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Abstract

We develop a discrete heterogeneity framework for matched employer employee data.

The framework allows for unrestricted interactions between worker and firm unobserved

characteristics in the wage function, as well as unrestricted sorting based on these unob-

servables. Pooling cross-sectional observations together with information from the joint

distribution of wages of job movers, we establish a series of nonparametric identification re-

sults in short panels. We evaluate our method on data simulated from a theoretical model

under both positive and negative sorting. We apply our method to Swedish matched

employer employee panel data and report estimated wage functions and sorting patterns.
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1 Introduction

Identifying the contributions of worker and firm heterogeneity to wage dispersion is an impor-

tant step towards answering a number of economic questions, such as the nature of sorting

patterns between heterogeneous workers and firms, the optimal allocation of workers to firms,

or the sources of wage inequality.

To this end, for more than twenty years researchers have relied on matched employer em-

ployee data, where workers are followed over time and across firms, and the data contain both

worker and firm identifiers. This provides the opportunity to allow for unobserved worker and

firm heterogeneity, in addition to heterogeneity coming from covariates such as education, age,

or firm size, for example.

In an influential article, Abowd, Kramarz, and Margolis (1999) (AKM hereafter) developed

a method to recover worker and firm effects on wages using matched data. In a regression

framework, they proposed to estimate worker and firm fixed-effects, thus allowing to quantify

their respective contributions to wage dispersion, as well as the correlation between worker

and firm unobservables. Applications of the method to wage data include Abowd, Kramarz,

Pérez-Duarte, and Schmutte (2009), Gruetter and Lalive (2009), Mendes, van den Berg, and

Lindeboom (2010), Woodcock (2008), and Card, Heining, and Kline (2013), among others. The

AKM method has been used in a variety of other fields, for example to link banks to firms, or

teachers to schools or students (Kramarz, Machin, and Ouazad, 2008; Jackson, 2013).

Since the publication of AKM, the literature has emphasized several challenges to the use

of two-way fixed-effects regressions. One feature of the method is that the model of wages, in

logarithms, is additive in worker and firm effects. This rules out the possibility that firm-specific

returns might be heterogeneous across workers, and imposes tight restrictions on patterns of

complementarity between workers and firms. In addition to being possibly rejected empirically,

additivity may also be inconsistent with theoretical models of sorting (e.g. Shimer and Smith,

2000; Eeckhout and Kircher, 2011). Another challenge with the AKM method concerns esti-

mation, as fixed-effects estimates may be poorly estimated even in panels that follow workers

and firms for long periods of time, possibly leading to biased estimates of sorting (Andrews,

Gill, Schank, and Upward, 2008, 2012).

In this paper we take a different approach and propose a distributional framework for

matched data. The approach allows for unrestricted interaction effects between firm and worker

unobservables, and it provides estimates of conditional wage distributions given worker and firm

heterogeneity, as well as estimates of sorting of workers across firms. Moreover, the method can
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deal with short panels with as few as two periods. This is important, since it opens the way to

document how wage returns and worker sorting vary over the business cycle, for example. In

addition, although we focus on workers and firms in this paper, our framework could be useful

in other applications, such as teacher-student sorting, where long panels may not be available.

In order to make the matched problem tractable, we rely on an asymmetric modeling of firm

and worker heterogeneity. We model both types of unobservables as discrete. Discreteness is

convenient for implementation, although we also discuss extensions to models with continuously

distributed unobservables. On the firm side, unobservables are specified as belonging to a finite

number of latent classes. This discrete fixed-effects approach has recently been proposed in

single-agent panel data analysis (Hahn and Moon, 2010; Lin and Ng, 2012; Bonhomme and

Manresa, 2012). With sufficiently many workers per firm, firm membership to the different

classes will be accurately estimated. In contrast, the number of observations for a given worker

is typically small. For this reason, we use a random-effects approach to model the distribution

of latent worker types within each firm class.

In the model there are two reasons why firms that belong to different classes differ from each

other. First, firm heterogeneity shows up in worker composition, which depends on the firm

class. Estimating distributions of worker heterogeneity within each class will thus reveal the

extent of sorting in the economy. Second, firms in different classes have different conditional

wage distributions given worker types, for example as a result of differences in productivity

or technology. Recovering conditional wage distributions will allow us to document comple-

mentarity between firm and worker heterogeneity. The first feature links our model to “mixed

membership models” that have recently become popular in machine learning and statistics

(Blei, Ng, and Jordan, 2003; Airoldi, Blei, Fienberg, and Xing, 2008). However, as far as we

know the combination of the two features is novel to our setup.

In order to nonparametrically identify the model, we rely on workers who move between

firms. This variation is also central to the AKM methodology. In the main analysis we make

two assumptions that are analogous to assumptions made by AKM: we assume that job mobility

does not depend on past wages given the type of the worker and the latent classes of the firms

before and after the move (we refer to this assumption as “exogenous mobility”), and that

wages in a firm after a job move do not depend on the previous wage, given the worker type

and the firm unobservable class (“serial independence”). Under these two assumptions, we show

that a bivariate distribution of wages before and after a move, together with a cross-section of

wages, are sufficient for identification. In addition, we also show that, when an additional wage

observation is available before and after the job move, both endogenous mobility and serial
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correlation can be allowed for.

The model is a conditional finite mixture, where the conditioning variables are the latent firm

classes. These models are generally nonparametrically under-identified based on two periods

of observation only (Hall and Zhou, 2003; Henry, Kitamura, and Salanié, 2014). We exploit

job movements across different firm classes and show that, in our framework, two periods (that

is, a single job move per worker) are sufficient for recovering type- and class-specific wage

distributions as well as the type composition of job movers within each pair of firm classes,

before and after the move. Intuitively, the wages of movers to a given firm class who come from

different classes provide variation in terms of worker type composition. This variation allows

us to disentangle the impact of differences in worker composition from that of differences in

conditional wage distributions.

Recovering conditional wage distributions requires identifying class membership for each

firm. To do so, we use the fact that firm-specific wage distributions are in fact class-specific.

This allows us to directly identify class membership from the joint distribution of wages. Lastly,

having shown that the latent firm classes and the wage distributions are identified, we show

how to recover the proportions of latent worker types within each firm class in the cross-section.

The identification arguments suggest a three-step approach to estimation: clustering firms

into classes, and estimating finite mixture models to recover conditional wage distributions

from the subsample of job movers, and worker type proportions from the cross-section, in turn.

Clustering firms can be done using the k-means algorithm (Steinley, 2006) applied to firm-

specific empirical cumulative distribution functions. The finite mixture models can then be

estimated under parametric assumptions or using non-parametric methods.

An influential body of work, built on Becker (1974), has developed and estimated fully

specified theoretical models of sorting on the labor market (De Melo, 2009; Lise, Meghir, and

Robin, 2008; Bagger, Fontaine, Postel-Vinay, and Robin, 2011; Hagedorn, Law, and Manovskii,

2014; Lamadon, Lise, Meghir, and Robin, 2013; Bagger and Lentz, 2014). The aim of this work

is to address fundamental questions such as the efficiency of the allocation of worker to jobs

and how it is affected by policy. Without further assumptions our framework does not directly

address these questions. Nevertheless, as we neither restrict the complementarity between

worker and firm heterogeneity, nor the sorting patterns, results based on our framework can

inform this structural literature. To illustrate the connection between a structural approach

and ours, we provide an explicit mapping between our model and an extension of the model

of Shimer and Smith (2000) with on-the-job search, and we document the performance of our

estimation method on data generated according to the theoretical model.
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We take our approach to Swedish matched employer employee panel data for 1997-2006.

While the preliminary evidence that we report in this version of the paper suggests some

departure from additivity between firm and worker heterogeneity, we find that additive models

approximate the conditional mean of wages relatively well. At the same time, we find substantial

sorting of workers across firms, mostly in terms of unobservables, and we show that the AKM

methodology does not recover the amount of sorting in our data.

The outline of the paper is as follows. In Section 2 we present the framework of analysis.

In Sections 3 and 4 we study identification and estimation, respectively. In Sections 5 and 6

we describe the data and show preliminary empirical results. In Section 7 we analyze several

extensions of the main model, including how to allow for endogenous mobility, serial correlation,

and continuously distributed heterogeneity. Lastly, we conclude in Section 8.

2 Framework of analysis

2.1 Economic environment

We consider an economy composed of workers indexed by i with discrete types ω(i) ∈ {1, ..., K},
and firms indexed by j with discrete classes f(j) ∈ {1, ..., L}. Worker types and firm classes

may reflect differences in productivity or other unobservable traits. We observe this economy

over T periods. In this section we take T = 2. We outline an extension of the model to T > 2

periods in Section 7.

Period-1 wages. Workers are either employed in a firm or unemployed. We denote by jit the

identifier of the firm where i, if employed, works at time t. In period 1, which corresponds to

the start of the observation period, employed workers earn a log wage Yi1, which may depend

on worker type and firm class. We denote by Fk` the corresponding log wage cumulative

distribution function (cdf):

Fk`(y) := Pr [Yi1 ≤ y |ω(i) = k, f(ji1) = `] , (1)

for all k ∈ {1, ..., K} and ` ∈ {1, ..., L}. In (1) we abstract from the effect of observed covariates.

We return to this issue in Section 4.

Initial allocation. In period 1, worker types are drawn within firm from a multinomial

distribution indexed by the firm class. The proportion of type-k workers in firm j is given by
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πk(f(j)), where πk(`) is defined as:

πk(`) := Pr [ω(i) = k | f(ji1) = `] . (2)

Similarly, the proportion of type k workers in unemployment is given by πk(0).

In period 1 firms differ in terms of worker composition. This allows for sorting without re-

stricting its pattern. For example, both positive and negative assortative matching are possible.

The model thus shares similarities with mixed membership models (Blei, Ng, and Jordan, 2003;

Airoldi, Blei, Fienberg, and Xing, 2008). One difference with these models is that here firms

do not only differ in terms of the type of workers they employ, but also in terms of the wages

they offer to workers of a given type. To separately identify both sources of heterogeneity we

rely on panel data.

Job mobility. Workers employed in period 1 can either stay in their job, move to another

job, or become unemployed in the next period. In the main analysis we make two assumptions

regarding job mobility. The first assumption is that job mobility is only driven by worker

types and firm classes, not directly by wages. We will refer to it as a condition of “exogenous

mobility”, consistently with the literature following Abowd, Kramarz, and Margolis (1999).

Formally, let mi := 1{ji1 6= ji2} denote the indicator that worker i changes jobs between period

1 and 2.

Assumption 1. (exogenous mobility)

Yi1 is independent of (mi, f(ji2)) given (ω(i), f(ji1)).

The second assumption, “serial independence”, is that wages drawn from different firms are

conditionally independent over time, given worker type and firm class.

Assumption 2. (serial independence)

Yi2 is independent of (Yi1, f(ji1)) given (ω(i), f(ji2),mi = 1).

We will comment on Assumptions 1 and 2 in the next subsection. Moreover, in Section 7

we will propose a four-period extension of the model where we will relax both assumptions.

Period-2 wages of job movers. We also assume that wages of job movers in period 2, con-

ditional on the firm class and the worker type, are drawn from the same conditional distribution

as period-1 wages.
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Assumption 3. (stationarity)

for all k, `′: Pr [Yi2 ≤ y′ |ω(i) = k, f(ji2) = `′,mi = 1] = Fk`′(y
′).

In our two-period setup it is possible to relax Assumption 3. For example, it may be impor-

tant to allow for period-specific log wage distributions F t
k`, in order to capture macroeconomic

shocks or life-cycle effects. On might also wish to allow job movers to earn different wages than

the rest of the employed population, beyond type differences. Another extension which our ap-

proach covers is when firm classes f t(j) vary over time, for example as a result of productivity

shocks at the firm level. We analyze both extensions in Section 7. In the empirical illustration

we will work under Assumption 3, while netting log wages of period dummies.

Under Assumptions 1, 2 and 3 we have, for all k, `, `′:

Pr [Yi1 ≤ y, Yi2 ≤ y′ |ω(i) = k, f(ji1) = `, f(ji2) = `′,mi = 1] = Fk`(y)Fk`′(y
′). (3)

Type composition of job movers. Similarly as for the initial worker allocation, we do not

restrict the type composition of job movers. That is, for moves taking place between period 1

and 2, we define, for all k, `, `′:

pk (`, `′) := Pr [ω(i) = k | f(ji1) = `, f(ji2) = `′,mi = 1] , (4)

where pk (`, `′) are unrestricted proportions.

This means that, while strict exogeneity in Assumption 1 holds, job mobility may depend

on worker type, and on both firm classes before and after the move, in an unrestricted way.

