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S.1 Application: Time Series Regression

Suppose

Yt = Z ′tθ + εt with E[εtZt] = 0 . (S.1)

Here, the observed data is given by X(n) = {(Yt, Zt) : 1 ≤ t ≤ n} ∼ Pn taking values on a sample

space Xn =
∏

1≤t≤nR ×Rd. The scalar random variable εt is unobserved and θ ∈ Θ ⊆ Rd is the

parameter of interest. We focus on the linear case here for ease of exposition, but the construction

we describe below applies more generally.

In order to state the null and alternative hypotheses formally, it is useful to introduce some

further notation. Let W (∞) = {(εt, Zt) : 1 ≤ t < ∞} ∼ Q ∈ Q taking values on a sample space

W∞ =
∏

1≤t<∞R×Rd and An,θ :W∞ → Xn be the mapping implied by (S.1). Our assumptions

on Q are discussed below. Using this notation, define

Pn =
⋃
θ∈Θ

Pn(θ) with Pn(θ) = {QA−1
n,θ : Q ∈ Q} .

Here, A−1
n,θ denotes the pre-image of An,θ. The null and alternative hypotheses of interest are thus

given by (12) with Pn,0 = Pn(θ0).

As mentioned in Section 4, in order to apply our methodology, we must specify X
(n)
j and θ̂n,j and

argue that the convergence (15) holds under weak assumptions on the sequence {Pn ∈ Pn,0 : n ≥ 1}.
To this end, for a pre-specified value of q, define

X
(n)
j = {(Yt, Zt) : t = (j − 1)bn + 1, . . . , jbn} ,

where bn = bn/qc, and let θ̂n,j be the ordinary least squares estimator of θ in (S.1) using the data

X
(n)
j . In other words, we divide the data into q consecutive blocks of data of size bn and estimate

θ using ordinary least squares within each block of data. For this choice of X
(n)
j and θ̂n,j , the

convergence (15) holds under {Pn ∈ Pn,0 : n ≥ 1} with Pn = QnA
−1
n,θ0

under weak assumptions

on {Qn ∈ Qn : n ≥ 1}. Extensive discussions of such conditions can be found in Ibragimov and

Müller (2010, Section 3.1) and Bester et al. (2011, Lemma 1). We therefore omit further discussion

of these conditions here.

Remark S.1.1. Our methodology allows for considerable heterogeneity in the sense that both

E

 1

bn

∑
(j−1)bn≤t≤jbn

ZtZ
′
t

 and E

 1

bn

∑
(j−1)bn≤t≤jbn

ZtZ
′
tε

2
t

 (S.2)

may depend on j even asymptotically. With the exception of the t-test approach developed in

Ibragimov and Müller (2010), the competing approaches we discuss in Section S.2.1 below do not

share this feature. Note, however, that even this approach is only available for d = 1.
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Remark S.1.2. By replacing the time index t with a vector index, as in Bester et al. (2011), we can

accommodate more complicated dependence structures, such as those found in spatially dependent

data or in panel data.

Remark S.1.3. When Q includes distributions that are heavy-tailed, the asymptotic normality

in (15) may fail, but the q estimators (after an appropriate re-centering and scaling) may still

have a limiting distribution that is the product of q distributions that are symmetric about zero.

Note in particular that the rate of convergence in this case may depend on the tail index of the

distribution. See, for example, McElroy and Politis (2002) and Ibragimov and Müller (2010).

Following the discussion in Remarks 4.3 and 4.4, the test described above remains valid in such

situations.

S.2 Monte Carlo Simulations

S.2.1 Time Series Regression

In this section, we examine the finite-sample performance of our methodology with a simulation

study designed around (S.1). Following Bester et al. (2011), we set

Zt = 1 + ρZt−1 + ν1,t

εt = ρεt−1 + ν2,t

with θ = 1 and {(ν1,t, ν2,t) : 1 ≤ t ≤ n} distributed in one of the following three ways:

N: (Normal) (ν1,t, ν2,t), t = 1, . . . , n i.i.d. with a bivariate normal distribution with mean zero

and identity covariance matrix.

H: (Heterogeneous) ν1,t = atu1,t and ν2,t = btu2,t, where (u1,t, u2,t), t = 1, . . . , n are i.i.d. with

u`,t ∼
1

3
N(−1,

1

2
) +

1

3
N(0,

1

2
) +

1

3
N(1,

1

2
)

for all 1 ≤ ` ≤ 2 and u1,t ⊥⊥ u2,t and the constants at and bt are given by

at =
1√
6
I{t ≤ n/2}+ I{t > n/2} and bt =

1√
6
I{t ≤ n/2}+ 3I{t > n/2} .

HT: (Heavy-Tailed) (ν1,t, ν2,t), t = 1, . . . , n are i.i.d. with ν1,t ⊥⊥ ν2,t and, for 1 ≤ ` ≤ 2, ν`,t

has a t-distribution with 2 degrees of freedom for t ≤ n
2 and a Pareto distribution with shape

parameter 1 and scale parameter 2 re-centered to have mean zero for t > n
2 .

