamer, 2010).4

Figure 1 shows the rejection probabilities under the null and alternative hypotheses for the first coordi-

nate, i.e., λ(θ) = θ1. Since there are sharp differences in the behavior of the tests to the right and left of the

identified set (due to the asymmetric nature of the model), we comment on each direction separately. Let’s

first focus on values of θ1 below the boundary point 0.23. The null rejection probabilities at this boundary

point are close to the nominal level of α = 0.10 for Test MR (regardless of the choice of κn), but below

0.025 for Tests SS1 and SS2 (note that the simulation standard error with 2, 000 replications is 0.007). In

addition, the power of Test MR in this direction is higher than that of Tests SS1 and SS2, with an average

difference of 0.27 and a maximum difference of 0.39 with respect to Test SS1 - which exhibits higher power

than Test SS2. The right panel illustrates the power differences more clearly. Now focus on values of θ1

above the boundary point 0.36. In this case all tests have null rejection probabilities below the nominal

level, with rejection probabilities equal to 0.013, 0.012, 0.009, and 0.006 for Tests MR1, MR2, SS1, and SS2,

respectively. When we look at power in this direction, Test SS2 delivers the highest power, with an average

difference of 0.05 and a maximum difference of 0.17 with respect to Test MR2. All in all, the results from

this simulation exercise illustrate that there are cases where Test SS may deliver higher power than Test MR

(possibly due to the sufficient conditions in Theorem 4.3 not holding). At the same time, the results also

suggest that the power gains delivered by Test MR could be significantly higher.

4The choice bn = n2/3 corresponds to the optimal rate for the subsample size to minimize ERP; see Bugni (2010, 2014).
The choice bn = n/4 is the subsample size rule used by Ciliberto and Tamer (2010).
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Figure 1: Rejection probabilities under the null and alternative hypotheses when λ(θ) = θ1. Tests considered are: Test MR1
(solid red line), Test MR2 (dotted orange line), Test SS1 (dashed blue line), and Test SS2 (dashed-dotted green line). Black
asterisks indicate values of θ1 in the identified set at the nominal level. Left panel shows rejection rates to the left and right of
the identified set. Right panel zooms-in the power differences to the left. In all cases n = 1, 000, α = 0.10, and MC = 2, 000.

6 Concluding remarks

This paper introduces a test for the null hypothesis H0 : λ(θ) = λ0, where λ(·) is a known function, λ0 is

a known constant, and θ is a parameter that is partially identified by a moment (in)equality model. The

test can be inverted to construct CS’s for λ(θ). The leading application of our inference method is the

construction of marginal CS’s for individual coordinates of a parameter vector θ, which is implemented by

setting λ(θ) = θs for s ∈ {1, . . . , dθ} and collecting all values of λ0 ∈ Λ for which H0 is not rejected.

We show that our inference method controls asymptotic size uniformly over a large class of distributions of

the data. The current literature describes only two other procedures that deliver uniform size control for these

types of problems: projection-based and subsampling inference. Relative to projection-based procedure, our

method presents three advantages: (i) it weakly dominates in terms of finite sample power, (ii) it strictly

dominates in terms of asymptotic power, and (iii) it may be less computationally demanding. Relative

to a subsampling, our method presents two advantages: (i) it strictly dominates in terms of asymptotic

power under certain conditions, (ii) it appears to be less sensitive to the choice of its tuning parameter than

subsampling is to the choice of subsample size.

Moving forward, there are some open questions that are worth highlighting. First, our paper does not

cover conditional moment restrictions, c.f. Andrews and Shi (2013), Chernozhukov et al. (2013), Armstrong

(2014), and Chetverikov (2013). Second, alternative asymptotic frameworks like those in Andrews and

Barwick (2012) and Romano et al. (2014) may provide a better asymptotic approximation for the type of

problems we study in this paper. Finally, although our method eases the computational burden for some

problems, further improvements in this dimension may be available. Recent work by Kaido et al. (2016),

who propose a novel projection-based method to build CS’s for single components of θ, explores innovative

ideas to increase computational tractability that may also prove useful for profiling-based tests.
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Appendix A Notation

Throughout the Appendix, the lemmas, equations, and theorems labeled with the letter “S” belong to the Sup-

plemental Material (Bugni et al., 2016). We also employ the following notation, not necessarily introduced in the

text.