Model’s main restrictions. To recover Fk`, pk(`, `
′), and πk(`), it is sufficient to focus on

the first two periods, and exploit the following two equations:

Pr [Yi1 ≤ y , Yi2 ≤ y′ | f(ji1) = `, f(ji2) = `′,mi = 1] =
K∑
k=1

pk (`, `′)Fk`(y)Fk`′(y
′), (5)

and:

Pr [Yi1 ≤ y | f(ji1) = `] =
K∑
k=1

πk (`)Fk`(y). (6)

Equation (5) represents the bivariate wage distribution of job movers conditional on both

firm classes. It will allow us to recover Fk` and pk(`, `
′). Equation (6) represents the univariate

cross-sectional wage distribution in period 1. It will allow us to recover πk(`). In practice, one
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could supplement (6) with the cross-sectional wage distribution in period 2, although we do

not impose that worker composition πk(`) remains constant between the two periods.

Our main identification result, which we establish in Section 3, is that, under suitable rank

conditions, Fk` and pk(`, `
′) are identified from (5), and πk(`) are then identified from (6).

Moreover, the partition of firms into classes is also identified from (5) and/or (6).

2.2 Discussion

Discussion of Assumptions 1 and 2. To illustrate the requirements contained in Assump-

tions 1 and 2, consider a linear model similar to the one in Abowd, Kramarz, and Margolis

(1999):

Yit = α(i) + δ(jit) + εit, (7)

where we have abstracted from observed covariates. Denote ji = (ji1, ..., jiT ). The condition of

exogenous mobility in AKM is E (εit | ji) = 0. Analogously, in Assumption 1 we require that

the wage in period 1 does not affect job mobility directly, conditional on worker types and firm

classes. The condition of serial uncorrelatedness in AKM is E (εitεis | ji) = 0 for t 6= s. In

Assumption 2 we similarly require that wages in period 2 do not depend on wages in period 1,

given worker types and firm classes. Note that, while like AKM our framework imposes serial

independence across jobs, it leaves serial correlation within jobs unrestricted.

Although it is possible to allow for serial correlation in AKM, at least in a long panel setting,

strict exogeneity has proven more challenging to relax. Given this, the extensions in Section 7

are of particular interest. Nevertheless, working under Assumptions 1 and 2 has the advantage

of implying a simple structure on bivariate wage distributions conditional on firm classes before

and after a move, and of allowing for identification based on two periods only.

Quantities of interest. In this paper our interest mainly centers on two quantities: the type-

and class-specific wage distributions, Fk`, and the composition of each firm class in terms of

worker types, πk(`). The latter quantity is informative about sorting, while the former captures

how wages depend on worker and firm heterogeneity.

With these two objects at hand one can generate counterfactual allocations. For example,

one can describe the outcome of random matching, obtained by imposing that πk(`) is inde-

pendent of `. Alternatively, taking the perspective of the worker, one could assign each ω(i) to

the firm j such that the mean of Fω(i),f(j) is maximum, or one could assign workers to firms in a

way that maximizes the sum of wages in the economy. Other possible exercises include variance

decompositions, and more generally distributional wage decompositions. Also, one can compare
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the predictive power of linear combinations of worker and firm types in wage regressions, with

fully saturated specifications that allow for unrestricted interactions.

In addition, our setup allows to recover the composition of each pair of firm classes in terms

of worker types within the set of job movers, pk(`, `
′). These proportions are useful to document

dynamic sorting patterns as, by Bayes’ rule:

Pr [f(ji2) = `′ | f(ji1) = `, ω(i) = k,mi = 1] =
q``′ pk(`, `

′)∑L˜̀=1 q`˜̀pk(`, ˜̀) , (8)

where q``′ = Pr [f(ji2) = `′ | f(ji1) = `,mi = 1]. These measures, which we will document in

our empirical illustration below, complement the notion of cross-sectional sorting captured by

πk(`).

Other transitions. While two periods and equations (5) and (6) are sufficient to identify

the quantities we focus on in this paper, it is possible to extend the framework to a complete

model of labor market transitions and wages over T periods. For this, one needs to model the

wage distributions and dynamics for job stayers, and transitions in and out of unemployment.

See Section 7 for details.

Links to theoretical models. Our setup allows for general forms of complementarity be-

tween worker types and firm classes. This feature is important as, since Becker (1974), the

theoretical and structural literature has emphasized the close link between complementarity or

substitution patterns and the amount of sorting. See, for example, Shimer and Smith (2000),

Eeckhout and Kircher (2011), and Hagedorn, Law, and Manovskii (2014).

As our model neither restricts complementarity nor sorting patterns, it provides a general

framework that can be useful to inform structural models. In Appendix B we provide an explicit

mapping between an extension of the search-matching model of Shimer and Smith (2000) with

on-the-job search and our framework. We also show through simulations that, when the data

are generated according to the theoretical model, our method recovers the underlying wage

structure quite accurately. The quality of approximation is only moderately affected when the

data generating process has a large number of heterogeneous types but, as in the empirical

application, we use a small number of types for estimation.

In models which build on Shimer and Smith (2000), both worker and firm productivity types

are ordered in the population. Our method, which is based on wage data, does not directly

allow us to recover the ordering. In practice, one may learn about the latent types and classes

by documenting how they affect wages and correlate with observed covariates. Moreover, log
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wage variance decomposition exercises, such as the ones we report in the empirical analysis

below, do not depend on recovering a productivity ordering. In fact, our approach does not

require worker or firm heterogeneity to be unidimensional.

In a number of theoretical models of sorting, strict exogeneity in Assumption 1 is not

satisfied. This will be the case if job mobility depends on previous wages, in addition to the

type of the worker and the firm classes. To relax strict exogeneity, one needs to model how

mobility to a class-`′ firm depends on the previous firm class, worker type, and the previous

wage. In Section 7 we show how the availability of an additional wage observation before and

after a job move allows to identify this more general model.

Lastly, while our model and its extension that allows for endogenous mobility nest a num-

ber of theoretical models of sorting, they do not specify the entire economic structure, such as

production, outside options, or surplus. As a result we will not be able to perform an exhaus-

tive set of counterfactual exercises. Nevertheless, as our empirical application will illustrate,

our framework is useful to analyze the dependence of the wage structure on worker and firm

heterogeneity, and to document the effect of sorting on wage dispersion.

3 Identification

In this section we start by showing how, for a given partition of firms into classes and under

suitable conditions, Fk`, πk(`), and pk(`, `
′) are all identified from (5) and (6). Then we show

how class membership f(j), for each firm j, is also identified.

3.1 Intuition in a simple model

To provide an intuition for why the distributions Fk` are identified, we first consider the following

simple model:

Yit = a(f(jit)) + b(f(jit))αi + σ(f(jit))εit, (9)

where εit is independent of αi and f(jit), distributed as a standard normal, and independent

over time. The partition of firms into classes is assumed known. αi has unrestricted mean

and variance given firm class. When αi is discrete with K points of support, model (9) is a

special case of the framework described in Section 2. Note that here αi could be continuously

distributed, for example Gaussian. We outline an extension of our framework to continuous

worker types in Section 7.
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Consider job movers between classes ` and `′ 6= `, between period 1 and 2. We have:

Yi1 = a(`) + b(`)αi + σ(`)εi1,

Yi2 = αi + σ(`′)εi2.

where, conditional on the transition from ` to `′, αi is normally distributed with mean and

variance E``′(αi) and Var``′(αi), respectively, and where (without loss of generality) we have

normalized a(`′) = 0 and b(`′) = 1.

This model is formally equivalent to a measurement error model where αi is the error-free

regressor and Yi2 is the error-ridden regressor. It is well-known that a(`), b(`) and σ(`) are not

identified using mean and covariance restrictions only. As an example, identification fails when

αi is Gaussian (Reiersøl, 1950).

Now consider also job movers from class `′ to class `. We have:

Yi1 = αi + σ(`′)εi1,

Yi2 = a(`) + b(`)αi + σ(`)εi2.

In this case one can show that a(`), b(`) and σ(`) are identified, provided:

E``′(αi) 6= E`′`(αi). (10)

For example, we have:

b(`) =
E`′`(Yi2)− E``′(Yi1)
E`′`(Yi1)− E``′(Yi2)

.

Moreover, the means and variances of αi in the two firm classes and the two periods are also

identified.

An intuition for these results, which is also at the core of our main identification result in

the next subsection, is as follows. For a given worker type, the wage gains or losses associated

with job mobility are due to differences in the firm wage schedules, represented by the a, b and

σ parameters. Averaging over types, observed wage differences also reflect the effect of worker

composition. If type composition is different between `→ `′ and `′ → ` job moves, for example,

this variation can be used to identify the effect of worker heterogeneity on firm wages. Equation

(10) requires type composition to differ between the two transitions. Note that, if b(`) 6= −1

this condition is equivalent to:

E`′` (Yi1 + Yi2) 6= E``′ (Yi1 + Yi2) , (11)

so it can be empirically tested. In the empirical sections we will show evidence supporting (11)

in the Swedish data.
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Note also that, under additivity (that is, if b(`) = 1):

E`′` (Yi2 − Yi1) = E``′ (Yi1 − Yi2) , (12)

which means that wage gains and losses associated with job changes between different firm

classes are symmetric. Card, Heining, and Kline (2013) have exploited this idea to provide

evidence suggesting that the additive AKM model is an appropriate specification on German

data; see Figures Va and Vb in their paper. Here we use differences in worker type composition,

reflected in (11), to relax additivity in estimation.

Finally, the fact that we cluster firms together into classes is useful, in the context of this

example and also in the general discrete framework of Section 2, because it ensures that there

is a large number of movers in both directions, ` → `′ and `′ → `. With very large firms and

sufficient movements between those firms, the above identification argument could be conducted

at the firm level, by taking ` and `′ to be firm identifiers. This observation could be useful

in other contexts, such as movements of workers or firms between cities, where the number of

movers (to or from a given city in that example) could be large.

3.2 Wage distributions and proportions

We are now in position to show that the distributions Fk` are nonparametrically identified based

on two periods of data with one job move, see equation (5). To show the result we start with

a definition.

Definition 1. A cycle of length R is a sequence of firm classes (`1, ..., `R) ∈ {1, ..., L}R, with

`R+1 = `1, such that pk(`r, `r+1) 6= 0 for all r ∈ {1, ..., R} and k ∈ {1, ..., K}.

Assumption 4. (cycles)

For any two firm classes ` 6= `′ in {1, ..., L}, there exists a cycle of length 2R containing ` and

`′ such that:

i) The scalars a1, ..., aK are all distinct, where:

ak :=
pk(`1, `2)pk(`3, `4)...pk(`2R−1, `2R)

pk(`2, `3)pk(`4, `5)...pk(`2R, `1)
.

ii) The matrices A(`1, `2), ..., A(`2R, `1) have rank K, where:

A(`r, `r+1) := {Pr [Yi1 ≤ y, Yi2 ≤ y′ | f(ji1) = `r, f(ji2) = `r+1,mi = 1]}(y,y′)
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Assumption 4 requires that any two firm classes ` and `′ belong to a cycle of even length.

An example is when there is a positive proportion of every worker type within the set of movers

from ` to `′, and a positive proportion of every worker type within the set of movers from `′ to `.

Another example is when there are no job movers from ` to `′ or from `′ to `, but some workers

move from ` to `′′, others from `′′ to `′, some workers from `′ to `′′′, and some workers move

from `′′′ to `, as illustrated in Figure 1. Note that `′′′ and `′ could coincide, for example, as the

assumption allows for job movements with a class. Hence the requirement for the cycles to be

of even length (which does not seem possible to extend to general odd-length cycles given our

assumptions) does not appear to be a substantial limitation in practice. Existence of cycles is

related to, but different from, that of connected groups in AKM (Abowd, Creecy, and Kramarz,

2002). As in AKM, in our setup identification will fail in the presence of completely segmented

labor markets where firms are not connected between groups via job moves. One difference

with AKM is that, in our nonlinear setup, we need every firm class to contain job movers of all

types of workers.

Figure 1: Two cycles containing ` and `′

` `′ `

`′′

`′

`′′′

The requirements on cycles can be relaxed, at the cost of loosing identification of some of

the quantities of interest. To see this, let us assume that for all ` there exists an `′ 6= ` such

that pk(`
′, `) 6= 0 for k ∈ K, and πk(`) = 0 (so pk(`

′, `) = pk(`, `
′) = 0) for k /∈ K. Moreover, let

us suppose that the ratios pk(`, `
′)/pk(`

′, `), for k ∈ K, are all distinct. Then it can be shown

using similar arguments as in the proof of Theorem 1 below that the cdfs Fk` are identified for

all k ∈ K, although they are not identified for k /∈ K.