Design N captures a homogeneous setting in the sense that the quantities in (S.2) do not depend

on j. In other words, the distribution of observed data in this case is stationary. This design is
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considered by Bester et al. (2011). Design H, on the other hand, captures a heterogeneous (i.e.,

non-stationary) setting in the sense that the quantities in (S.2) depend on j even asymptotically.

Finally, design HT is not only heterogeneous (i.e., non-stationary), but also features heavy-tailed

disturbances.

In the simulation results presented below, we compare our test (denoted Rand), the non-

randomized version of our test (denoted NR R), and the following three alternative tests:

IM: This test is the one proposed by Ibragimov and Müller (2010). It is based on the result

about the t-test developed by Bakirov and Székely (2006) and discussed in Section 2.1.1.

BCH: This test is the one proposed by by Bester, Conley and Hansen (2011). It rejects the

null hypothesis when √
n|θ̂Fn − θ0|√
Γ̂−1
n V̂nΓ̂−1

n

(S.3)

exceeds the 1 − α
2 quantile of a t-distribution with q − 1 degrees of freedom, where θ̂Fn is

the ordinary least squares estimator of θ in (S.1) based on the full sample of data, Γ̂n =

n−1
∑n

t=1 ZtZ
′
t and V̂n is a “cluster covariance matrix estimator” with q clusters.

BRL: This test is the one proposed by Bell and McCaffrey (2002), who refer to it as “bias

reduced linearization.” It is used by Angrist and Lavy (2009), whose analysis we revisit

in our empirical application in Section S.3. This test replaces V̂n in (S.3) with a “bias

reduced” version of it and rejects when the resulting quantity exceeds the 1 − α
2 quantile of

a t-distribution with degrees of freedom no greater than q. See page 8 of Bell and McCaffrey

(2002) for exact expressions for the “bias reduced” covariance matrix estimator and the

degrees of freedom correction. Further discussion is provided by Imbens and Kolesar (2012).

Table S.1 reports rejection probabilities under the null hypothesis for our tests, Rand and NR R,

as well as IM, BCH and BRL. The parameter values we use for the simulations are n = 100, α = 5%,

ρ ∈ {0, 0.5, 0.8, 0.95}, and q ∈ {4, 8, 12}. All results are based on 10, 000 Monte Carlo repetitions.

The results in Table S.1 are consistent with the theoretical properties of our test. Relative to IM,

Rand has rejection probabilities closer to the nominal level across all heterogeneous specifications

(designs H and HT), while in the homogeneous specifications (design N) both tests perform similarly.

This is consistent with Theorem 3.1, which shows that Rand has asymptotic rejection probability

under the null hypothesis equal to the nominal level, while IM may have asymptotic rejection

probability under the null hypothesis substantially below the nominal level when the data exhibit

heterogeneity. Relative to BCH, Rand performs better under both heterogeneity and high levels

of dependence (i.e., ρ > 0.5). Indeed, BCH is only shown to be valid under homogeneity in the

distribution of ZtZ
′
t, which is violated in the heterogeneous specifications (designs H and HT), while

Rand does not require such homogeneity assumptions. Relative to BRL, Rand performs better in
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Design N Design H Design HT

ρ ρ ρ

q 0 0.5 0.8 0.95 0 0.5 0.8 0.95 0 0.5 0.8 0.95

Rand 5.0 5.2 5.2 5.4 5.1 5.1 5.3 5.3 5.2 5.3 5.5 5.2

IM 4.9 5.0 5.2 5.0 2.7 2.8 2.9 5.0 2.7 2.9 3.2 3.4

4 BCH 5.4 6.1 8.2 16.2 18.1 17.6 18.8 18.2 8.4 9.0 10.7 17.6

BRL 4.8 4.9 5.2 7.4 4.9 4.9 5.0 8.2 2.1 2.3 2.9 6.3

Rand 5.0 5.4 5.8 5.4 4.9 5.3 5.8 5.6 5.2 5.4 5.7 5.1

NR R 4.7 5.1 5.5 5.1 4.5 5.0 5.5 5.3 4.9 5.1 5.4 4.8

8 IM 4.7 5.2 5.6 5.0 3.7 4.0 4.4 5.4 2.9 3.2 3.6 3.6

BCH 5.4 6.9 11.3 24.7 11.1 13.0 17.9 29.9 8.6 10.0 13.8 26.2

BRL 4.7 5.3 7.0 14.6 6.9 7.4 8.7 19.2 1.8 2.3 4.1 12.7

Rand 5.1 5.6 5.9 5.5 5.2 5.6 5.9 5.6 5.2 5.7 5.5 5.3

IM 4.7 5.1 5.5 5.0 4.4 4.7 4.9 5.2 3.0 3.5 3.7 3.9

12 BCH 5.7 7.4 13.1 30.3 9.1 11.6 18.4 35.4 8.8 10.5 15.6 32.1

BRL 4.9 5.7 8.8 21.7 6.4 7.4 10.5 42.2 1.8 2.5 5.4 20.1

Table S.1: Rejection probabilities (in %) under the null hypothesis for different designs in the time

series regression example.

most cases, except in design N with low levels of dependence (i.e., ρ ≤ 0.5), in which case both

tests perform well. BRL performs poorly under heterogeneity and higher levels of dependence,

exhibiting both under-rejection (1.8%) and over-rejection (42.2%).