P0 {F ∈ P : ΘI(F ) 6= ∅}
ΣF (θ) VarF (m(W, θ))

DF (θ) diag(ΣF (θ))

QF (θ) S(EF [m(W, θ)] ,ΣF (θ))

Θlnκn
I (F ) {θ ∈ Θ : S(

√
nEF [m(W, θ)] ,ΣF (θ)) ≤ lnκn}

ΘI(F, λ) Θ(λ) ∩ΘI(F )

Γn,F (λ) {(θ, `) ∈ Θ(λ)× Rk : ` =
√
nD
−1/2
F (θ)EF [m(Wi, θ)]}

ΓSS
bn,F

(λ) {(θ, `) ∈ Θ(λ)× Rk : ` =
√
bnD

−1/2
F (θ)EF [m(W, θ)]}

ΓPR
n,F (λ) {(θ, `) ∈ Θ(λ)× Rk : ` = κ−1

n

√
nD
−1/2
F (θ)EF [m(Wi, θ)]}

ΓDR
n,F (λ) {(θ, `) ∈ Θ(λ) ∩Θlnκn

I (F )× Rk : ` = κ−1
n

√
nD
−1/2
F (θ)EF [m(W, θ)]}

vn,j(θ) n−1/2σ−1
F,j(θ)

∑n
i=1(mj(Wi, θ)− EF [mj(Wi, θ)]), j = 1, . . . , k

ΩF (θ, θ′)[j1,j2] EF

[(
mj1 (W,θ)−EF [mj1 (W,θ)]

σF,j1 (θ)

)(
mj2 (W,θ′)−EF [mj2 (W,θ′)]

σF,j2 (θ′)

)]
Table 1: Important Notation

For any u ∈ N, 0u is a column vector of zeros of size u, 1u is a column vector of ones of size u, and Iu is the

u× u identity matrix. We use R++ = {x ∈ R : x > 0}, R+ = R++ ∪ {0}, R+,∞ = R+ ∪ {+∞}, R[+∞] = R ∪ {+∞},
and R[±∞] = R ∪ {±∞}. We equip Ru[±∞] with the following metric d. For any x1, x2 ∈ Ru[±∞], d(x1, x2) =(∑u

i=1(G(x1,i)−G(x2,i))
2
)1/2

, where G : R[±∞] → [0, 1] is such that G(−∞) = 0, G(∞) = 1, and G(y) = Φ(y) for

y ∈ R, where Φ is the standard normal CDF. Also, 1{·} denotes the indicator function.

Let C(Θ2) denote the space of continuous functions that map Θ2 to Ψ, where Ψ is the space of k × k correlation

matrices, and S(Θ × Rk[±∞]) denote the space of compact subsets of the metric space (Θ × Rk[±∞], d). Let dH

denote the Hausdorff metric associated with d. We use “
H→” to denote convergence in the Hausdorff metric, i.e.,

An
H→ B ⇐⇒ dH(An, B) → 0. For non-stochastic functions of θ ∈ Θ, we use “

u→” to denote uniform in θ

convergence, e.g., ΩFn
u→ Ω ⇐⇒ supθ,θ′∈Θ d(ΩFn(θ, θ′),Ω(θ, θ′))→ 0. Finally, we use Ω(θ) and Ω(θ, θ) equivalently.

We denote by l∞(Θ) the set of all uniformly bounded functions that map Θ→ Ru, equipped with the supremum

norm. The sequence of distributions {Fn ∈ P}n≥1 determine a sequence of probability spaces {(W,A, Fn)}n≥1.

Stochastic processes are then random maps X :W → l∞(Θ). In this context, we use “
d→”, “

p→”, and “
a.s.→ ” to denote

weak convergence, convergence in probability, and convergence almost surely in the l∞(Θ) metric, respectively, in the

sense of van der Vaart and Wellner (1996). In addition, for every F ∈ P, we useM(F ) ≡ {D−1/2
F (θ)m(·, θ) :W → Rk}

and denote by ρF the coordinate-wise version of the “intrinsic” variance semimetric, i.e.,

ρF (θ, θ′) ≡
∥∥∥∥{VF [σ−1

F,j(θ)mj(W, θ)− σ−1
F,j(θ

′)mj(W, θ
′)
]1/2}k

j=1

∥∥∥∥ . (A-1)
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Appendix B Assumptions

B.1 Assumptions for Asymptotic Size Control

Assumption A.1. Given the GMS function ϕ(·), there is a function ϕ∗ : Rk[±∞] → Rk[+∞] that takes the form

ϕ∗(ξ) = (ϕ∗1(ξ1), . . . , ϕ∗p(ξp),0k−p) and, for all j = 1, . . . , p,

(a) ϕ∗j (ξj) ≥ ϕj(ξj) for all ξj ∈ R[+∞].

(b) ϕ∗j (·) is continuous.

(c) ϕ∗j (ξj) = 0 for all ξj ≤ 0 and ϕ∗j (∞) =∞.