Part i) in Assumption 4 requires some asymmetry in worker type composition between dif-

ferent firm classes. This condition requires either non-random sorting or non-random mobility,

as it fails when pk(`, `
′) does not depend on (`, `′). Another case where part i) fails is when

cross-sectional sorting and sorting associated with job mobility exactly offset each other, so
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pk(`, `
′) is symmetric in (`, `′). This exact offsetting happens in the model of Shimer and Smith

(2000) in the absence of on-the-job search, as we discuss in Appendix B. In our framework the

presence of asymmetric job movements between firm classes is crucial for identification. In the

empirical analysis we will provide evidence of such asymmetry.

Lastly, part ii) is a rank condition. It will be satisfied if, in addition to part i), for all r the

distributions F1,`r , ..., FK,`r are linearly independent. Note that this assumption is testable,

and that it can provide guidance on the choice of K in practice.

The next result shows that, with only two periods and given the structure of the model, both

the type-specific wage distributions and the type composition of job movers can be uniquely

recovered. The intuition for the result is similar to the one we used in model (9).

Theorem 1. Consider the joint distribution of wages of job movers, and let Assumptions 1,

2, 3 and 4 hold. Suppose that firm classes f(j) are known, for all j. Then, up to common

relabelling of the k index, Fk` is identified for all (k, `). Moreover, for all pairs (`, `′) for which

there are job moves from ` to `′ pk(`, `
′) is identified for all k up to the same relabelling.

Proof. See Appendix A.

Worker composition. Theorem 1 shows that the proportions of worker types, in the set of

movers from a firm in class ` to another firm in class `′, are identified. We now show that the

type proportions are also identified within each firm class in the cross-section in period 1.

Corollary 1. Suppose that Assumptions 1, 2, 3 and 4 hold. Then πk(`) are identified up to a

common relabelling of the k index.

Proof. See Appendix A.

3.3 Firm classes

The identification results in the previous subsection were conditional on knowing the partition

of firms into classes. Here we show that this partition is also identified.

Identification based on job movers. Let j and j′ be two different firms, which belong to

classes f(j) = ` and f(j′) = `′, respectively. The bivariate cdf of log wages conditional on

moving from j to j′ between period 1 and 2 is, by (5):

Pr [Yi1 ≤ y, Yi2 ≤ y′ | f(ji1) = `, f(ji2) = `′,mi = 1] =
K∑
k=1

pk(`, `
′)Fk`(y)Fk`′(y

′)

:= G``′ (y, y′) . (13)
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This cdf only depends on the firm classes ` and `′, not directly on the firm identifiers j and j′.

Here we study identification of firm classes f(j) assuming, for every firm j, that the number

of movers from j to some other firm j′ 6= j, or from some firm j′ 6= j to firm j, is infinite.

In practice, this means that the number of job movers in or out of firm j needs to be large.

Moreover, here we assume that the total number of firms J is finite. In Section 4 we will study

asymptotic properties of our clustering estimator as both the number of firms and the number

of workers tend to infinity, allowing the number of workers per firm to grow polynomially more

slowly than the number of firms.

A sufficient condition for f(j) to be identified for all j from (13) is as follows.

Assumption 5. (separation) For all ` 6= `′ in {1, ..., L}, there exists an `′′ ∈ {1, ..., L} such

that either G``′′ 6= G`′`′′ or G`′′` 6= G`′′`′.

Proposition 1. Suppose that Assumptions 1, 2, 3 and 5 hold. Then the partition of firms

j ∈ {1, ..., J} into L classes f(j) ∈ {1, ..., L} is identified.

Proof. See Appendix A.

Identification of the firm classes may fail if Assumption 5 does not hold for some ` 6= `′. In

that case, the next result shows that, under the conditions of Theorem 1, Fk` and Fk`′ coincide

for all k, which implies that grouping ` and `′ together does not result in a loss of information,

as their conditional wage distributions given worker types are identical. Note that, due to

symmetry between the two periods in the model, it is enough to assume that either of the

two parts in Assumption 5 fails to hold in order to show the equality of the conditional wage

distributions.

Corollary 2. Let ` 6= `′ such that G``′′ = G`′`′′ for all `′′, or G`′′` = G`′′`′ for all `′′. Suppose

that the assumptions in Theorem 1 hold. Then Fk` = Fk`′ for all k ∈ {1, ..., K}.

Proof. See Appendix A.

Identification of classes based on a cross-section. The identification strategy in the

previous paragraph relies on having a large number of job movers per firm. In practice this

may be a strong requirement. An alternative approach is obtained by noticing that, for all j

that belong to class f(j) = `, the cdf of log wages in firm j in period 1 is:

Pr [Yi1 ≤ y | f(ji1) = `] =
K∑
k=1

πk(`)Fk`(y),

:= H` (y) , (14)
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which only depends on the firm class f(j) = `. It is then easy to show that the firm partition

into classes is identified from (14) if, for all ` 6= `′, H` 6= H`′ .

One difficulty with identifying firm classes from cross-sectional observations only is that it

might be that two cross-sectional wage distributions coincide between two firms, one offering a

higher wage schedule but having low-type workers, the other one offering a lower wage schedule

but having high-type workers. This possibility has been emphasized in the theoretical literature

(e.g. Eeckhout and Kircher, 2011). So it may be impossible to separate two different classes

from the cross-section, even though their conditional wage distributions given worker types are

different.

Corollary 2 shows that, provided that conditional wage distributions differ, information from

the wages of job movers can allow to identify firm classes even when the cross-sectional wage

information is insufficient. For this reason, when implementing the approach one may consider

a method that clusters firm-specific distributions in the cross-section and adds information from

the job movers, thus combining (13) and (14).

4 Estimation

Let N be the number of workers, and J the number of firms. The identification strategy suggests

a three-step method to estimate the model’s parameters. In the first step we estimate the firm

classes f(j) for all j ∈ {1, ..., J} by clustering firm-specific distributions. In the second step,

given firm classes, we estimate Fk` and pk(`, `
′) from the finite mixture model in the sample of

job movers. In the third step we recover the proportions πk(`) from the cross-section.

We now detail these three steps.

4.1 Clustering

In the first estimation step we recover the firm classes using a grouped fixed-effects approach

(Bonhomme and Manresa, 2012), and use a k-means clustering algorithm for estimation. Con-

sider the period-1 log wage distribution. Based on (14) the estimator solves:

min
f(1),...,f(J),H1,...,HL

N∑
i=1

ˆ (
1{Yi1 ≤ y} −Hf(ji1) (y)

)2
dµ(y), (15)

where the minimization is with respect to all possible groupings of firms into L groups, in

addition to class-specific cdfs, and µ is a discrete or continuous measure.

16



Note that (15) is equivalent to the following weighted k-means problem:

min
f(1),...,f(J),H1,...,HL

J∑
j=1

nj

ˆ (
F̂j(y)−Hf(j) (y)

)2
dµ(y), (16)

where F̂j denotes the empirical cdf of log wages in firm j, and nj is the number of workers in

firm j (both in period 1).

Verifying the assumptions of Theorems 1 and 2 in Bonhomme and Manresa (2012), one can

show two large-sample properties of this estimator in an environment where firms are clustered

in the population. First, the estimated firm classes, f̂(j), converge uniformly to the population

ones. Second, the asymptotic distribution of the class-` cdf, Ĥ`, coincides with that of the

empirical cdf of wages in the population class ` (that is, the true one). In practice this means

that, under suitable conditions, one can treat the estimated firm classes as data when computing

standard errors of estimators based on them. In Proposition 6 below we prove a pointwise result

for Ĥ`, but the equivalence also holds uniformly in y.

For simplicity we take the measure µ to be discrete on {y1, ..., yD}. We will use the following

assumptions, where f 0(j) denote the population classes and H0
` denote the population class-

specific cdfs, and where we denote ‖H‖2 =
∑D

d=1H(yd)
2.

Assumption 6. (clustering)

i) Yi1 are independent across workers and firms.

ii) For all ` ∈ {1, ..., L}, plimJ→∞
1
J

∑J
j=1 1{f 0(j) = `} > 0.

iii) For all ` 6= `′ in {1, ..., L}, ‖H0
` −H0

`′‖ > 0.

iv) There exist c > 0, c > 0 and δ > 0 such that, for all j, cn ≤ nj ≤ cn, and J/nδ → 0 as

n tends to infinity.

Assumption 6 i) could be relaxed to allow for weak dependence both across and within firms,

in the spirit of the analysis of Bonhomme and Manresa (2012) who focused on a time-series

context. Assumptions 6 ii) and iii) require that the clusters be large and well-separated in the

population. Assumption 6 iv) allows for asymptotic sequences where the number of workers

per firm grows polynomially more slowly than the number of firms.

Proposition 2. Let Assumption 6 hold. Then:

i) Pr
(
∃j ∈ {1, ..., J}, f̂(j) 6= f 0(j)

)
= o(1).

ii) For all y,
√
N`

(
Ĥ`(y)−H0

` (y)
)

d→ N (0, H0
` (y) (1−H0

` (y))), where N` is the number

of workers in class-` firms; that is: N` =
∑N

i=1 1 {f 0(ji1) = `}.
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Proof. See Appendix A.

As we pointed out in Section 3, adding information from job movers could be helpful,

particularly when the separation condition in Assumption 6 iii) fails to hold. An alternative

algorithm to estimate the firm classes is to solve:

min
f(1),...,f(J),G11,...,GLL

Ñ∑
i=1

ˆ ˆ (
1{Yi1 ≤ y}1{Yi2 ≤ y′} −Gf(ji1),f(ji2) (y, y′)

)2
dµ(y, y′), (17)

for a bivariate measure µ, where the first Ñ ≤ N individuals are the job movers. A third

possibility, which preserves the connection to the k-means algorithm, is to solve:

min
f(1),...,f(J),G1,...,GL

Ñ∑
i=1

ˆ ˆ (
1{Yi1 ≤ y}1{Yi2 ≤ y′} −Gf(ji1) (y, y′)

)2
dµ(y, y′), (18)

for G1, ..., GL a set of bivariate cdfs.

Finally, note that here we are clustering firm-specific cdfs. One could also base the clustering

estimation on firm means, variances, or other moments of the firm-specific wage distributions.

In addition, under similar assumptions one could use additional firm-level measurements in the

clustering stage, such as output, profit or value added.

4.2 Finite mixtures

Once the firm classes f̂(j) have been computed, in a second step we estimate Fk` and pk(`, `
′).

To do so, one possibility, which we use in the empirical analysis below, is to use a parametric

model such as a Gaussian mixture model with (k, `)-specific wage means and variances. We

also experimented with a specification where Fk` follows a mixture-of-normals with (k, `)-specific

parameters. The log-likelihood conditional on estimated firm classes takes the form:

Ñ∑
i=1

L∑
`=1

L∑
`′=1

1{f̂(ji1) = `}1{f̂(ji2) = `′} ln

(
K∑
k=1

pk(`, `
′)fk`(Yi1; θ)fk`′(Yi2; θ)

)
,

where fk`(y; θ) is a parametric wage density indexed by θ, and the proportions pk(`, `
′) are

treated as parameters. We use the EM algorithm (Dempster, Laird, and Rubin, 1977) for

estimation.

Several methods have recently been proposed to estimate finite mixture models while treat-

ing the type-conditional cdfs nonparametrically. See for example Bonhomme, Jochmans, and

Robin (2014) and Levine, Hunter, and Chauveau (2011). These methods could also be used in

the present context.
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Finally, in the third estimation step, given estimates of the firm classes and the cdfs Fk` we

estimate the type proportions πk(`) based on another, simpler, finite mixture problem. The

log-likelihood conditional on estimated firm classes and distributions is then, in period 1:

N∑
i=1

L∑
`=1

1{f̂(ji1) = `} ln

(
K∑
k=1

πk(`)fk`(Yi1; θ̂)

)
. (19)

In practice we use a second EM algorithm to maximize (19). Note that the proportions could

also be estimated using a least squares regression, as can be seen from the identification argu-

ments in Section 3.

4.3 Adding worker covariates

Our aim is to document sorting and complementarity between firm and worker characteristics.

Some of these characteristics (such as worker age or education, or firm size) are typically

available in matched data. Here we outline how we incorporate these observed covariates in

estimation.

The log wages we consider in the application are net of quarterly dummies, and year indica-

tors interacted with cohort dummies, within education groups. We remove these time effects in

order to make the two periods more comparable. An alternative approach would be to estimate

the non-stationary model analyzed in Section 7. We estimate the firm classes by clustering log

wage distributions net of time effects. The estimated classes thus reflect differences in firm and

worker observables as well as unobservables. In the grouped fixed-effects approach, the classes

can be unrestrictedly correlated to firm-level covariates and to composition in terms of worker

covariates.