Overall, across all specifications, the rejection rates of Rand under the null hypothesis are

between 4.9% and 5.9%. We also report results for NR R for the case q = 8. Its performance is

very similar to that of Rand. Indeed, for q = 12, both Rand and NR R are numerically identical,

so we omit these results in Table S.1. Note that for q = 4, NR R is the trivial test, i.e., the test

that simply does not reject, so we omit these results in Table S.1. See also Remark 2.4.

Figure S.1 reports size-adjusted power curves for NR R, IM, BCH and BRL. The results are for

designs N and H with q = 8 and ρ ∈ {0.8, 0.95}. In all scenarios, the size-adjusted power of NR R

and IM are quite similar, the size-adjusted power of BCH and BRL are quite similar, and NR R and

IM significantly outperform BRL and BCH. The difference in power is smallest for design N with

ρ = 0.8. In unreported results for design N with ρ ∈ {0, 0.5}, BCH and BRL have size-adjusted

power similar to Rand and IM. Finally, the size-adjusted power of all four tests for design HT are

very similar, so we do not report the results here.

It is important to emphasize that Rand and NR R have additional advantages over these
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Figure S.1: Size-adjusted power curves in the time series regression example with q = 8. Design N

and ρ = 0.8 (upper left panel), Design H and ρ = 0.8 (upper right panel), Design N and ρ = 0.95

(lower left panel), and Design H and ρ = 0.95 (lower right panel).

competing tests that are not visible in the simulation study. First, they are available for any

α ∈ (0, 1), which, as mentioned in Remark 2.3, allows the computation of p-values. IM and BCH,

on the other hand, require α ≤ 8.3% and q ≥ 2 or α ≤ 10% and 2 ≤ q ≤ 14. Second, they allow for

inference on vector-valued parameters, while both IM and BCH are restricted to scalar parameters.

Third, the tests can be used with a variety of test statistics instead of only the t-statistic. Finally,

our approximate symmetry requirement accommodates a broader range of situations.

Remark S.2.1. Bester et al. (2011) and Ibragimov and Müller (2010) show in a simulation

study that their respective tests outperform conventional tests that replace V̂n in (S.3) with a
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heteroskedasticity-autocorrelation consistent covariance matrix estimator and reject when the re-

sulting quantity exceeds the 1− α
2 quantile of the N(0, 1) distribution. These tests are justified by

requiring q → ∞. Bester et al. (2011) and Ibragimov and Müller (2010) also find that their tests

outperform the test proposed by Kiefer and Vogelsang (2002, 2005), in which the 1− α
2 quantile of

the N(0, 1) distribution is replaced with an alternative critical value that does not require q →∞.

We therefore do not include these tests in our comparisons.

Remark S.2.2. As mentioned previously, BRL involves a “bias reduced” covariance matrix es-

timator and a degrees of freedom correction for the t-distribution with which the test statistic

is compared. The bias correction is highlighted by Angrist and Pischke (2008, page 320) and is

used by Angrist and Lavy (2009) without the degrees of freedom adjustment. All our simulations,

however, suggest that the good performance of BRL is largely driven by the degrees of freedom

correction. For example, for q = 8 and ρ = 0.8, the rejection probabilities under the null hypothesis

of a test that uses the 1− α
2 quantile of a standard normal distribution instead of the 1− α

2 quantile

of the appropriate t-distribution would be 14.7%, 19.2%, and 15.4% for each of the three designs.

The corresponding numbers using the degrees of freedom correction are 7.0%, 8.7%, and 4.1%, as

reported in Table S.1.

Remark S.2.3. Imbens and Kolesar (2012) propose an alternative degrees of freedom correction

for BRL. The results using this alternative correction are essentially the same as those using the

correction by Bell and McCaffrey (2002). We therefore do not include them in Table S.1.

S.2.2 Differences-in-Differences

In this section, we examine the finite-sample performance of our methodology with a simulation

study designed around (18). Following Conley and Taber (2011), we set

Yj,t = θDj,t + βZj,t + εj,t

εj,t = ρεj,t−1 + ν1,j,t (S.4)

Zj,t = γDj,t + ν2,j,t

with θ = 1, β = 1, γ = 0.5. The distributions of ν1,j,t, ν2,j,t and Dj,t and the value of ρ are specified

below. The first specification is our baseline specification, and the other specifications only deviate

from it in the specified ways.