Remark B.1. Assumption A.1 is satisfied when ϕ is any of the the functions ϕ(1) − ϕ(4) described in Andrews and

Soares (2010) or Andrews and Barwick (2012). This follows from Bugni et al. (2014, Lemma D.8).

Assumption A.2. For any {(λn, Fn) ∈ L0}n≥1, let (Γ,Ω) be such that ΩFn
u→ Ω and Γn,Fn(λn)

H→ Γ with

(Γ,Ω) ∈ S(Θ× Rk[±∞])× C(Θ2) and Γn,Fn(λn) as in Table 1. Let c(1−α)(Γ,Ω) be the (1− α)-quantile of

J(Γ,Ω) ≡ inf
(θ,`)∈Γ

S(vΩ(θ) + `,Ω(θ)) . (B-1)

Then,

(a) If c(1−α)(Γ,Ω) > 0, the distribution of J(Γ,Ω) is continuous at c(1−α)(Γ,Ω).

(b) If c(1−α)(Γ,Ω) = 0, lim infn→∞ PFn(Tn(λn) = 0) ≥ 1− α, where Tn(λn) is as in (4.1).

Remark B.2. Without Assumption A.2 the asymptotic distribution of the test statistic could be discontinuous at

the probability limit of the critical value, resulting in asymptotic over-rejection under the null hypothesis. One could

add an infinitesimal constant to the critical value and avoid introducing such assumption, but this introduces an

additional tuning parameter that needs to be chosen by the researcher. Note that this assumption holds in Examples

4.1 and 4.2 where J(·) is continuous at x ∈ R. Also, notice that c(1−α)(Γ,Ω) = 0 implies P (J(Γ,Ω) = 0) ≥ 1 − α.

Thus, the requirement for c(1−α)(Γ,Ω) = 0 is automatically satisfied whenever PFn(Tn(λn) = 0)→ P (J(Γ,Ω) = 0).

Assumption A.3. The following conditions hold.

(a) For all (λ, F ) ∈ L0 and θ ∈ Θ(λ), QF (θ) ≥ cmin{δ, inf θ̃∈Θ(λ)∩ΘI (F ) ||θ − θ̃||}
χ for constants c, δ > 0 and for χ as

in Assumption M.1.

(b) Θ(λ) is convex.

(c) The function gF (θ) ≡ D
−1/2
F (θ)EF [m(W, θ)] is differentiable in θ for any F ∈ P0, and the class of functions

{GF (θ) ≡ ∂gF (θ)/∂θ′ : F ∈ P0} is equicontinuous, i.e.,

lim
δ→0

sup
F∈P0,(θ,θ′):||θ−θ′||≤δ

||GF (θ)−GF (θ′)|| = 0 .

Remark B.3. Assumption A.3(a) states that QF (θ) can be bounded below in a neighborhood of the null identified

set Θ(λ) ∩ ΘI(F ) and so it is analogous to the polynomial minorant condition in (Chernozhukov et al., 2007, Eqs.

(4.1) and (4.5)). The convexity in Assumption A.3(b) follows from a convex parameter space Θ and a linear function

λ(·) in the case of the null in (1.2). However, in one sided testing problems like those described in Remark 4.2, this

assumption holds for quasi-convex functions. Finally, A.3(c) is a smoothness condition that would be implied by the

class of functions {GF (θ) ≡ ∂gF (θ)/∂θ′ : F ∈ P0} being Lipschitz. These three parts are a sufficient conditions for

our test to be asymptotically valid (see Lemmas S.3.7 and S.3.8).
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B.2 Assumptions for Asymptotic Power

Assumption A.4. The sequences {κn}n≥1 and {bn}n≥1 in Assumption M.2 satisfy lim supn→∞ κn
√
bn/n ≤ 1.

Remark B.4. Assumption A.4 is a weaker version of Andrews and Soares (2010, Assumption GMS5) and it holds

for all typical choices of κn and bn. For example, it holds if we use the recommended choice of κn =
√

lnn in Andrews

and Soares (2010, Page 131) and bn = nc for any c ∈ (0, 1). Note that the latter includes as a special case bn = n2/3,

which has been shown to be optimal according to the rate of convergence of the error in the coverage probability (see

Politis and Romano, 1994; Bugni, 2010, 2014).

Assumption A.5. For λ0 ∈ Λ, there is {λn ∈ Λ}n≥1 such that {(λn, Fn) ∈ L0}n≥1 satisfies

(a) For all n ∈ N, ΘI(Fn) ∩Θ(λ0) = ∅ (i.e. (λ0, Fn) 6∈ L0),

(b) dH(Θ(λn),Θ(λ0)) = O(n−1/2),

(c) For any θ ∈ Θ, GFn(θ) = O(1).