We estimate the cdfs Fk` on log wages net of time effects. In this specification, the effects

of worker types reflect both observable and unobservable attributes. In order to separate the

effects of observables from the effects of unobservables, we estimate the proportions πk(`, x) by

allowing them to depend on time-invariant worker covariates, Xi, such as education or age in

the first period. The conditional period-1 log-likelihood is then:

N∑
i=1

L∑
`=1

1{f̂(ji1) = `} ln

(
K∑
k=1

πk(`,Xi)fk`(Yi1; θ̂)

)
,

where πk(`, x) are treated as parameters.

This specification allows us to distinguish sorting in terms of x from sorting in terms of

unobservables. For example, for all (k, `) we can write:

πk(`) =
∑
x

pxπk(`, x) +
∑
x

(px(`)− px) πk(`, x), (20)
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where px = Pr(Xi = x), and px(`) = Pr(Xi = x|f(ji1) = `). The first term on the right-

hand side of (20), say π̃k(`), represents the type proportion in a counterfactual economy where

covariates x are equally distributed across firm classes. Hence the two terms on the right-hand

side of (20) reflect the contribution of unobservables and observables, respectively, to differences

in worker type composition across firm classes.

4.4 Interpreting the estimates

With estimates of type proportions and conditional wage distributions at hand, one can perform

distributional decomposition exercises. For example, shutting down sorting (thus setting πk(`)

independent of `) one can generate the wage distribution that would prevail under random

assignment of workers to firms:

H̃(y) =
L∑
`=1

q`

K∑
k=1

πkFk`(y), (21)

where πk = Pr(ω(i) = k), and q` = Pr(f(ji1) = `).

In order to relate our results with those obtained using the AKM method, we will also

report estimates of variance decompositions performed on data simulated from our model.

These estimates are obtained by projecting log wages on worker type dummies and firm class

dummies in an additive manner:

Yi1 = α
[
ω0(i)

]
+ ψ

[
f 0(ji1)

]
+ εi1, (22)

where ω0(i) and f 0(ji1) are the population types and classes, respectively. From (22) we can

compute the variances of worker and firm effects, and the covariance between the two, as in

AKM. In addition, the R-squared in (22) can be compared to the one in a fully saturated

regression that allows for unrestricted interactions between ω0(i) and f 0(ji1), thus shedding

light on the quantitative importance of interaction effects.

5 Data patterns (preliminary)

5.1 Description of the data

We use a match of four different databases from Friedrich, Laun, Meghir, and Pistaferri (2014)

covering the entire working age population in Sweden between 1997 and 2006. Out of the four

data sources the Swedish data registry, ANST (which is part of the register-based labor market
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statistics at Statistics Sweden) links information about individuals, their employment, and

their employer. This database is collected yearly from the firm’s statement of income for their

employees. The other databases provide additional information on workers and firms as well as

unemployment status of workers. These are LOUISE (or LINDA), which contains information

on the workers; SBS, which provides accounting data and balance sheet information for all

non-financial corporations in Sweden; and the Unemployment Register, which contains spells

of unemployment registered at the Public Employment Service.

Following Friedrich, Laun, Meghir, and Pistaferri (2014) we perform a first sample selec-

tion by dropping all financial corporations and some sectors such as fishery and agriculture,

education, health and social work.

Employment spells and wages. The RAMS dataset allows to construct individual employ-

ment spells since it provides the first and last remunerated month for each employment, as well

as firm and plant identifier. In this version of the paper we only make use of firm identifiers.

Moreover, RAMS provides yearly pre-tax earnings for each spell. We use these earnings as our

measure of wages since we do not observe hours worked. With some abuse of terminology we

will refer to these full-year pre-tax labor earnings as “wages”. We discard employment spells

of workers with more than one employment spell in a given year. In particular, if a worker has

multiple employers, only the job where he is earning the highest wage is recorded, irrespective

of the number of months he worked in each firm.

In this version of the paper we remove age and time effects by regressing log wages on

interactions of time dummies with cohort dummies, within education groups. This implies

that the mean log wage is constant over time within education and cohort, equal to the value

corresponding to the first period in our final sample (2002, see below for a description). We

do so in order to remove the effects of life cycle variation and macroeconomic shocks. Another

approach would be to estimate a model with time-varying wage distributions, which we analyze

in Section 7.

Selection of the samples. In the two-period version of our model we rely on information

from the bivariate wage distributions of job movers, and the univariate cross-sectional wage

distributions, in different firms. We now describe the two different samples that we use to

estimate our model: Samples 1 and 2.

In order to construct Sample 1 we restrict our attention to workers employed in years 2002

and 2004. These two years correspond to period 1 and 2 in the model. We also restrict the
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sample to males in order to avoid dealing with gender differences in labor supply, since we do

not have information on hours worked. Finally, we select workers fully employed in a firm in

both 2002 and 2004, in order to avoid selecting individuals with low labor market attachment.

Table 1: Data description

all Sample 1 Sample 2

time spell 1997 - 2008 2002 - 2004 2002 - 2004

number of worker IDs 2,155,707 974,860 20,072

number of firm IDs 87,560 59,325 12,976

firm ≥ 10 workers 73,400 33,035 -

firm ≥ 50 workers 35,062 6,829 -

firm ≥ 5 movers 58,989 3,718 1,400

firm ≥ 10 movers 45,086 1,822 552

firm ≥ 20 movers 29,651 933 230

Notes: Sample 2 contains the job movers from Sample 1, where job mobility has occurred between December

2002 and January 2004.

To construct Sample 2 we select the job movers of Sample 1, that is, workers whose employer

firm identifier is different in 2002 and 2004. Moreover, in order to avoid considering job changes

that are unrelated to job mobility we discard workers whose firm identifier is not present in

either of the two periods. A firm may appear in only one period because of a merger or

acquisition, entry or exit of a firm, or a re-definition of the firm identifier over time. We choose

not to interpret these changes as job moves as they do not map naturally to our model.

Table 1 shows a few descriptive statistics for the full 1997-2006 sample, Sample 1, and

Sample 2. The median firm size, as reported by the employer, is 10 workers for firms in Sample

1, and 27 workers for firms that appear in Sample 2. The median number of full-year employed

males per firm is only 4 workers for firms in Sample 1. However, when focusing on firms that

appear in Sample 2 (that is, which have more than one job mover) the median number of

full-year employed males per firm is 13 workers.

5.2 Descriptive evidence

As outlined in Section 4, we estimate firm classes using a weighted k-means algorithm. In

this version of the paper we cluster firms based on their cross-sectional wage distributions in
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2002; see equation (15). Cumulative distribution functions of log wages are evaluated at 40

percentiles of the overall 2002 wage distribution. We allow for L = 10 firm classes. The results

in Table 2 correspond to the minimum value of the objective function among 1000 randomly

generated starting values. In the table we have ordered firm classes according to mean log wage

in each class (although the ordering of the classes is arbitrary in our setting).

Table 2: Descriptive statistics on estimated firm classes

firm cluster: 1 2 3 4 5 6 7 8 9 10 all

number of workers 21,662 62,929 110,792 114,324 100,080 78,837 137,971 85,806 58,728 27,023 798,152

number of firms 6,487 7,972 7,804 6,494 4,663 3,748 4,209 3,984 3,157 2,812 51,330

% HS dropout 28.9 28 26.6 26.9 23.7 21.1 18.9 12.2 5.31 3 20.7

% HS grade 59.7 62.5 62.6 62.5 61.7 57.8 58.6 47.2 32.9 23.9 56.1

% some college 11.4 9.42 10.7 10.7 14.6 21.2 22.5 40.5 61.8 73.1 23.3

% workers younger than 30 25 20.9 20.5 18.4 16.4 18.4 14.3 15.3 16 14.8 17.5

% workers between 31 and 50 52.7 52.2 53.2 54.1 55.4 54.6 56 57 59.1 63.6 55.3

% workers older than 51 22.3 26.9 26.2 27.5 28.2 27.1 29.7 27.7 24.9 21.6 27.2

mean log wages 9.6 9.87 9.99 10.1 10.1 10.1 10.2 10.4 10.5 10.8 10.2

variance of log wages 0.15 0.0841 0.0934 0.0732 0.0699 0.141 0.0918 0.114 0.116 0.177 0.148

between firm variance of log wages 0.0576 0.00614 0.0039 0.00185 0.0016 0.0056 0.00184 0.00367 0.00456 0.039 0.0544

mean of log value added per worker 12.4 12.5 12.7 12.7 12.8 12.8 12.9 13 13 13.2 12.7

variance of log value added per worker 0.202 0.163 0.155 0.141 0.175 0.255 0.249 0.304 0.398 0.594 0.52

median number of workers per firm 2 4 6 5 5 6 5 5 4 3 4

Notes: Sample 1 in 2002. All workers are males, employed during the full year 2002. “HS” is high school.

Table 2 shows that firm classes capture substantial heterogeneity between firms. The 10

classes seem to capture wage heterogeneity well. In particular, the between-firm-class log wage

variance is 90% of the overall between-firm variance. There are also substantial differences

between classes in terms of the level of education of workers: while the lower classes show high

percentages of high school dropouts or high school graduates and low percentages of workers

with some college, the higher classes show the opposite pattern. In terms of workers’ age,

we observe that lower classes tend to have higher percentages of young workers (less than 30

years old) and lower percentages of workers between 30 and 50, while higher classes have more

workers between 30 and 50. This relationship broadly reflects the life cycle pattern of wages in

these data. Workers above 51 years old are more evenly distributed across firm classes.

We also observe that the number of sample workers per firm follows an inverse U-shape

in firm class, with the highest and lowest classes tending to have smaller firms. Note that

median firm sizes are higher than these numbers, as here we focus on full-year employed males.

Moreover, as we discussed following Table 1, most of the smaller firms have no job movers, so

they will not contribute to the second estimation step. Lastly, Table 2 shows that log valued

23



added per worker is monotone in firm class, suggesting that the ordering based on mean log

wages agrees with an ordering in terms of productivity. However, it is worth noting that the

classes explain only 19% of the between-firm variance in log valued added per worker, suggesting

that productivity differences within classes are substantial.

Wages of job movers. Job movers are central to our identification strategy. Motivated by

the discussion in Subsection 3.1, in Figure 2 we report two sets of results. On the left graph we

plot the relationship between the sum of log wages in the two periods for workers with opposite

movements between firm classes `1 and `2, where `1 < `2. The size of each dot represents the

number of workers in the sample making the transition in either direction. The graph clearly

shows that average log wages are higher for workers moving from `2 to `1 than for workers

moving from `1 to `2. In words, the wages of job movers are more closely related to the firm

they come from, than to the firm they move to. This suggests that worker type composition

differs between the two types of transitions, and is suggestive of the presence of the sort of

asymmetry that we need for identification.

Figure 2: Wages of job movers
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Notes: Wages of job movers between firm classes `1 and `2, where `1 < `2. The left graph shows the sum of log

wages in periods 1 and 2 (that is, 2002 and 2004) when moving from `1 to `2 (x-axis) versus those when moving

from `2 to `1 (y-axis). The right graph shows log wage gains (x-axis) and losses (y-axis) corresponding to the

same transitions between firm classes.

The right graph in Figure 2 plots the log wage gains (x-axis) and losses (y-axis) correspond-

ing to opposite movements between firm classes. As we discussed in Subsection 3.1, under
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additivity of firm and worker heterogeneity all the dots would lie on the 45 degree line. The

graph shows that, on average, the dots lie below the line, suggesting that job mobility tends to

be associated with wage gains. Note that time effects (interacted with cohort and education

dummies) were taken out from log wages in the full sample, while here we are considering a

subsample of job movers. Moreover, the right graph in Figure 2 does show some pairs of firm

classes for which the dots lie far from the 45 degree lines. This suggests some departure from

additivity, and motivates the analysis of the next section, where we present estimates of sorting

and wage returns that do not rely on additivity.

6 Empirical results (preliminary)

In this section we present estimates of conditional wage distributions and worker/firm sorting.

We then report several decomposition exercises on both our data and simulated samples.

6.1 Estimates of wage distributions

Given the estimated firm classes, we run an EM algorithm on job movers (Sample 2) to recover

the cdf estimates F̂k` and the type proportions among job movers p̂k(`, `
′). Conditional dis-

tributions are Gaussian, with class-and-type-specific means and variances. Finding the global

maximum of the likelihood can be challenging in mixture models. We used several strategies

to pick sensible starting values. We first took as starting values the parameter estimates from

a simplified model where means and variances are assumed not to depend on firm classes. We

observed that this technique tended to give good starting values. In addition we also considered

a large set of starting values drawn at random.