(a): We set |J1| = 8, |J0|+ |J1| = 100, |T0|+ |T1| = 10, ρ = 0.5,

Dj,t =


0 if j ∈ J0

0 if j ∈ J1 and t < t?j

1 if j ∈ J1 and t ≥ t?j

,
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where t?j = min{2j, |T0| + |T1|}, and (independently of all other variables) (ν1,j,t, ν2,j,t), j ∈
J0 ∪ J1, t ∈ T0 ∪ T1 are i.i.d. N(0, I2), where I2 is the two-dimensional identity matrix.

(b): Everything as in (a), but |J0|+ |J1| = 50.

(c): Everything as in (a), but |J1| = 12.

(d): Everything as in (a), but t?j = |T0|+|T1|
2 .

(e): Everything as in (a), but ρ = 0.95.

(f): Everything as in (a), but |T0|+ |T1| = 3.

(g): Everything as in (a), but ν1,j,t, j ∈ J0, t ∈ T0∪T1 are i.i.d. ∼ N(0, 1) and, independently,

ν1,j,t, j ∈ J1, t ∈ T0 ∪ T1 are i.i.d. ∼ N(0, 4).

(h): Everything as in (a), but ν1,j,t, 1 ≤ j ≤ 4, t ∈ T0 ∪ T1 are i.i.d. ∼ N(0, 16) and,

independently, ν1,j,t, 4 < j ≤ 100, t ∈ T0 ∪ T1 are i.i.d. ∼ N(0, 1).

In the simulation results presented below, we compare our tests, Rand and NR R, the IM and

BRL tests described in the previous subsection, and the following three additional tests:

CT: This test is the one proposed by Conley and Taber (2011). It is based on θ̂Fn , the ordinary

least squares estimator of θ in (S.4) based on the full sample of data. In an asymptotic

framework in which |J1| is fixed and |J0| → ∞, they show that θ̂Fn
p→ θ + W , where W is

a random variable defined in Conley and Taber (2011, Proposition 1). They then propose a

novel approach to approximate the distribution of W using simulation that is valid under the

assumption that (εj,t : t ∈ T0∪T1) is i.i.d. across j and independent of (Dj,t, Zj,t : t ∈ T0∪T1)

(see Conley and Taber, 2011, Proposition 2).

CCE: This test is the one proposed by Bertrand et al. (2004). This test replaces V̂n in (S.3)

with a “cluster covariance matrix estimator” with |J0| + |J1| clusters and rejects when the

resulting quantity exceeds the 1− α
2 quantile of a standard normal distribution.

CGM: This test is the one proposed by Cameron et al. (2008) based on the wild bootstrap.

The authors argue that this test provides a higher-order asymptotic refinement over some

other methods, such as CCE. See Cameron et al. (2008) for further details on implementation.

Note that with |J0|+|J1| = 100 clusters, the test proposed by Bester et al. (2011) performs similarly

to CCE. We therefore do not include it in our comparisons.

Table S.2 reports rejection probabilities under the null hypothesis (i.e., θ = 1) for our tests, Rand

and NR R, as well as IM, CT, CCE, and BRL. Table S.2 also reports rejection probabilities for these
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Spec. Rejection probabilities under θ = 1 Rejection probabilities under θ = 0

Rand NR R IM CT CCE CGM BRL Rand NR R IM CT CCE CGM BRL

(a) 5.58 5.26 5.51 5.85 10.37 5.88 4.16 66.49 65.21 67.70 80.37 81.11 66.42 64.13

(b) 6.39 6.01 6.32 7.21 9.36 5.61 3.93 64.69 63.35 65.60 78.74 79.51 65.15 63.89

(c) 6.26 6.26 6.10 6.42 8.52 5.35 4.41 85.37 85.37 85.58 91.28 89.76 84.54 81.36

(d) 5.56 5.32 5.57 6.75 9.50 5.41 4.79 69.44 68.20 70.40 82.58 81.61 69.43 69.26

(e) 6.06 5.67 5.89 6.39 9.92 5.53 4.23 32.29 31.14 32.91 41.92 29.20 32.90 17.08

(f) 5.41 5.15 5.44 6.66 9.50 5.69 4.79 59.06 57.58 59.93 73.45 73.61 58.85 58.99

(g) 4.78 4.58 4.86 62.02 11.14 5.55 4.97 9.54 8.99 9.69 70.12 18.36 10.40 9.15

(h) 5.52 5.24 3.84 51.81 11.08 6.10 2.93 20.11 19.51 16.61 66.49 27.55 20.73 14.59

(i) 7.00 6.65 5.81 7.55 8.92 5.50 2.93 25.32 24.36 22.77 18.81 30.48 23.46 17.14

Table S.2: Rejection probabilities (in %) under the null and alternative hypotheses for different

designs in the differences-in-differences example.

tests when θ = 0. The tests are all conducted with α = 5%. All results are based on 10, 000 Monte

Carlo replications. We find that Rand and NR R perform well across all specifications. IM performs

well, although, as expected, it is has rejection probability less than the nominal level when there

is heterogenenity (specification (h)). CT, on the other hand, works very well when the conditions

in Conley and Taber (2011) are met, but it severely over-rejects when (εj,t : t ∈ T0 ∪ T1) is not

i.i.d. across j (specifications (g) and (h)). CCE over-rejects in all designs. CGM works remarkably

well across all designs, though in unreported simulations involving high levels of heterogeneity

we found that it could mildly over-reject. See also Ibragimov and Müller (2016), who find in a

clustered regression setting that CGM can over-reject dramatically. Finally, BRL under-rejects in

some specifications and typically delivers the lowest power across all specifications.