Assumption A.6. For λ0 ∈ Λ and {λn ∈ Λ}n≥1 as in Assumption A.5, let (Γ,ΓSS,ΓPR,Ω) ∈ S(Θ×Rk[±∞])
3×C(Θ2)

be such that ΩFn
u→ Ω, Γn,Fn(λ0)

H→ Γ, ΓPR
n,Fn(λ0)

H→ ΓPR, ΓSS
bn,Fn(λ0)

H→ ΓSS for Γn,Fn(λ0), ΓPR
n,Fn(λ0), and ΓSS

bn,Fn(λ0)

as in Table 1. Then,

(a) The distribution of J(Γ,Ω) is continuous at c1−α(ΓSS,Ω).

(b) The distributions of J(Γ,Ω), J(ΓSS,Ω), and J(ΓPR,Ω) are strictly increasing at x > 0.

Assumption A.7. For λ0 ∈ Λ, there is {λn ∈ Λ}n≥1 such that {(λn, Fn) ∈ L0}n≥1 satisfies

(a) The conditions in Assumption A.5.

(b) There is a (possibly random) sequence {θ̂n ∈ Θ(λ0)}n≥1 s.t.

i. Tn(λ0)− S(
√
nm̄n(θ̂n), Σ̂n(θ̂n)) = op(1).

ii.
√
nD
−1/2
Fn

(θ̂n)EFn [m(W, θ̂n)] = λ+ op(1), where λj ∈ R for some j = 1, . . . , k.

iii. θ̂n = θ + op(1) for some θ ∈ Θ.

(c) There are (possibly random) sequences {θ̂SSn ∈ Θ(λ0)}n≥1 and {θ̃SSn ∈ ΘI(Fn)}n≥1 s.t., conditionally on {Wi}ni=1,

i. TSSn (λ0)− S(
√
bnm̄

SS
bn (θ̂SSn ), Σ̂bn(θ̂SSn )) = op(1) a.s.

ii.
√
n(D

−1/2
Fn

(θ̂SSn )EFn [m(W, θ̂SSn )]−D−1/2
Fn

(θ̃SSn )EFn [m(W, θ̃SSn )]) = Op(1) a.s.

iii.
√
bnD

−1/2
Fn

(θ̃SSn )EFn [m(W, θ̃SSn )] = (g,0k−p)+op(1) a.s. with g ∈ Rp[+∞] and gj ∈ (0,∞) for some j = 1, . . . , p.

In addition, either k > p or k = p where gl = 0 for some l = 1, . . . , p.

iv. θ̂SSn = θ∗ + op(1) a.s., for some θ∗ ∈ Θ.

(d) Assumption A.4 holds with strict inequality, i.e., lim supn→∞ κn
√
bn/n < 1.
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B.3 Maintained Assumptions

The literature routinely assumes that the function S(·) entering Qn(θ) in (4.2) satisfies the following assumptions

(see, e.g., Andrews and Soares (2010), Andrews and Guggenberger (2009), and Bugni et al. (2012)). We therefore

treat the assumptions below as maintained. We note in particular that the constant χ in Assumption M.1 equals 2

when the function S(·) is either the modified methods of moments in (2.6) or the quasi-likelihood ratio.

Assumption M.1. For some χ > 0, S(am,Ω) = aχS(m,Ω) for all scalars a > 0, m ∈ Rk, and Ω ∈ Ψ.

Assumption M.2. The sequence {κn}n≥1 satisfies κn → ∞ and κn/
√
n → 0. The sequence {bn}n≥1 satisfies

bn →∞ and bn/n→ 0.

Assumption M.3. For each λ ∈ Λ, Θ(λ) is a nonempty and compact subset of Rdθ (dθ <∞).

Assumption M.4. Test BP is computed using the GMS approach in Andrews and Soares (2010). This is, φBPn (·)
in (4.9) is based on CSn(1 − α) = {θ ∈ Θ : Qn(θ) ≤ ĉn(θ, 1 − α)} where ĉn(θ, 1 − α) is the GMS critical value

constructed using the GMS function ϕ(·) and thresholding sequence {κn}n≥1 satisfying Assumption M.2.

Assumption M.5. The function S(·) satisfies the following conditions.

(a) S((m1,m2),Σ) is non-increasing in m1, for all (m1,m2) ∈ Rp[+∞] × Rk−p and all variance matrices Σ ∈ Rk×k.

(b) S(m,Σ) = S(∆m,∆Σ∆) for all m ∈ Rk, Σ ∈ Rk×k, and positive definite diagonal ∆ ∈ Rk×k.