Figure 3 shows the mean estimates, for L = 10 firm classes and K = 6 worker types. On the

x-axis, firm classes are ordered by mean log wages. The results show clear evidence of worker

heterogeneity. They also show some variation with firm class. However, the highest two worker

types (in terms of mean log wages) experience relatively little wage variation when working in

different firms. In contrast, the bottom four types show a clear positive gradient with firm class,

especially so for the lowest type. This finding points towards larger complementarity between

low type workers and firm classes.

These preliminary results do not seem consistent with additive models of worker and firm

unobservables, such as AKM. These models would predict equal mean log wage gains across

firms for different types of workers, which is not consistent with the presence of higher com-

plementarity in the bottom part of the worker distribution. At the same time, note that there
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Figure 3: Estimated means of log wages by worker type and firm class
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Notes: The graph plots the mean of F̂k`. The L = 10 firm classes (on the x-axis) are ordered by mean log wage.

The K = 6 worker types correspond to the 6 different curves.

are no standard errors on the graph. In particular, the decrease for type 1 workers between the

first two firm classes is likely to be statistically insignificant, because the estimated probability

(reported below) of the (k = 1, ` = 1) combination is very small. More generally, Figure 3 alone

does not allow to determine whether the evidence of non-additivity is quantitatively relevant.

We will return to this question in the next subsection.

Figure 4 shows the estimated standard deviations by worker type and firm class. The lowest

worker type (in terms of mean log wages) has the largest standard deviation. The highest

worker type also has a large standard deviation. This suggests the presence of considerable

heterogeneity within these worker types. A higher variance might also reflect the presence of

higher wage uncertainty for these workers. Lastly, the four middle worker types face much

smaller standard deviations.

6.2 Estimates of worker/firm sorting

Given the estimated wage distributions, we then run a second EM algorithm on the 2002 cross-

section (the first period in Sample 1) in order to recover the worker type proportions in the

cross-section π̂k(`, x); see (19). Unlike the first one, this second EM algorithm is not sensitive

26



Figure 4: Estimated standard deviations of log wages by worker type and firm class
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Notes: The graph plots the standard deviation of F̂k`. The L = 10 firm classes (on the x-axis) are ordered by

mean log wage. The K = 6 worker types correspond to the 6 different curves.

to the choice of starting values as the log-likelihood function is concave. We allow the type

proportions to depend on 3 age categories (terciles of the age distribution) and 3 education

categories (high school dropouts, high school graduates, some college); hence there are 9 cells

x.

Figure 5 shows the proportions of worker types in each firm class π̂k(`). Figure 6 shows the

same proportions, net of differences in education and age: π̃k(`) =
∑

x p̂xπ̂k(`, x), where p̂x is

the number of workers in cell x; see (20). Figure 5 thus shows how much sorting there is in terms

of worker observables and unobservables, while Figure 6 reflects sorting due to unobservable

characteristics only. On each graph the x-axis corresponds to the mean of F̂k`. The results

show strong evidence of cross-sectional sorting, mostly driven by sorting on unobservables. The

types of workers differ markedly across firm classes. For example, the lowest-class firms (in

terms of mean log wage) employ mostly the bottom two worker types, while the highest-class

firms employ mostly the high worker types.

Lastly, Figure 7 plots the estimated probability of moving to a higher firm class for different

worker types, where classes are ordered with respect to mean log wages. The graph shows,

for each worker type, the sum of the probabilities of making a transition from ` to `′ > `

conditional on moving to another firm, see (8), averaged over firm classes. This probability is
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Figure 5: Estimated proportions of worker types by firm class
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Notes: The graph plots the type proportions π̂k(`). Each plot corresponds a different firm class. Average log

wages by (k, `) combinations are on the x-axis, proportions are on the y-axis.

increasing in worker type, ranging from 38% for the lowest type to 60% for the highest worker

type. We interpret this evidence as reflecting the presence of dynamic sorting, in addition to

the cross-sectional sorting documented in Figure 5.

6.3 Decomposition exercises

In this subsection we report the results of decomposition exercises on simulated data and on

the Swedish data. We start by describing the simulation method.

Model simulation and fit. To simulate from the model we use the estimated parameters

reported in the previous subsections, and we condition on the firm identifiers and job movements

observed in the data. The model allows to simulate the wages of job movers in 2002 and 2004.

Consider first the 2002 wage. We get from the data the length of the job spell that ended

after December 2002, and we draw the worker type k from the corresponding pk(`, `
′) (where

` and `′ are the estimated classes of the firms where the worker was employed in 2002 and

2004, respectively), and the log wages from the corresponding cdf Fk`. In addition, we add

serial correlation between different draws from that distribution. The correlation coefficient
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Figure 6: Estimated proportions of worker types by firm class (no covariates)
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where p̂x is the number of workers in cell x; see (20). Each plot corresponds a different firm class. Average log

wages by (k, `) combinations are on the x-axis, proportions are on the y-axis.

Figure 7: Probability of moving to a higher firm class
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Notes: This graph plots the estimated probability of moving to a higher firm class (y-axis), by worker type

(x-axis), averaged over classes; that is:
∑

`′>` Pr [f(ji2) = `′ | f(ji1) = `, ω(i) = k,mi = 1], see (8).
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is chosen in order to approximate the within-job log wage autocorrelation in the data. We

proceed similarly for spells that started before January 2004, and for non job movers. Though

not necessary for using our model and checking its fit, for example, simulating full employment

spells will allow us to compare our results with those obtained using the AKM methodology.

Figure 8: Fit of log wage densities
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Notes: Marginal densities of log wages for each x cell (in rows) and firm class (in columns). Sample 1, 2002.

The red line is the model, the shaded area is from the data.

Figure 8 shows the model fit for the densities of log wages, by covariates cells x and firm

classes. The fit is excellent. Figure 9 shows the model fit for the correlation between 2002 and

2004 log wages, for the job movers in Sample 2, by pairs of firm classes. Although there is some

discrepancy between the correlations computed in the data and those generated by the model,

the fit is generally good.
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Figure 9: Fit of log wage correlations
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Notes: Log wage correlations Corr(Yi1, Yi2|`1, `2), for job movers, by pairs of firm classes. Sample 2. In the

data (x-axis) and in the simulated data (y-axis).

Variance decompositions. Using the simulated data, we then estimate a linear regression

of log wages on worker type dummies and firm class dummies; see (22). We then perform a

variance decomposition. The first row in Table 3 shows that worker heterogeneity explains

substantially more than firm heterogeneity according to our estimates (referred to as “BLM”

in the table). Indeed, the variance of firm class coefficients is only 6% of that of worker type

coefficients. Moreover, the correlation between the two sets of coefficients is 46%, which is in

line with the strong evidence of sorting documented in Figure 5.

The R-squared of the linear regression is 74.8%. It is of interest to compare it to the R-

squared of a saturated regression with full interactions between worker types and firm classes,

which is 75.6%. The small difference between the two suggests that an additive specification

provides a good approximation to the conditional mean of log wages.

In the second row of Table 3 we report the results of an AKM regression on the Swedish

data. We follow the literature and use raw log wages but include covariates in the regression.

We add a cubic in age, interacted with the three levels of education. As in Card, Heining, and

Kline (2013) we first estimate individual and firm fixed effects on the subsample of job movers

(including their entire job spells, before and after the move). This requires to construct the

largest connected set in our sample, which represents 9, 079 firms and 17, 595 movers (that is,

88% of Sample 2). Given the estimated firm fixed effects, we then estimate individual fixed
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effects for the non-movers.

The results of the AKM estimation are very different from the ones using our model. The

variance of firm fixed-effects is one third of that of worker fixed-effects. Moreover, the correlation

between firm and worker fixed-effects is negative, equal to −26%. These orders of magnitude

are within the range of the empirical results obtained using AKM in the literature.

In order to better understand these differences, we then repeat the above exercises on a

sample simulated from our model. The third row of Table 3 shows that our method recovers the

parameters quite well, which is consistent with the good model fit reported above. In contrast,

the AKM results reported on the fourth row of the table show a strong negative correlation

(−35%), in a data generating process where the true correlation is positive and substantial

(46%). In addition, AKM strongly overestimates the contribution of firm heterogeneity to the

variance of log wages.

Table 3: Variance decompositions on Swedish data and simulated data

min spell rep V ar(α)
V ar(α+ψ)

V ar(ψ)
V ar(α+ψ)

2Cov(α,ψ)
V ar(α+ψ)

Corr(α, ψ)

Data

BLM 0.7766 0.0473 0.1762 0.4598

AKM 0.9813 0.3014 -0.2826 -0.2599

Simulated from BLM

BLM 1 1 0.7669 0.0466 0.1866 0.4934

AKM 1 1 1.0879 0.3447 -0.4326 -0.3532

Simulated from BLM without limited mobility

AKM 4 1 0.8948 0.1602 -0.055 -0.0727

AKM 4 10 0.7816 0.053 0.1654 0.4064

Notes: Real and simulated data. α is the worker (or type) fixed-effect, ψ is the firm (or class) fixed-effect.

“BLM” is our approach. “min spell” is the minimum length of employment spells. “rep” is the number of job

movers per firm, relative to the original dataset.

These results suggest a poor performance of AKM on these data, while in contrast our

method seems to perform well. A possible explanation for the AKM bias is given by Andrews,

Gill, Schank, and Upward (2008): in the presence of few job movers per firm, the correlation

estimated using the AKM method may be downwardly biased, even negative when the true

correlation is positive. This motivates the final exercise, which we report in rows 5 and 6 of
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Table 3. When we artificially increase the number of movers per firm (10 times) and increase the

length of job spells (we impose of minimum of 4 years per spell), AKM recovers the correlation

and the percentage of variance explained by the firms rather well. Note that this is despite the

fact that the data generating process is non-additive.

Overall, these exercises suggest that, while we uncover evidence of non-additivity between

worker and firm heterogeneity, an additive specification may not be quantitatively misleading

on these data. At the same time, the AKM method seems not to properly recover the amount

of sorting, and more generally the contributions of worker and firm heterogeneity to wage

dispersion, unless the data contain a large number of job movers per firm and long employment

spells. In contrast, our method seems well suited to deal with short panels with relatively few

job movements.

Sorting and wage inequality. In order to assess the impact of worker/firm sorting on

wage inequality, we next plot a counterfactual log wage density, in 2002, assuming random

assignment of workers to firms, versus the density estimate reproduced by the model. The

counterfactual density corresponds to the cdf in (21). The left graph in Figure 10 shows that

the two densities are close to each other. This reflects the fact that, according to our estimates,

while sorting is substantial, the firm component explains relatively little of the variance of log

wages. At the same time, the counterfactual wage distribution without sorting is less dispersed

than the empirical one: the variance is .127 without sorting, versus .144 with sorting (88%).

This suggests that sorting does explain a non-negligible part of wage dispersion. On the right

graph in Figure 10 we compare the quantiles of log wages as reproduced by the model, with the

quantiles in the counterfactual economy with no sorting. We see that workers at the bottom of

the distribution experience higher wages in the absence of sorting, while the differences at the

top of the distribution are small. This is consistent with the evidence of higher complementarity

between firms and low wage workers (Figure 3).

Simulations from a theoretical sorting model. Lastly, in Appendix B we evaluate the

performance of our method to recover the contributions of worker and firm heterogeneity to

wage dispersion, when the data generating process follows a calibrated version of the model of

Shimer and Smith (2000) with on-the-job search (see Moscarini, 2005; Shimer, 2006; Flinn and

Mabli, 2008 for related contracting environments). We analyze two situations: with positive

assortative matching (PAM) and with negative assortative matching (NAM). We show that our

approach recovers the contributions of firms and workers well, even when the model has a large
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Figure 10: Sorting and wage dispersion
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dashed.

number of latent types and classes (K = 50, L = 50) but we use the same number of types and

classes as in the empirical analysis (K = 6, L = 10). In addition, we show that our approach

estimates sorting patterns rather well, even under NAM.

Given these results, a natural question is whether existing theoretical sorting models can

account for the empirical evidence that our method has uncovered on the Swedish data. The

combination of strong sorting of high wage workers to high wage firms, and complementarity

between low wage workers and high wage firms, represents a challenge for models built on Becker

(1974), according to which positive sorting goes hand in hand with positive complementarity

between worker and firm heterogeneity. Although this exceeds the scope of this paper, building

structural models that can match the empirical evidence is an important research question.

7 Extensions

In this section we describe several extensions of the main analysis.
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7.1 Non-stationary model

In the model of Section 2, we assumed that wage distributions in different periods, Fk`, were

time-invariant. Relaxing Assumption 3 may be desirable for several reasons: to allow for

calendar time effects such as macroeconomic shocks, and for unrestricted dependence of Fk` on

worker (or firm) age, as well as to allow for wages before and after a job move to be drawn from

different distributions.