Remark S.2.4. Conley and Taber (2011) show in a simulation study that their test outperforms

the test proposed by Donald and Lang (2007). We therefore do not include the test proposed by

Donald and Lang (2007) in our comparisons.

Remark S.2.5. Tests Rand and CT are valid under non-nested assumptions. Unlike CT, Rand

is valid in settings where (εj,t : t ∈ T0 ∪ T1) is not i.i.d. across j, which might arise, for example,

when there is heteroskedasticity conditional on treatment. The test by Conley and Taber (2011),

on the other hand, is valid even when q = 1, whereas NR R may have poor power when q is very

small. See Remark 2.4.

Remark S.2.6. The rejection probabilities under the null hypothesis of a version of BRL without

the degrees of freedom correction are close to those of CCE across all designs. For example, in

specification (a), such a test has rejection probability equal to 8.52% instead of 4.2%.
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S.3 Empirical Application

In this section we revisit the analysis of Angrist and Lavy (2009, henceforth AL09), who study the

effect of cash awards on Bagrut achievement – the high school matriculation certificate in Israel.

This certificate is awarded after a sequence of tests in 10th–12th grades and is a formal prerequisite

for university admission. Certification is largely determined by performance on a series of exams

given in 10th–12th grades. AL09 find that the program was most successful for girls and that the

impact on girls was driven by “marginal” students, i.e., students close to achieving certification

based on their performance on tests given before the twelfth grade.

S.3.1 Program details and data

In December 2000, 40 nonvocational high schools with the lowest 1999 Bagrut rates in a national

ranking were selected to participate in the Achievement Awards demonstration. These schools were

matched into 20 pairs based on lagged values of the primary outcome of interest, the average 1999

Bagrut rate. Treatment status was then assigned randomly (i.e., with equal probability) within each

pair. Treated schools were contacted shortly after random assignment and every student in a treated

schools who received a Bagrut was eligible for a payment. Five treated schools are noncompliers

in the sense that principals in these schools did not inform teachers about the program after the

initial orientation or indicated that they did not wish to participate. Although the program was

initially intended as a program that would provide cash awards to high school students in every

grade, the actual implementation of the program focused on seniors. Thus, our analysis below,

which follows AL09, is limited to high school seniors.

Baseline data were collected in January 2001, while the main Bagrut outcome comes from tests

taken in June of 2001. One of the schools closed immediately after the start of the program, so

the sample consists of 19 pairs of schools (the 6th matched pair is omitted). The data are publicly

available at http://economics.mit.edu/faculty/angrist/data1/data/angrist. Below we in-

dex schools by j ∈ J0 ∪ J1, where J0 is the set of untreated schools and J1 is the set of treated

schools, and students in the jth school by i ∈ Ij . The data include the following variables: Yi,j is

an indicator for Bagrut achievement; Dj is an indicator for treatment; Wj is a vector of school-level

covariates, including an indicator for Arab school, an indicator for Jewish religious schools, and

indicators for each of the matched pairs; Zi,j is a vector of covariates, including parental school,

number of siblings, immigrants states, and credit-unit weighted averages of test scores prior to

January 2001.
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S.3.2 Model and empirical results

The model in this section fits into the framework described in Section 4.2 as follows,

Yi,j = Λ[θDj + Z ′i,jγ +W ′jδ] + εi,j with E[εi,j |Dj , Zi,j ,Wj ] = 0 , (S.5)

where Λ[·] is the identity or logistic transformation. The parameter of interest is θ ∈ Θ ⊆ R. While

not discussed explicitly in Section 4.2, the logistic version of this model is handled in exactly the

same way after replacing the ordinary least squares estimator of θ with the maximum likelihood

estimator.

AL09 estimate the model in (S.5) by ordinary least squares and maximum likelihood using the

full sample of schools. In order to circumvent the problem of having a small number of clusters

(39 clusters at the school level), they estimate standard errors using the bias-reduced covariance

matrix estimator proposed by Bell and McCaffrey (2002). AL09 do not report confidence intervals

or p-values, so we do not know the exact critical values they used. A closer look at the paper (e.g.,

on page 1395, where t-statistics range from 1.7 to 2.1, the authors write “the 2001 estimates for

girls are on the order of 0.10, and most are at least marginally significantly different from zero”)

suggests that they are using the 1− α
2 quantile of standard normal distribution. We therefore use

this approach to construct their confidence intervals in Tables S.3-S.5. We note, however, that this

is not equivalent to the BRL test we described in Sections S.2.1 and S.2.2. See also Remarks S.2.2

and S.2.6 for a discussion of the differences between these two methods.