(c) S(m,Ω) ≥ 0 for all m ∈ Rk and Ω ∈ Ψ,

(d) S(m,Ω) is continuous at all m ∈ Rk[±∞] and Ω ∈ Ψ.

Assumption M.6. For all h1 ∈ Rp[+∞] × Rk−p, all Ω ∈ Ψ, and Z ∼ N (0k,Ω), the distribution function of

S (Z + h1,Ω) at x ∈ R

(a) is continuous for x > 0,

(b) is strictly increasing for x > 0 unless p = k and h1 =∞p,

(c) is less than or equal to 1/2 at x = 0 when k > p or when k = p and h1,j = 0 for some j = 1, . . . , p.

(d) is degenerate at x = 0 when p = k and h1 =∞p.

(e) satisfies P (S (Z + (m1,0k−p) ,Ω) ≤ x) < P (S (Z + (m∗1,0k−p) ,Ω) ≤ x) for all x > 0 and all m1,m
∗
1 ∈ Rp[+∞]

with m1,j ≤ m∗1,j for all j = 1, . . . , p and m1,j < m∗1,j for some j = 1, . . . , p.

Assumption M.7. The function S(·) satisfies the following conditions.

(a) The distribution function of S(Z,Ω) is continuous at its (1−α)-quantile, denoted c(1−α)(Ω), for all Ω ∈ Ψ, where

Z ∼ N (0k,Ω) and α ∈ (0, 0.5),

(b) c(1−α)(Ω) is continuous in Ω uniformly for Ω ∈ Ψ.

Assumption M.8. S(m,Ω) > 0 if and only if mj < 0 for some j = 1, . . . , p or mj 6= 0 for some j = p + 1, . . . , k,

where m = (m1, . . . ,mk)′ and Ω ∈ Ψ. Equivalently, S(m,Ω) = 0 if and only if mj ≥ 0 for all j = 1, . . . , p and mj = 0

for all j = p+ 1, . . . , k, where m = (m1, . . . ,mk)′ and Ω ∈ Ψ.

Assumption M.9. For all n ≥ 1, S(
√
nm̄n(θ), Σ̂(θ)) is a lower semi-continuous function of θ ∈ Θ.
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Appendix C Proofs of the Main Theorems

Proof of Theorem 4.1. We divide the proof in six steps and show that for η ≥ 0,

lim sup
n→∞

sup
(λ,F )∈L0

PF (Tn(λ) > ĉMR
n (λ, 1− α) + η) ≤ α .

Steps 1-4 hold for η ≥ 0, step 5 needs η > 0, and step 6 holds for η = 0 under Assumption A.2.

Step 1. For any (λ, F ) ∈ L0, let T̃DRn (λ) be as in (S.1) of the Supplemental Material and c̃MR
n (λ, 1 − α) be the

conditional (1− α)-quantile of min{T̃DRn (λ), TPRn (λ)}. Consider the following derivation

PF (Tn(λ) > ĉMR
n (λ, 1− α) + η) ≤ PF (Tn(λ) > c̃MR

n (λ, 1− α) + η) + PF (ĉMR
n (λ, 1− α) < c̃MR

n (λ, 1− α))

≤ PF (Tn(λ) > c̃MR
n (λ, 1− α) + η) + PF (Θ̂I(λ) 6⊆ Θ(λ) ∩Θlnκn

I (F )) ,

where the second inequality follows from the fact that Assumption A.1 and ĉMR
n (λ, 1 − α) < c̃MR

n (λ, 1 − α) imply

that Θ̂I(λ) 6⊆ Θ(λ) ∩ Θlnκn
I (F ). By this and Lemma D.13 in Bugni et al. (2014) (with a redefined parameter space

equal to Θ(λ)), it follows that

lim sup
n→∞

sup
(λ,F )∈L0

PF (Tn(λ) > ĉMR
n (λ, 1− α) + η) ≤ lim sup

n→∞
sup

(λ,F )∈L0

PF (Tn(λ) > c̃MR
n (λ, 1− α) + η) .

Step 2. By definition, there exists a subsequence {an}n≥1 of {n}n≥1 and a subsequence {(λan , Fan)}n≥1 s.t.

lim sup
n→∞

sup
(λ,F )∈L0

PF (Tn(λ) > c̃MR
n (λ, 1− α) + η) = lim

n→∞
PFan (Tan(λan) > c̃MR

an (λan , 1− α) + η) . (C-1)

By Lemma S.3.2, there is a further sequence {un}n≥1 of {an}n≥1 s.t. ΩFun
u→ Ω, Γun,Fun (λun)

H→ Γ, ΓDR
un,Fun

(λun)
H→

ΓDR, and ΓPR
un,Fun

(λun)
H→ ΓPR, for some (Γ,ΓDR,ΓPR,Ω) ∈ S(Θ × Rk[±∞])

3 × C(Θ2). Since ΩFun
u→ Ω and

Γun,Fun (λun)
H→ Γ, Theorem S.2.4 implies that Tun(λun)

d→ J(Γ,Ω) ≡ inf(θ,`)∈Γ S(vΩ(θ) + `,Ω(θ)). Similarly,

Theorem S.2.2 implies that {min{T̃DRun (λun), TPRun (λun)}|{Wi}uni=1}
d→ J(ΓMR,Ω) a.s.