Allowing for non-stationary wage distributions, the bivariate log wage distribution of job

movers between period 1 and 2 becomes:

Pr [Yi1 ≤ y , Yi2 ≤ y′ | f(ji1) = `, f(ji2) = `′,mi = 1] =
K∑
k=1

p12k (`, `′)F 1
k`(y)F 2

k`′(y
′). (23)

To show identification of F 1
k`, F

2
k`′ , and p12k (`, `′) based on (23), we start with a definition,

which we illustrate in Figure 11.

Definition 2. An alternating cycle of length R is a pair of sequences of firm classes (`1, ..., `R) ∈
{1, ..., L}R, with `R+1 = `1, and (˜̀1, ..., ˜̀R) ∈ {1, ..., L}R, such that pk(`r, ˜̀r) 6= 0 and pk(`r+1, ˜̀r) 6=
0 for all r ∈ {1, ..., R} and k ∈ {1, ..., K}.

Figure 11: An alternating cycle containing ` and `′

`

`′

˜̀

˜̀′

Assumption 7. (non-stationary model)

i) For any two firm classes ` 6= `′ in {1, ..., L}, there exists an alternating cycle (`1, ..., `R),

(˜̀1, ..., ˜̀R), such that `1 = ` and `r = `′ for some r, and such that the scalars a1, ..., aK are all

distinct, where:

ak :=
p12k (`1, ˜̀1)p12k (`2, ˜̀2)...p12k (`R, ˜̀R)

p12k (`2, ˜̀1)p12k (`3, ˜̀2)...p12k (`1, ˜̀R)
.

In addition, for all `, `′, possibly equal, there exists an alternating cycle (`′1, ..., `
′
R), (˜̀′1, ..., ˜̀′R),

such that `′1 = ` and ˜̀′r = `′ for some r.
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ii) For a suitable finite set of values for y and y′, and for all r ∈ {1, ..., R}, the matrices:

A(`r, ˜̀r) :=
{

Pr
[
Yi1 ≤ y, Yi2 ≤ y′ | f(ji1) = `r, f(ji2) = ˜̀

r,mi = 1
]}

(y,y′)
and

A(`r, ˜̀r+1) :=
{

Pr
[
Yi1 ≤ y, Yi2 ≤ y′ | f(ji1) = `r, f(ji2) = ˜̀

r+1,mi = 1
]}

(y,y′)

have rank K.

The following result shows that F 1
k`, F

2
k`′ and p12k (`, `′) are identified. Identification of type

proportions π1
k(`), and of firm classes f(j), follows as in the main analysis.

Theorem 2. Consider the joint distribution of wages of job movers in the non-stationary model,

see (23), and let Assumptions 1, 2 and 7 hold. Then, up to common relabelling of the k index,

F 1
k` and F 2

k`′ are identified for all (k, `, `′). Moreover, for all pairs (`, `′) for which there are job

moves from ` to `′ p12k (`, `′) is identified for all k, up to the same relabelling.

Proof. See Appendix A.

7.2 Endogenous mobility and serial correlation

Here we explain how to allow for endogenous mobility and serial correlation in an extension of

the model of Section 2. For this, we rely on an additional period of observation, both before

and after the job move. We consider four periods of employment, and denote the log wages as

Yit and the firm classes as f(jit), for t ∈ {1, ..., 4}. We denote as mi = 1{ji2 6= ji3} the job

mobility indicator between period 2 and 3. We make the following assumptions.

Figure 12: An alternating cycle in the model with endogenous mobility

Yi1 Yi2 Yi3 Yi4

˜̀

`

˜̀′

`′
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Assumption 8.

i) Yi1 is independent of (mi, Yi3, f(ji3)) given (ω(i), Yi2, f(ji2)).

ii) Yi4 is independent of (Yi2, f(ji2), Yi1) given (ω(i), Yi3, f(ji3),mi = 1).

Assumption 8 has two parts. Part i) requires that mobility decisions only depend on the

current firm class, the worker type, and the current wage, but not on the past wage, and that

mobility outcomes of job movers are also conditionally independent of wages measured one

period before the move. Part ii) requires that wages of job movers one period after the move

only depend on the previous wage, the previous firm class, and the worker type, but not on the

wages and firm class before the move.

Assumption 8 is more general than the assumptions we imposed on the model under strict

exogeneity and serial independence. This extension allows to nest theoretical sorting models

that were not consistent with the assumptions of Section 2. As an example, Assumption 8

is satisfied in the model of Shimer and Smith (2000) augmented with on-the-job search and

match-specific heterogeneity, when the latter evolves as a first-order Markov process. It will

also typically be satisfied in wage posting models based on Burdett and Mortensen (1998) that

allow for two-sided heterogeneity and on-the-job wage dynamics.

Given Assumption 8 we have:

Pr [Yi1 ≤ y, Yi4 ≤ y′|Yi2 = y2, Yi3 = y3, f(ji2) = `, f(ji3) = `′,mi = 1]

=
K∑
k=1

pk (y2, y3, `, `
′)Gk`(y|y2)Hk`′(y

′|y3), (24)

where:

pk (y2, y3, `, `
′) := Pr [ω(i) = k|Yi2 = y2, Yi3 = y3, f(ji2) = `, f(ji3) = `′,mi = 1] ,

Gk`(y|y2) := Pr [Yi1 ≤ y|ω(i) = k, Yi2 = y2, f(ji2) = `] ,

Hk`′(y
′|y3) := Pr [Yi4 ≤ y′|ω(i) = k, Yi3 = y3, f(ji3) = `′,mi = 1] .

Moreover, in the first two periods we have:

Pr [Yi1 ≤ y|Yi2 = y2, f(ji2) = `] =
K∑
k=1

πk (y2, `)Gk`(y|y2), (25)

where:

πk(y2, `) := Pr [ω(i) = k|Yi2 = y2, f(ji2) = `] .
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Identification. Using (24), the extension of our setup which allows for non-stationary wage

distributions directly provides identification of Gk`(·|y2), Hk`′(·|y3), and pk (y2, y3, `, `
′), almost

surely in (y2, y3) and up to a common relabeling. To see this, note that (24) is formally analogous

to (23), with y2, ` (respectively y3, `
′) in place of ` (resp. `′). Hence identification holds subject

to the existence of suitable alternating cycles and rank conditions, as stated in Assumption 7.

Note that in the present case the conditions are more demanding, as in particular they require

all worker types to have positive probability, conditionally on both firm classes and wages.

Then, provided the M ×K matrix with generic (y, k)-element Gk`(y|y2) has rank K almost

surely in y2, πk(y2, `) is identified from (25) up to relabelling. Hence:

πk(`) := Pr [ω(i) = k|f(ji2) = `] = E [πk(Yi2, `)|f(ji2) = `]

is identified up to relabelling. By Bayes’ rule, the period-2 cdf:

Fk`(y) := Pr [Yi2 ≤ y|ω(i) = k, f(ji2) = `] = E
[
πk(Yi2, `)

πk(`)
1{Yi2 ≤ y}

∣∣∣∣f(ji2) = `

]
is thus also identified up to relabelling. Similarly, the log wage cdfs in all other periods can

be uniquely recovered up to relabelling, the period-3 and period-4 ones by making use of the

bivariate distribution of (Yi3, Yi4). Transition probabilities associated with job change are also

identified, as:

Pr [f(ji3) = `′|ω(i) = k, Yi2 = y2, f(ji2) = `,mi = 1] =

´
pk (y2, y3, `, `

′) q``′(y2, y3)dy3∑L˜̀=1

´
pk

(
y2, y3, `, ˜̀) q`˜̀(y2, y3)dy3 ,

where
´ y3
−∞ q``′(y2, y

′)dy′ := Pr [Yi3 ≤ y3, f(ji3) = `′|Yi2 = y2, f(ji2) = `,mi = 1].

Lastly, identification of the firm classes f(j) follows as in the model with exogenous mobility

and serial independence.

Estimation. A similar estimation approach to the one we described in Section 4 can be used

here. In practice it is convenient to impose some structure on pk (y2, y3, `, `
′) in order to alleviate

the curse of dimensionality. Once the firm classes have been estimated, we can maximize the

following log-likelihood function:

Ñ∑
i=1

L∑
`=1

L∑
`′=1

1{f̂(ji2) = `}1{f̂(ji3) = `′}

× ln

(
K∑
k=1

pk (`, `′)ϕk``′(Yi2, Yi3; η)gk`(Yi1|Yi2; θ1)hk`′(Yi4|Yi3; θ2)

)
,
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with respect to θ1, θ2, η, and the pk (`, `′), where the joint density ϕk``′(·, ·; η) of (Yi2, Yi3) given

(ω(i) = k, f(ji2) = `, f(ji3) = `′,mi = 1) is indexed by the parameter η. A practical approach

is to specify a bivariate normal distribution with (k, `, `′)-specific means and covariance matrix.

To see the structure implicitly imposed on type probabilities, note that:

pk (y2, y3, `, `
′; η) =

pk (`, `′)ϕk``′(y2, y3; η)∑K
k′=1 pk′ (`, `′)ϕk′``′(y2, y3; η)

.

Lastly, assuming a similar structure on:

πk (y2, `;µ) =
πk (`) fk`(y2;µ)∑K

k′=1 πk′ (`) fk′`(y2;µ)
,

where we have parameterized the period-2 log wage density fk`(·;µ), the third estimation step

consists in maximizing:

N∑
i=1

L∑
`=1

1{f̂(ji2) = `} ln

(
K∑
k=1

πk (`) gk`(Yi1|Yi2; θ̂1)fk`(Yi2;µ)

)
,

with respect to µ and the πk (`). In practice one can specify fk`(·;µ) as a normal distribution

with (k, `)-specific mean and variance.

The EM algorithm can be used for computation in the second and third estimation steps.

7.3 Identifying and estimating the model on T > 2 periods

To extend the model to more than 2 periods we need to model transitions between employment

and unemployment, and the wage evolution of job stayers. Here we consider the version of the

model that we described in Section 2, without endogenous mobility or serial correlation. As an

example, consider job stayers between period 1 and 2 who move to another firm in period 3.

Letting mi1 = 1{ji1 6= ji2} and mi2 = 1{ji2 6= ji3}, we model:

Pr [Yi1 ≤ y, Yi2 ≤ y′, Yi3 ≤ y′′ | f(ji1) = f(ji2) = `, f(ji3) = `′,mi1 = 0,mi2 = 1]

=
K∑
k=1

qk(`, `
′)Gk`(y, y

′)Fk`′(y
′′), (26)

where qk(`, `
′) is the proportion of type-k workers who work in a class-` firm in periods 1 and

2 and move to a class-`′ firm in period 3, and Gk`(y, y
′) is the bivariate wage distribution

of job stayers of type k in a class-` firm. Transitions into and out of unemployment can be

modelled in a similar way, under the assumption that wages are independent of past and future

unemployment status conditional on worker type and firm classes, in addition to exogenous job
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mobility. For example, consider job stayers between period 1 and 2 who lose their job in period

3. Let ui3 denote the unemployment indicator in period 3. We model:

Pr [Yi1 ≤ y, Yi2 ≤ y′ | f(ji1) = f(ji2) = `,mi1 = 0, ui3 = 1] =
K∑
k=1

qk(`, 0)Gk`(y, y
′), (27)

where qk(`, 0) is the proportion of type-k workers who work in a class-` firm in periods 1 and

2 and lose their job in period 3.

The main difference with the two-period model concerns the identification of the bivariate

distributions Gk`. Using similar notations as the proof of Theorem 1, (26) implies, for given y′:

A(`, `′, y′) = G(`, y′)Q(`, `′)F (`′)ᵀ.

As F (`′) is identified up to relabelling from Theorem 1, if follows that, for some permutation σ

of {1, ..., K}, qσ(k)(`, `′)Gσ(k),`(y, y
′) is identified, from which it follows that Gσ(k),` is identified,

provided qσ(k)(`, `
′) 6= 0 for some `′.

Lastly, for estimation, clustering and finite mixture estimators can be used similarly as in

the main analysis.

7.4 Modelling of heterogeneity

Time-varying firm classes. Our framework can accommodate changes of firms classes over

time, i.e., f t(j) instead of f(j). This could reflect changes in firm productivity over time, or the

impact of peer effects due to changes in worker composition (although note that distinguishing

between different mechanisms would require additional assumptions). The only difference with

the main analysis concerns the clustering stage when using job movers in both periods to infer

firm classes; see (13). The finite mixture problem is identical to the one described in the main

analysis.