In order to apply our methodology, we follow Section 4.2 and divide the data into q clusters.

We require that the parameter of interest, θ, is identified within each cluster. With this in mind,

it is natural to consider the 19 clusters defined by the 19 matched pairs of schools. Unfortunately,

such an approach does not allow for certain school-level covariates in (S.5) because in some of the

pairs Dj and Wj are perfectly collinear. We therefore form clusters by grouping the 19 matched

pairs of schools in a way that guarantees that Dj and Wj are not perfectly collinear within each

cluster. The total number of clusters resulting from this strategy depends on the particular sub-

population under consideration. In the sample of boys and girls, we form q = 11 clusters: {1,3},
{2,4}, {5,8}, {7}, {9,10}, {11}, {12,13}, {14,15}, {16,17}, {18,20}, {19}; in the sample of girls

only, we form q = 9 clusters: {1,3}, {16,4}, {5,7}, {2,12}, {10,11}, {8,19}, {13}, {14,15}, {18,20}.
Here, the notation {a, b} means that the ath and bth matched pairs are grouped together. The

median number of students per cluster is approximately 400 when boys and girls are included and

approximately 200 when only girls are included.

Table S.3 reports results for our test and the corresponding results from AL09 at the 5% and

10% significance levels for the sample of boys and girls. Table S.4 reports the same results for

the sample of girls only. These results correspond to those in Table 2 on page 1394 in AL09. For

comparison, we report the average of the q estimators as our point estimate, though there is no
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Treatment Effect: Boys & Girls

Randomization Test Angrist and Lavy (2009)

OLS Logit OLS Logit

Sch. cov. only 0.049 -0.017 0.052 0.054

90% [ -0.078 , 0.164 ] [ -0.147 , 0.093 ] [ -0.025 , 0.130 ] [ -0.016 , 0.125 ]

95% [ -0.109 , 0.182 ] [ -0.180 , 0.105 ] [ -0.040 , 0.144 ] [ -0.030 , 0.138 ]

Lagged score, micro. cov. 0.075 0.022 0.067 0.055

90% [ -0.034 , 0.178 ] [ -0.058 , 0.102 ] [ 0.008 , 0.126 ] [ -0.004 , 0.114 ]

95% [ -0.059 , 0.198 ] [ -0.077 , 0.117 ] [ -0.003 , 0.138 ] [ -0.015 , 0.125 ]

Table S.3: Results corresponding to boys and girls in Table 2 in AL09.

Treatment Effect: Girls only

Randomization Test Angrist and Lavy (2009)

OLS Logit OLS Logit

Sch. cov. only 0.036 0.037 0.105 0.093

90% [ -0.132 , 0.195 ] [ -0.099 , 0.165 ] [ 0.005 , 0.205 ] [ 0.006 , 0.179 ]

95% [ -0.182 , 0.234 ] [ -0.144 , 0.183 ] [ -0.014 , 0.224 ] [ -0.010 , 0.197 ]

Lagged score, micro. cov. 0.090 0.058 0.105 0.097

90% [ -0.049 , 0.226 ] [ -0.020 , 0.140 ] [ 0.027 , 0.182 ] [ 0.021 , 0.172 ]

95% [ -0.099 , 0.256 ] [ -0.047 , 0.157 ] [ 0.012 , 0.197 ] [ 0.006 , 0.187 ]

Table S.4: Results corresponding to girls only in Table 2 in AL09.

reason one could not report a different estimator, such as the full-sample estimator used in AL09.

We compute our confidence intervals using test inversion. The row labeled “Sch. cov. only” includes

the case where only school covariates are included. The row labeled “Lagged score, micro. cov.”

includes the individual covariates as well. Our results in Table S.3 for the sample of boys and

girls are consistent with those in AL09 and show that θ is not statistically significantly different

from zero. The conclusions change for the sample of girls only in Table S.4. While the confidence

intervals for AL09 are consistent with the claim on page 1395 in AL09 of θ being “marginally

significantly different from zero,” our confidence intervals do not support this assertion.

AL09 re-estimate the logistic specification of (S.5) for the sample of “marginal” girls. The define

“marginal” in two different ways. The first scheme splits students into approximately equal-sized

groups according to the credit unit-weighted average test scores prior to January 2001. The second

scheme splits students into approximately equal-sized groups using the fitted values obtained by

estimating the logistic specification of (S.5) using the untreated sample only. We replicate AL09’s

12



Treatment Effect: Girls on top half of cohort

Randomization Test Angrist and Lavy (2009)

by lagged score by pred. probability by lagged score by pred. probability

Sch. cov. only 0.089 0.081 0.206 0.194

90% [ -0.077 , 0.259 ] [ -0.099 , 0.262 ] [ 0.076 , 0.335 ] [ 0.067 , 0.320 ]

95% [ -0.129 , 0.289 ] [ -0.156 , 0.295 ] [ 0.051 , 0.360 ] [ 0.043 , 0.344 ]

Lagged score, micro. cov. 0.091 0.076 0.213 0.207

90% [ -0.064 , 0.252 ] [ -0.095 , 0.249 ] [ 0.083 , 0.342 ] [ 0.079 , 0.334 ]

95% [ -0.113 , 0.286 ] [ -0.150 , 0.279 ] [ 0.058 , 0.367 ] [ 0.054 , 0.359 ]

Table S.5: Results corresponding to “marginal” girls only in Table 4 in AL09.

results and apply our randomization test to the resulting samples in Table S.5. The results show

again that our test does not support AL09’s claim that θ is statistically significantly different from

zero for this subsample.