Step 3. We show that J(ΓMR,Ω) ≥ J(Γ,Ω). Suppose not, i.e., ∃(θ, `) ∈ ΓDR
∗ ∪ΓPR s.t. S(vΩ(θ)+`,Ω(θ)) < J(Γ,Ω).

If (θ, `) ∈ ΓDR
∗ then by definition ∃(θ, `′) ∈ ΓDR s.t. ϕ∗(`′) = ` and S(vΩ(θ) + ϕ∗(`′),Ω(θ)) < J(Γ,Ω). By Lemma

S.3.7, ∃(θ, ˜̀) ∈ Γ where ˜̀
j ≥ ϕ∗j (`′j) for j ≤ p and ˜̀

j = 0 for j > p. Thus

S(vΩ(θ) + ˜̀,Ω(θ)) ≤ S(vΩ(θ) + ϕ∗(`′),Ω(θ)) < J(Γ,Ω) ≡ inf
(θ,`)∈Γ

S(vΩ(θ) + `,Ω(θ)) ,

which is a contradiction to (θ, ˜̀) ∈ Γ. If (θ, `) ∈ ΓPR, we first need to show that ` ∈ Rp[+∞] ×Rk−p. Suppose not, i.e.,

suppose that `j = −∞ for some j ≤ p or |`j | = ∞ for some j > p. Since vΩ : Θ → Rk is a tight Gaussian process,

it follows that vΩ,j(θ) + `j = −∞ for some j ≤ p or |vΩ,j(θ) + `j | = ∞ for some j > p. By Lemma S.3.6, we have

S(vΩ(θ)+`,Ω(θ)) =∞ which contradicts S(vΩ(θ)+`,Ω(θ)) < J(Γ,Ω). Since ` ∈ Rp[+∞]×Rk−p, Lemma S.3.8 implies

that ∃(θ, ˜̀) ∈ Γ where ˜̀
j ≥ `j for j ≤ p and ˜̀

j = `j for j > p. We conclude that

S(vΩ(θ) + ˜̀,Ω(θ)) ≤ S(vΩ(θ) + `,Ω(θ)) < J(Γ,Ω) ≡ inf
(θ,`)∈Γ

S(vΩ(θ) + `,Ω(θ)) ,

which is a contradiction to (θ, ˜̀) ∈ Γ.

Step 4. We now show that for c(1−α)(Γ,Ω) being the (1− α)-quantile of J(Γ,Ω) and any ε > 0,

lim
n→∞

PFun (c̃MR
un (λun , 1− α) ≤ c(1−α)(Γ,Ω)− ε) = 0 . (C-2)
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Let ε > 0 be s.t. c(1−α)(Γ,Ω)− ε is a continuity point of the CDF of J(Γ,Ω). Then,

lim
n→∞

PFun

(
min{T̃DRun (λun), TPRun (λun)} ≤ c(1−α)(Γ,Ω)− ε

∣∣∣ {Wi}uni=1

)
= P

(
J(ΓMR,Ω) ≤ c(1−α)(Γ,Ω)− ε

)
≤ P

(
J(Γ,Ω) ≤ c(1−α)(Γ,Ω)− ε

)
< 1− α ,

where the first equality holds because {min{T̃DRun (λun), TPRun (λun)}|{Wi}uni=1}
d→ J(ΓMR,Ω) a.s., the second weak

inequality is a consequence of J(ΓMR,Ω) ≥ J(Γ,Ω), and the final strict inequality follows from c(1−α)(Γ,Ω) being

the (1− α)-quantile of J(Γ,Ω). Next, notice that{
lim
n→∞

PFun

(
min{T̃DRun (λun), TPRun (λun)} ≤ c(1−α)(Γ,Ω)− ε

∣∣∣ {Wi}uni=1

)
< 1− α

}
⊆
{

lim inf
n→∞

{c̃MR
un (1− α) > c(1−α)(Γ,Ω)− ε}

}
.

Since the RHS occurs a.s., the LHS must also occur a.s. Then, (C-2) is a consequence of this and Fatou’s Lemma.