Nonparametric clustering. Throughout we have fixed a finite number of firm classes L, and

derived asymptotic results in this environment. An alternative approach would be to consider

a setting where L grows at the same time as the number of workers and firms N and J . Several

papers have recently considered this type of asymptotic framework in the statistical analysis of

network data (Wolfe and Olhede, 2013; Gao, Lu, and Zhou, 2014).

Another possibility would be to adopt a local nonparametric approach, in the spirit of

nearest neighbor matching. For any job transition of individual i from ji1 to ji2 one could

construct the following neighborhood:{
i′, such that ji′,1 = j, ji′,2 = j′, and max

(∥∥∥F̂j − F̂ji1∥∥∥ ,∥∥∥F̂j′ − F̂ji2∥∥∥) ≤ δ
}
,
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where F̂j denotes the empirical cdf of log wages in firm j in the cross-section, and δ > 0

is a bandwidth parameter. The clustering approach that we use in this paper may similarly

be understood as forming suitable neighborhoods, which allow to have sufficiently many job

movements in order to infer worker and firm heterogeneity.

Continuous worker types. An alternative to our discrete modelling of worker heterogeneity

is to assume that workers differ in a continuous type αi, drawn from a class-conditional distri-

bution f(α | `, `′) given a job move between ` and `′. One example is given by model (9). Here

we consider a more general framework where wages are drawn from an unrestricted distribution

F (y|α, `). Equations (5) and (6) then become:

Pr [Yi1 ≤ y , Yi2 ≤ y′ | f(ji1) = `, f(ji2) = `′,mi = 1] =

ˆ
f(α | `, `′)F (y|α, `)F (y′|α, `′)dα,

(28)

and:

Pr [Yi1 ≤ y | f(ji1) = `] =

ˆ
g (α|`)F (y|α, `)dα. (29)

The parameters of interest are the conditional wage distributions F (y|α, `) and the worker

type composition f(α | `, `′) and g (α|`). Nonparametric identification of these quantities based

on (28) and (29) can be established using assumptions related to those in Hu and Schennach

(2008), by relying on similar arguments as in Section 3. Estimation can then be based on

parametric or nonparametric techniques, for example using the EM algorithm under parametric

specifications. The identification and estimation of firm classes is identical as in the case with

discrete worker heterogeneity.

8 Conclusion

In this paper we propose a framework for matched data. The clustering approach is useful

in this context, as it allows to get back to standard single-agent econometric models. The

idea to recover heterogeneous classes in a first step by clustering empirical distributions could

be applied in other contexts, for example in structural models where joint estimation of the

heterogeneity and the structural parameters might be computationally prohibitive.

Beyond the preliminary empirical results presented here, it would be interesting to document

how worker and firm sorting varies with the business cycle and contributes to the evolution of

wage inequality. Using our framework to model the earnings dynamics of workers across different
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firms is another interesting agenda. Yet another possible application would be to estimate firm-

level production functions, accounting for the worker composition heterogeneity that we have

identified from wage data. Lastly, there are a number of questions to which matched data can

provide interesting answers, and our method should be useful there as well. One example could

be to use it to document sorting of teachers across schools.
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APPENDIX

A Proofs

Proof of Theorem 1. Let ` ∈ {1, ..., L}, and let (`1, ..., `2R) from Assumption 4. From (5) we

have, considering workers who move between `r and `r+1 for some r ∈ {1, ..., R}:

Pr
[
Yi1 ≤ y, Yi2 ≤ y′ | f(ji1) = `r, f(ji2) = `r+1,mi = 1

]
=

K∑
k=1

pk(`r, `r+1)Fk,`r(y)Fk,`r+1(y′). (30)

Consider a set of M values for y, and the same set of values for y′, that satisfy Assumption 4 ii).

Writing (30) in matrix notation we obtain

A(`r, `r+1) = F (`r)D(`r, `r+1)F (`r+1)
ᵀ, (31)

where A(`r, `r+1) is M ×M with generic element:

Pr
[
Yi1 ≤ y, Yi2 ≤ y′ | f(ji1) = `r, f(ji2) = `r+1,mi = 1

]
,

F (`r) is M ×K with element Fk,`r(y), F (`r+1) is M ×K with element Fk,`r+1(y′), and D(`r, `r+1) is

K ×K diagonal with element pk(`r, `r+1).

Note that A(`r, `r+1) has rank K by Assumption 4 ii). Consider a singular value decomposition

of A(`1, `2):

F (`1)D(`1, `2)F (`2)
ᵀ = USV ᵀ,

where S is K ×K diagonal and non-singular, and U and V have orthonormal columns.

We define the following matrices:

B(`r, `r+1) := S−
1
2UᵀA(`r, `r+1)V

ᵀS−
1
2 ,

C(`r, `r+1) := S−
1
2Uᵀ [A(`r, `r+1)

ᵀ]V ᵀS−
1
2 ,

Q(`r) := S−
1
2UᵀF (`r).

Note that B(`r, `r+1), C(`r, `r+1), and Q(`r) are non-singular, by Assumption 4 ii). Moreover, we

have, for all r ∈ {1, ..., 2R− 1}:

B(`r, `r+1)C(`r+1, `r+2)
−1 = S−

1
2UᵀA(`r, `r+1)V

ᵀS−
1
2

(
S−

1
2UᵀA(`r+1, `r+2)

ᵀ V ᵀS−
1
2

)−1
= S−

1
2UᵀF (`r)D(`r, `r+1)

(
S−

1
2UᵀF (`r+2)D(`r+1, `r+2)

)−1
= Q(`r)D(`r, `r+1)D(`r+1, `r+2)

−1Q(`r+2)
−1.

Let Er = B(`r, `r+1)C(`r+1, `r+2)
−1. We thus have:

E1E3...E2R−1 = Q(`1)D(`1, `2)D(`2, `3)
−1...D(`2R−1, `2R)D(`2R, `1)

−1Q(`1)
−1.
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The eigenvalues of this matrix are all distinct by Assumption 4 i), so Q(`1) is identified up to mul-

tiplication by a diagonal matrix and permutation of its columns. As `1 = `, this shows that Q(`) is

identified up to column scaling and permutation.

Now, note that F (`) = UUᵀF (`), so:

F (`) = US
1
2Q(`)

is identified up to multiplication by a diagonal matrix and permutation of its columns. Hence Fk`(y)λk

is identified up to relabelling, where λk 6= 0 is a scale factor. As a result, λk = limy→+∞ Fk`(y)λk is

identified, so Fk` is identified up to relabelling.

Let now `′ 6= `, and let (`1, ..., `R) be a cycle containing ` = `1 and `′ = `r, obtained from

Assumption 4. We have:

A(`, `2) = F (`)D(`, `2)F (`2)
ᵀ. (32)

The above arguments show that there exists a permutation σ : {1, ...,K} → {1, ...,K} such that Fσ(k),`

is identified. Hence, by (32):

pσ(k)(`, `2)Fσ(k),`2(y′)

is identified, so by taking limits as y′ → +∞ both pσ(k)(`, `2) and Fσ(k),`2 are identified. By induction,

pσ(k)(`r, `r+1) and Fσ(k),`r+1
are identified for all r. As `′ = `r, it follows that Fσ(k),`′ is identified.

Lastly, let any (`, `′) ∈ {1, ..., L}2. Then, from:

A(`, `′) = F (`)D(`, `′)F (`′)ᵀ,

pσ(k)(`, `
′) is identified as Fσ(k),` and Fσ(k),`′ are both identified, and as F (`) and F (`′) have rank K

by Assumption 4 ii).

Proof of Corollary 1. By Assumptions 1, 2, 3, 4, and Theorem 1 there exists a permutation

σ : {1, ...,K} → {1, ...,K} such that Fσ(k),` is identified for all `. Now we have, writing (6) for the M

values of y given by Assumption 4 ii) in matrix form:

H(`) = F (`)Π(`),

where H(`) has generic element Pr [Yi1 ≤ y | f(ji1) = `], the K × 1 vector Π(`) has generic element

πσ(k)(`), and the columns of F (`) have been ordered with respect to σ. By Assumption 4 ii) F (`) has

rank K, from which it follows that:

Π(`) = [F (`)ᵀF (`)]−1 F (`)ᵀH(`)

is identified. So πσ(k)(`) is identified.
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Proof of Proposition 1. Let j ∈ {1, ..., J} such that f(j) = `. For all firms j′′ 6= j such that

f(j′′) = `′′, the bivariate log wage distribution of job movers from j to j′′, say Fjj′′ , is equal to G``′′ ,

which is given by (13). Similarly, the bivariate log wage distribution of job movers from j′′ to j, Fj′′j ,

is equal to G`′′`. Hence, by Assumption 5, the set:

Sj :=
{(
Fjj′′ , Fj′′j

)
, j′′ 6= j

}
takes exactly L values. The f(j) are thus identified as the equivalence classes of Sj .

Note that the number of classes L is also identified, as the number of points of support of Sj .

Proof of Corollary 2. Using similar notations as in the proof of Theorem 1, we have:

F (`)D(`, `′′)F (`′′)ᵀ = F (`′)D(`′, `′′)F (`′′)ᵀ.

By Assumption 4 ii), F (`′′) has rank K. So:

F (`)D(`, `′′) = F (`′)D(`′, `′′).

Using similar arguments as in the proof of Theorem 1 we thus obtain that Fk` = Fk`′ for all k.

Proof of Proposition 2. We verify Assumptions 1 and 2 in Bonhomme and Manresa (2012).

Note that here there are no covariates. Assumptions 1a and 1c are satisfied because 1{Yi1 ≤ y} is

bounded. Assumptions 1d, 1e, and 1f hold because of Assumption 6 i). Assumptions 2a and 2b hold

by Assumptions 6 ii) and iii). Finally, Assumptions 2c and 2d are also satisfied by Assumption 6 i)

and boundedness of 1{Yi1 ≤ y}. Theorems 1 and 2 in Bonhomme and Manresa (2012) and Assumption

6 iv) imply the result.

Proof of Theorem 2. Let ` ∈ {1, ..., L}, and let (`1, ..., `R), (˜̀1, ..., ˜̀R) as in Assumption 7. In

particular, `1 = `. As in the proof of Theorem 1 we have that, for all r and all r′ ∈ {r − 1, r}:

A(`r, ˜̀r′) = F 1(`r)D
12(`r, ˜̀r′)F 2(˜̀r′)ᵀ,

have rank K, where A(`r, ˜̀r′) is M ×M with generic element:

Pr
[
Yi1 ≤ y, Yi2 ≤ y′ | f(ji1) = `r, f(ji2) = ˜̀

r′ ,mi = 1
]
,

F 1(`r) is M ×K with element F 1
k,`r

(y), F 2(˜̀r′) is M ×K with element F 2
k,˜̀r′ (y′), and D12(`r, ˜̀r′) is

K ×K diagonal with element p12k (`r, ˜̀r′).
Consider a singular value decomposition of A(`1, ˜̀1):

F 1(`1)D
12(`1, ˜̀1)F 2(˜̀1)ᵀ = USV ᵀ,
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where S is K ×K diagonal and non-singular, and U and V have orthonormal columns. We define the

following matrices:

B(`r, ˜̀r′) = S−
1
2UᵀA(`r, ˜̀r′)V ᵀS−

1
2 ,

Q(`r) = S−
1
2UᵀF 1(`r).

B(`r, ˜̀r′) and Q(`r) are non-singular by Assumption 7 ii). Moreover, we have, for all r ∈ {1, ..., R}:

B(`r, ˜̀r)B(`r+1, ˜̀r)−1 = S−
1
2UᵀA(`r, ˜̀r)V ᵀS−

1
2

(
S−

1
2UᵀA(`r+1, ˜̀r)V ᵀS−

1
2

)−1
= S−

1
2UᵀF 1(`r)D

12(`r, ˜̀r)(S− 1
2UᵀF 1(`r+1)D

12(`r+1, ˜̀r))−1
= Q(`r)D

12(`r, ˜̀r)D12(`r+1, ˜̀r)−1Q(`r+1)
−1.

Let Er = B(`r, ˜̀r)B(`r+1, ˜̀r)−1. We thus have:

E1E2...ER = Q(`1)D
12(`1, ˜̀1)D12(`2, ˜̀1)−1...D12(`R, ˜̀R)D12(`1, ˜̀R)−1Q(`1)

−1.

The eigenvalues of this matrix are all distinct by Assumption 7 i), so Q(`1) = Q(`) is identified up

to multiplication by a diagonal matrix and permutation of its columns. It follows as in the proof of

Theorem 1 that F 1
σ(k),` is identified for some permutation σ : {1, ...,K} → {1, ...,K}.

Let now `′ 6= `, and let (`1, ..., `R), (˜̀1, ..., ˜̀R), be an alternating cycle such that `1 = ` and `′ = `r

for some r, by Assumption 7 i). It follows as in the proof of Theorem 1 that F 1
σ(k),`′ is identified.