Overall, the results using our test do not support the finding in AL09 that cash awards appeared

to have generated substantial increases in the matriculation rates of “marginal” girls, though, as

in AL09, we found no evidence of negative or perverse effects of the program either.

S.4 Proof of Theorem 2.1

The proof of this result is not new to this paper and can be found in Hoeffding (1952) and Lehmann

and Romano (2005, Chapter 15). We include it here for completeness.

Let P ∈ P0 be given. Since for every x ∈ X , T (j)(x) = T (j)(gx) for all g ∈ G and 1 ≤ j ≤M ,∑
g∈G

φ(gx) = M+(x) + a(x)M0(x) = Mα .

In addition, since X
d
= gX under P for any P ∈ P0 and g ∈ G, we have

Mα = EP

∑
g∈G

φ(gX)

 =
∑
g∈G

EP [φ(X)] = MEP [φ(X)] ,

and the result follows.
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S.5 Auxiliary Lemmas

Lemma S.5.1. Let S = (S1, . . . , Sq) where Sj ⊥⊥ Sj′ for all j 6= j′ and each Sj is symmetrically

distributed about 0. Let W = {w = (w1, . . . , wq) ∈ Rq : wj 6= 0 for at least one 0 ≤ j ≤ q}. If for

every w ∈W and w0 ∈ R

w0 +

q∑
j=1

wjSj 6= 0 w.p.1 , (S.6)

then Assumption 3.1(iii) is satisfied for T (S) = Tt-stat(S), where

Tt-stat(S) =
S̄q√

1
q−1

∑q
j=1(Sj − S̄q)2

with S̄q =
1

q

q∑
j=1

Sj ,

and G = {−1, 1}q. In particular, if the distribution of Sj is absolutely continuous with respect to

Lebesgue measure for all 1 ≤ j ≤ q, then the requirement in (S.6) holds.

Proof: We prove the result by contradiction. Suppose there exist two distinct elements g, g′ ∈ G

such that T (gS) = T (g′S) with positive probability, where

T (gS) =

1
q

∑q
j=1 gjSj√

1
q−1

∑q
j=1 S

2
j −

q
q−1(

∑q
j=1 gjSj)

2
. (S.7)

We first claim that the denominator in (S.7) is nonzero w.p.1 for all g ∈ G. Let σ̃2
S = 1

q−1

∑q
j=1 S

2
j ,

w̃0 =
√

q−1
q σ̃2

S , and note that σ̃2
S −

q
q−1(

∑q
j=1 gjSj)

2 = 0 with positive probability if and only if

w̃0 +

q∑
j=1

gjSj = 0 or − w̃0 +

q∑
j=1

gjSj = 0

with positive probability. Since gj 6= 0 for all 1 ≤ j ≤ q, (g1, . . . , gq) ∈W and (S.6) implies this

cannot happen.

We next note that T (gS) = T (g′S) implies that

1

q

q∑
j=1

gjSj

σ̃2
S −

q

q − 1

 q∑
j=1

g′jSj

2
1/2

=
1

q

q∑
j=1

g′jSj

σ̃2
S −

q

q − 1

 q∑
j=1

gjSj

2
1/2

.

Additional algebra using this last expression implies that T (gS) = T (g′S) with positive probability

if and only if
q∑
j=1

∆gjSj = 0 or

q∑
j=1

(gj + g′j)Sj = 0 , (S.8)

where ∆gj = gj − g′j . Since g and g′ are distinct, it follows that ∆gj 6= 0 for at least one 1 ≤ j ≤ q
and so (∆g1, . . . ,∆gq) ∈ W. By (S.6),

∑q
j=1 ∆gjSj 6= 0 w.p.1. In addition, since g 6= g′, it
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follows that gj + g′j 6= 0 for at least one 1 ≤ j ≤ q and so (g1 + g′1, . . . , gq + g′q) ∈ W. By (S.6),∑q
j=1(gj + g′j)Sj 6= 0 w.p.1. We conclude that (S.8) cannot hold with positive probability and this

completes the first part of the proof.

To prove the last claim of the Lemma, let Z(w) =
∑q

j=1wjSj and suppose by way of con-

tradiction that the requirement in (S.6) fails. Then, there exists w0 ∈ R and w ∈ W such that

Z(w) = −w0 holds with positive probability. However, since wj 6= 0 for at least one 0 ≤ j ≤ q and

Sj is continuously distributed for all 1 ≤ j ≤ q, it follows that Z(w) is continuously distributed for

all w ∈W, which leads to a contradiction.