Step 5. For η > 0, we can define ε > 0 in step 4 so that η − ε > 0 and c(1−α)(Γ,Ω) + η − ε is a continuity point

of the CDF of J(Γ,Ω). It then follows that

PFun

(
Tun(λun) > c̃MR

un (λun , 1− α) + η
)
≤ PFun

(
c̃MR
un (λun , 1− α) ≤ c(1−α)(Γ,Ω)− ε

)
+ 1− PFun

(
Tun(λun) ≤ c(1−α)(Γ,Ω) + η − ε

)
. (C-3)

Taking limit supremum on both sides, using steps 2 and 4, and that η − ε > 0,

lim sup
n→∞

PFun

(
Tun(λun) > c̃MR

un (λun , 1− α) + η
)
≤ 1− P

(
J(Γ,Ω) ≤ c(1−α)(Γ,Ω) + η − ε

)
≤ α .

This combined with steps 1 and 2 completes the proof under η > 0.

Step 6. For η = 0, there are two cases to consider. First, suppose c(1−α)(Γ,Ω) = 0. Then, by Assumption A.2,

lim sup
n→∞

PFun (Tun(λun) > c̃MR
un (λun , 1− α)) ≤ lim sup

n→∞
PFun (Tun(λun) 6= 0) ≤ α .

The proof is completed by combining the previous equation with steps 1 and 2. Second, suppose c(1−α)(Γ,Ω) > 0.

Consider a sequence {εm}m≥1 s.t. εm ↓ 0 and c(1−α)(Γ,Ω) − εm is a continuity point of the CDF of J(Γ,Ω) for all

m ∈ N. For any m ∈ N, it follows from (C-3) and steps 2 and 3 that

lim sup
n→∞

PFun (Tun(λun) > c̃MR
un (λun , 1− α)) ≤ 1− P (J(Γ,Ω) ≤ c(1−α)(Γ,Ω)− εm) .

Taking εm ↓ 0 and using continuity gives the RHS equal to α. This, with steps 1 and 2, completes the proof.

Proof of Theorem 4.2. This proof follows identical steps to those in the proof of Bugni et al. (2014, Theorem 6.1)

and is therefore omitted.

Proof of Theorem 4.3. Suppose not, i.e., suppose that lim inf(EFn [φPRn (λ0)]− EFn [φSSn (λ0)]) ≡ −δ < 0. Consider a

subsequence {kn}n≥1 of {n}n≥1 such that,

PFkn (Tkn(λ0) > cPRkn (λ0, 1− α)) = EFkn [φPRkn (λ0)] < EFkn [φSSkn (λ0)]− δ/2 = PFkn (Tkn(λ0) > cSSkn (λ0, 1− α))− δ/2 ,

or, equivalently,

PFkn (Tkn(λ0) ≤ cSSkn (λ0, 1− α)) + δ/2 < PFkn (Tkn(λ0) ≤ cPRkn (λ0, 1− α)) . (C-4)

Lemma S.3.2 implies that for some (Γ,ΓPR,ΓSS,ΓPR
A ,ΓSS

A ,Ω) ∈ S(Θ× Rk[±∞])
5 × C(Θ2), ΩFkn

u→ Ω , ΓPR
kn ,Fkn

(λ0)
H→
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ΓPR, ΓSS
bkn ,Fkn

(λ0)
H→ ΓSS, ΓPR

kn,Fkn
(λkn)

H→ ΓPR
A , and ΓSS

bkn ,Fkn
(λkn)

H→ ΓSS
A . Then, Theorems S.2.1, S.2.3, and S.2.4

imply that Tkn(λ0)
d→ J(Γ,Ω), {TPR

kn (λ0)|{Wi}kni=1}
d→ J(ΓPR,Ω) a.s., and {T SS

kn (λ0)|{Wi}kni=1}
d→ J(ΓSS,Ω) a.s.

We next show that cPRkn (λ0, 1−α)
a.s.→ c1−α(ΓPR,Ω). Let ε > 0 be arbitrary and pick ε̃ ∈ (0, ε) s.t. c(1−α)(Γ

PR,Ω)+

ε̃ and c(1−α)(Γ
PR,Ω)− ε̃ are both a continuity points of the CDF of J(ΓPR,Ω). Then,

lim
n→∞

PFkn (TPRkn (λ0) ≤ c(1−α)(Γ
PR,Ω) + ε̃|{Wi}ni=1) = P (J(ΓPR,Ω) ≤ c(1−α)(Γ

PR,Ω) + ε̃) > 1− α a.s. , (C-5)

where the first equality holds because of {TPRkn (λ0)|{Wi}kni=1}
d→ J(ΓPR,Ω) a.s., and the strict inequality is due to