Next, let `, `′, possibly equal, and let (`′1, ..., `
′
R), (˜̀′1, ..., ˜̀′R) be an alternating cycle such that `′1 = `

and `′ = ˜̀′
r for some r, by Assumption 7 i). We have:

B(`′1,
˜̀′
1)B(`′2,

˜̀′
1)
−1...B(`′r,

˜̀′
r) = Q(`′1)D

12(`′1,
˜̀′
1)D

12(`′2,
˜̀′
1)
−1...D12(`′r,

˜̀′
r)F

2(˜̀′r)ᵀV ᵀS−
1
2 ,

from which it follows, similarly as in the proof of Theorem 1, that F 2
σ(k),`′ = F 2

σ(k),˜̀′r is identified.

Lastly, let any (`, `′) ∈ {1, ..., L}2. Then, from:

A(`, `′) = F 1(`)D12(`, `′)F 2(`′)ᵀ,

p12σ(k)(`, `
′) is identified as F 1

σ(k),` and F 2
σ(k),`′ are both identified, and as F 1(`) and F 2(`′) have rank K

by Assumption 7 ii).

B Links to a theoretical model

In this section of the appendix we consider a variation of the model of Shimer and Smith (2000) with

on-the-job search. Relative to the main text we modify some of the notation, in order to be closer to

the original paper.
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Environment. The economy is composed of a uniform measure of workers indexed by x with

unit mass and a uniform measure of jobs indexed by y with mass V̄ . A match (x, y) produces output

f(x, y) and separates exogenously at rate δ. Workers are employed or unemployed. We denote u(x)

the measure of unemployed, h(x, y) the measure of matches, and v(y) the measure of vacancies. We

let U =
´
u(x)dx the mass of unemployed, and V =

´
v(y)dy the mass of vacancies. Unemployed

workers meet vacancies at rate λ0, and employed workers meet vacancies at rate λ1. Vacancies meet

unemployed workers at rate µ0, and employed workers at rate µ1. A firm cannot advertise for a job

that is currently filled. Unemployed workers collect benefits b(x), and vacancies have to pay a flow

cost c(y).

Timing. Each period is divided into four stages. In stage one, active matches collect output and

pay wages. In stage two, active matches exogenously separate with probability δ. In stage three vacant

jobs can advertise and all workers can search. In stage four workers and vacant jobs meet randomly

and, upon meeting, the worker and the firm must decide whether or not to match based on expected

surplus generated by the match. The wage is set by Nash bargaining, where α is the bargaining power

of the worker. We assume that wages are continuously renegotiated with the value of unemployment

(see Shimer (2006) for a discussion). Since workers and firms can search in the same period as job

losses occur, it is convenient to introduce within periods distributions:

v1/2(y) :=
δ + (1− δ)v(y)

δ + (1− δ)V
, u1/2(x) :=

δ + (1− δ)u(x)

δ + (1− δ)U
, h1/2(x, y) :=

h(x, y)

1− U
,

where each distribution integrates to one by construction.

Value functions. We then write down the value functions for this model. Let S(x, y) be the

surplus of the match, W0(x) the value of unemployment, and Π0(y) the value of a vacancy. We have:

rW0(x) = (1 + r)b(x) + λ0

ˆ
M(x, y)αS(x, y)v1/2(y)dy, (BE-W0)

and:

rΠ0(y) = µ0

ˆ
M(x, y)(1− α)S(x, y)u1/2(x)dx+ µ1

ˆˆ
P (x, y′, y)(1− α)S(x, y)h1/2(x, y

′)dy′dx,

(BE-P0)

whereM(x, y) := 1{S(x, y) ≥ 0} is the matching decision, and P (x, y′, y) is one when S(x, y) > S(x, y′)

(that is, when y is preferred to y′ by x), zero when S(x, y) < S(x, y′), and 1/2 when S(x, y) = S(x, y′).

We write the Bellman equation for a job y that currently employs a worker x at wage w:

(r + δ)Π1(x, y, w) = (1 + r) [f(x, y)− w + δ (Π0(y) + c(y))]

− (1− δ)λ1q(x, y)(1− α)S(x, y),
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where q(x, y) =
´
P (x, y, y′)v1/2(y

′)dy′ represents the total proportion of firms y′ that can poach a

worker x from firm y. We then turn to the Bellman equation for the employed worker:

(r + δ)W1(x, y, w) = (1 + r) [w + δ (W0(x)− b(x))]

+ (1− δ)λ1
ˆ
P (x, y, y′)(αS(x, y′)− αS(x, y))v1/2(y

′)dy′.

(BE-W1)

Finally, we derive the value of the surplus associated with the match (x, y), defined by S := W1 +

Π1 −W0 −Π0:

(r + δ)S(x, y) = (1 + r) [f(x, y)− δ (b(x)− c(y))]− r(1− δ) (Π0(y) +W0(x))

+ (1− δ)λ1
ˆ
P (x, y, y′)(αS(x, y′)− S(x, y))v1/2(y

′)dy′. (BE-S)

Flow equations. Lastly we write the flow equation for the joint distribution of matches at the

beginning of the period:(
δ + (1− δ)λ1q(x, y)

)
h(x, y) = λ0 (δ + (1− δ)U)u1/2(x)v1/2(y)M(x, y)

+ λ1(1− δ)(1− U)

ˆ
P (x, y′, y)h1/2(x, y

′)dy′v1/2(y),

(EQ-H)

where:

µ0 (δ + (1− δ)V ) = λ0 (δ + (1− δ)U) , and µ1 (δ + (1− δ)V ) = λ1(1− δ)(1− U), (MC-S)

are the total number of matches coming out of unemployment and coming from on-the-job transitions,

respectively. The market clearing conditions on the labor market are given by:

ˆ
h(x, y)dx+ v(y) = V̄ , and

ˆ
h(x, y)dy + u(x) = 1. (MC-L)

Equilibrium. For a set of primitives δ, λ0, λ1, f(x, y), b(x), c(y), α, the stationary equilibrium

is characterized by the values S(x, y),W0(x),Π0(y) and the measure of matches h(x, y) such that

i) Bellman equations (BE-W0), (BE-P0) and (BE-S) are satisfied, ii) h satisfies the flow equation

(EQ-H), and iii) the constraints (MC-S) and (MC-L) hold.

Wage. We then derive the wage from the model using equation (BE-W1) and using that Nash

bargaining gives W1(x, y, w(x, y)) = αS(x, y) +W0(x):

(1+r)w(x, y) = (r+δ)αS(x, y)+(1−δ)rW0(x)−(1−δ)λ1
ˆ
P (x, y, y′)(αS(x, y′)−αS(x, y))v1/2(y

′)dy′.
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Mapping to distributional model. From there we can recover our model’s cross sectional

worker type proportions conditional on firm heterogeneity (πk(`) in the body of the paper):

π(ω = x|f = y) =
h(x, y)

1− v(y)
,

and the type proportions for job movers (pk(`, `
′) in the main text), which are given by:

p(ω = x|f = y, f ′ = y′) =

(
δλ0 + (1− δ)λ11{S(x, y′) > S(x, y)}

)
h(x, y)M(x, y′)´ (

δλ0 + (1− δ)λ11{S(x̃, y′) > S(x̃, y)}
)
h(x̃, y)M(x̃, y′)dx̃

.

Lastly, we assume that the wage is measured with a multiplicative independent measurement error:

w̃ = w(x, y) exp(ε),

from which we can derive the marginal log-wage distributions (Fk` in the main text).

Without on-the-job search (λ1 = µ1 = 0). Let us consider the case without on-the-job

search. Equation (EQ-H) gives:

δh(x, y) = λ0 (δ + (1− δ)U)u1/2(x)v1/2(y)M(x, y).

Hence:

p(ω = x|f = y, f ′ = y′) =
M(x, y)M(x, y′)u1/2(x)´
M(x̃, y)M(x̃, y′)u1/2(x̃)dx̃

. (PX-YY’)

These probabilities are symmetric in (y, y′). In the context of Theorem 1 this means that Assumption

4 i) is not satisfied, as ak = 1 for all k. This is the setup considered in Shimer and Smith (2000)

and Hagedorn, Law, and Manovskii (2014), for example. Symmetry occurs because, in these models,

all job changes are associated with an intermediate unemployment spell, where all information about

the previous firm disappears. Empirically the majority of job changes occur via job-to-job transitions.

Moreover, in Figure 2 we find evidence against the particular symmetry of equation (PX-YY’).

Simulation and estimation. We pick two parameterizations of the model associated with

positive assortative matching (PAM) and negative assortative matching (NAM) in equilibrium. We

set b(x) = b = 0.3, c(y) = c = 0, and V̄ = 2. We solve the model at a yearly frequency, and we set

δ = 0.02, λ0 = 0.4 and λ1 = 0.1. The production function is CES:

f(x, y) = a+ (νxρ + (1− ν)yρ)1/ρ ,

where we set ν = 0.5 and a = 0.7. Finally we consider ρ = −3 (PAM) and ρ = 4 (NAM).

Figures 13 and 14 plot the model solutions, in terms of production, surplus, allocation, and log

wages. We see clear differences between PAM and NAM. In particular, in NAM mean log wages are

not monotone in firm productivity.
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Figure 13: Model solutions: production, surplus and allocation

Production PAM

xy

Surplus PAM

xy

Allocation PAM

xy

Production NAM

xy

Surplus NAM

xy

Allocation NAM

xy

Notes: The graphs show the model solution in terms of production f(x, y), surplus S(x, y), and allocation h(x, y).

Positive assortative matching (top panel), and negative assortative matching (bottom panel).

In Table 4 we report the results of variance decompositions based on the data generated according

to the model, and based on estimates from our distributional model based on those data. We use

K = 6 and L = 10 in estimation, and consider two scenarios for K and L in the model: (6, 10) and

(50, 50). In the first three columns we show the results of a decomposition of the variance of log wages

in terms of between-worker, within-worker between-firm, and within-worker within-firm components.

We see in the first four rows that, when we use as many heterogeneity types in estimation as in the

true model our approach tends to underestimate the worker contribution and overestimate the within-

worker-and-firm component. Nevertheless, the decomposition is rather well reproduced, especially

taking into account that we re-estimate the firm classes together with all model parameters. In the

last four rows of the table the results are comparable, although for NAM the within-worker between-

firm contribution is underestimated. This suggests that our approach may still provide informative

answers in situations where worker and firm heterogeneity are not clustered into a few classes and

types.

In the last four columns of Table 4 we show the results of additive variance decomposition exercises,

similar to the ones reported in Table 3. We see that our approach recovers the worker and firm
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Figure 14: Model solutions: log wages
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Notes: The left graphs show log wages (without measurement error), by worker type and firm class. The right

graphs show deciles of log wages (with measurement error) by firm class. The thick lines correspond to mean

log wages. Positive assortative matching (top panel), and negative assortative matching (bottom panel).

components rather well, even when the number of types used in estimation, (6, 10), is smaller than

the true one, (50, 50). In addition, our approach correctly recovers the sign of the correlation between

worker and firm effects, for both positive and negative assortative matching. Moreover, the magnitude

of the correlation is very well estimated for PAM, and slightly less so for NAM, the bias being highest

in the last row of the table.
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Table 4: Variance decompositions on data generated by a theoretical model

dim %bw %wwbf %wwwf V ar(α)
V ar(α+ψ)

V ar(ψ)
V ar(α+ψ)

2Cov(α,ψ)
V ar(α+ψ)

Corr(α, ψ)

PAM model 6× 10 0.693 0.103 0.203 0.791 0.054 0.156 0.377
BLM 6× 10 0.636 0.101 0.263 0.756 0.069 0.175 0.385

NAM model 6× 10 0.661 0.136 0.203 1.082 0.125 -0.206 -0.281
BLM 6× 10 0.625 0.114 0.262 1.049 0.099 -0.148 -0.23

PAM model 50× 50 0.693 0.108 0.2 0.758 0.071 0.171 0.367
BLM 6× 10 0.591 0.121 0.288 0.701 0.095 0.204 0.396

NAM model 50× 50 0.685 0.115 0.201 1.079 0.107 -0.186 -0.273
BLM 6× 10 0.668 0.044 0.288 1.009 0.041 -0.05 -0.122

Notes: Variance decompositions based on data generated from the theoretical sorting model with PAM or NAM.

“BLM” corresponds to estimates based on our approach. “dim” is K×L, where K is the number of worker types

and L is the number of firm classes. “%bw”, “%wwbf”, and “%wwwf” denote the between-worker, within-worker

between-firm, and within-worker within-firm components of the variance of log wages, respectively. The last four

columns correspond to an additive variance decomposition, similar to Table 3.
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