Lemma S.5.2. Let S = (S1, . . . , Sq) where Sj ⊥⊥ Sj′ for all j 6= j′ and each Sj is symmetrically

distributed about 0. Let W = {w = (w1, . . . , wq) ∈ Rq : wj 6= 0 for at least one 0 ≤ j ≤ q}. If for

every w ∈W and w0 ∈ R,

w0 +

q∑
j=1

wjSj 6= 0 w.p.1 , (S.9)

then Assumption 3.1(iii) is satisfied for T (S) = T|t-stat|(S) defined in (17) and G = {−1, 1}q. In

particular, if the distribution of Sj is absolutely continuous with respect to Lebesgue measure for all

1 ≤ j ≤ q, then the requirement in (S.9) holds.

Proof: Let T (S) = T|t-stat|(S) as defined in (17). Take any two distinct elements g, g′ ∈ G and

consider the following two cases. If g 6= −g′, then the same arguments as those in the proof of

Lemma S.5.1 show that T (gS) 6= T (g′S) w.p.1. On the other hand, if g′ = −g, then it follows that

for any s ∈ S,

T (gs) =

∣∣∣∣∣
1
q

∑q
j=1 gjsj

1
q−1

∑q
j=1 s

2
j −

q
q−1(

∑q
j=1 gjsj)

2

∣∣∣∣∣ =

∣∣∣∣∣−
1
q

∑q
j=1(−gj)sj

1
q−1

∑q
j=1 s

2
j −

q
q−1(−

∑q
j=1 gjsj)

2

∣∣∣∣∣ = T (g′s) .

The result follows. Finally, the proof of the last claim follows from the proof of Lemma S.5.1.

Lemma S.5.3. Let S = (S1, . . . , Sq) where Sj ⊥⊥ Sj′ for all j 6= j′ and each Sj ∈ Rd is symmetri-

cally distributed about 0. Let W = {w = (w1, . . . , wq) ∈ Rq : wj 6= 0 for at least one 0 ≤ j ≤ q}. If

for every w ∈W and w0 ∈ Rd

w0 +

q∑
j=1

wjSj 6= 0 w.p.1 , (S.10)

then Assumption 3.1(iii) is satisfied for T (S) = TWald(S) defined in (16) and G = {−1, 1}q. In

particular, if the distribution of Sj is absolutely continuous with respect to Lebesgue measure on Rd

for all 1 ≤ j ≤ q, then the requirement in (S.10) holds.

Proof: Let T (gS) = qS̄q(g)′Σ̄−1
q S̄q(g), where Σ̄q = q−1

∑q
j=1 g

2
jSjS

′
j and S̄q(g) = q−1

∑q
j=1 gjSj ,

noting that Σ̄q is invariant to sign changes since g2
j = 1 for 1 ≤ j ≤ q. Take two distinct elements

g, g′ ∈ G = {−1, 1}q and consider the following two cases: either g′ = −g or g 6= −g′. If g′ = −g,
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then for any s ∈ S, qs̄q(g) =
∑q

j=1 gjsj = −
∑q

j=1−gjsj = −qs̄q(g′). It follows immediately

that T (gs) = qs̄q(g)′Σ̄−1
q s̄q(g) = qs̄q(g

′)′Σ̄−1
q s̄q(g

′) = T (g′s). If g 6= −g′, then we claim that

T (gS) 6= T (g′S) w.p.1. To this end, note that Σ̄q is symmetric by definition and positive definite

w.p.1 by (S.10). We can then write

T (gS)− T (g′S) = q(S̄q(g)− S̄q(g′))′Σ̄−1
q (S̄q(g) + S̄q(g

′)) .

Since Σ̄q is positive definite w.p.1, it follows that T (gS) = T (g′S) with positive probability if and

only if

S̄q(g)− S̄q(g′) = 0 or S̄q(g) + S̄q(g
′) = 0 , (S.11)

with positive probability. First, note that S̄q(g) − S̄q(g′) = q−1
∑q

j=1 ∆gjSj . Since g and g′ are

distinct, it follows that ∆gj 6= 0 for at least one 1 ≤ j ≤ q and so (∆g1, . . . ,∆gq) ∈W. By (S.10),

S̄q(g)− S̄q(g′) 6= 0 w.p.1. Second, note that S̄q(g) + S̄q(g
′) = q−1

∑q
j=1(gj + g′j)Sj . Since g+ g′ 6= 0,

it follows that gj + g′j 6= 0 for at least one 1 ≤ j ≤ q and so (g1 + g′1, . . . , gq + g′q) ∈W. By (S.10),

S̄q(g) + S̄q(g
′) 6= 0 w.p.1. We conclude that (S.11) cannot hold with positive probability and this

completes the proof.

The proof of the last claim follows from arguments similar to those used in the proof of Lemma

S.5.1.
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