ε̃ > 0 and c(1−α)(Γ
PR,Ω) + ε̃ being a continuity point of the CDF of J(ΓPR,Ω). Similarly,

lim
n→∞

PFkn (TPRkn (λ0) ≤ c(1−α)(Γ
PR,Ω)− ε̃|{Wi}ni=1) = P (J(ΓPR,Ω) ≤ c(1−α)(Γ

PR,Ω)− ε̃) < 1− α . (C-6)

Next, notice that,

{ lim
n→∞

PFkn (TPRkn (λ0) ≤ c(1−α)(Γ
PR,Ω) + ε̃|{Wi}ni=1) > 1− α} ⊆ {lim inf

n→∞
{cPRkn (λ0, 1− α) < c(1−α)(Γ

PR,Ω) + ε̃}} ,
(C-7)

with the same result holding with −ε̃ replacing ε̃. From (C-5), (C-6), (C-7), we conclude that

PFn(lim inf
n→∞

{|cPRkn (λ0, 1− α)− c(1−α)(Γ
PR,Ω)| ≤ ε}) = 1 ,

which is equivalent to cPRkn (λ0, 1− α)
a.s.→ c(1−α)(Γ

PR,Ω). By similar arguments, cSSkn (λ0, 1− α)
a.s.→ c(1−α)(Γ

SS,Ω).

Let ε > 0 be s.t. c(1−α)(Γ
SS,Ω)− ε is a continuity point of the CDF of J(Γ,Ω) and note that

PFkn (Tkn(λ0) ≤ cSSkn (λ0, 1− α)) ≥ PFkn ({Tkn(λ0) ≤ c(1−α)(Γ
SS,Ω)− ε} ∩ {cSSkn (λ0, 1− α) ≥ c(1−α)(Γ

SS,Ω)− ε})

+ PFkn ({Tkn(λ0) ≤ cSSkn (λ0, 1− α)} ∩ {cSSkn (λ0, 1− α) < c(1−α)(Γ
SS,Ω)− ε}) .

Taking lim inf and using that Tkn(λ0)
d→ J(Γ,Ω) and cSSkn (λ0, 1− α)

a.s.→ c(1−α)(Γ
SS,Ω), we deduce that

lim inf
n→∞

PFkn (Tkn(λ0) ≤ cSSkn (λ0, 1− α)) ≥ P (J(Γ,Ω) ≤ c(1−α)(Γ
SS,Ω)− ε) . (C-8)

Fix ε > 0 arbitrarily and pick ε̃ ∈ (0, ε) s.t. c(1−α)(Γ
PR,Ω) + ε̃ is a continuity point of the CDF of J(Γ,Ω). Then,

PFkn (Tkn(λ0) ≤ cPRkn (λ0, 1−α)) ≤ PFkn (Tkn(λ0) ≤ c(1−α)(Γ
PR,Ω) + ε̃) +PFkn (cPRkn (λ0, 1−α) > c(1−α)(Γ

PR,Ω) + ε̃) .

Taking lim sup on both sides, and using that Tkn(λ0)
d→ J(Γ,Ω), cPRkn (λ0, 1− α)

a.s.→ c(1−α)(Γ
PR,Ω), and ε̃ ∈ (0, ε),

lim sup
n→∞

PFkn (Tkn(λ0) ≤ cPRkn (λ0, 1− α)) ≤ P (J(Γ,Ω) ≤ c(1−α)(Γ
PR,Ω) + ε̃) . (C-9)

Next consider the following derivation

P (J(Γ,Ω) ≤ c(1−α)(Γ
SS,Ω)− ε) + δ/2 ≤ lim inf PFkn (Tkn(λ0) ≤ cSSkn (λ0, 1− α)) + δ/2

≤ lim supPFkn (Tkn(λ0) ≤ cPRkn (λ0, 1− α))

≤ P (J(Γ,Ω) ≤ c(1−α)(Γ
PR,Ω) + ε)

≤ P (J(Γ,Ω) ≤ c(1−α)(Γ
SS,Ω) + ε) ,

where the first inequality follows from (C-8), the second inequality follows from (C-4), the third inequality follows

from (C-9), and the fourth inequality follows from c(1−α)(Γ
PR,Ω) ≤ c(1−α)(Γ

SS,Ω) by Lemma S.3.9. We conclude
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that

P (J(Γ,Ω) ≤ c(1−α)(Γ
SS,Ω) + ε)− P (J(Γ,Ω) ≤ c(1−α)(Γ

SS,Ω)− ε) ≥ δ/2 > 0 .

Taking ε ↓ 0 and using Assumption A.6, the LHS converges to zero, which is a contradiction.
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