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Introduction

Partially Identified Models:

– Param. of interest is not uniquely determined by distr. of obs. data.

– Instead, limited to a set as a function of distr. of obs. data.

(i.e., the identified set)

– Due largely to pioneering work by C. Manski, now ubiquitous.

(many applications!)

Inference in Partially Identified Models:

– Focused mainly on the construction of confidence regions.

– Most well-developed for moment inequalities.

– Important practical issues remain subject of current research.
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Outline of Talk

1. Definition of partially identified models

2. Confidence regions for partially identified models

– Importance of uniform asymptotic validity

3. Moment inequalities

– Common framework to describe five distinct approaches

4. Subvector inference for moment inequalities

5. More general framework

– Unions of functional moment inequalities
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Partially Identified Models

Obs. data X ∼ P ∈ P = {Pγ : γ ∈ Γ}.

(γ is possibly infinite-dim.)

Identified set for γ:

Γ0(P ) = {γ ∈ Γ : Pγ = P} .

Typically, only interested in θ = θ(γ).

Identified set for θ:

Θ0(P ) = {θ(γ) ∈ Θ : γ ∈ Γ0(P )} ,

where Θ = θ(Γ).
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Partially Identified Models (cont.)

θ is identified relative to P if

Θ0(P ) is a singleton for all P ∈ P .

θ is unidentified relative to P if

Θ0(P ) = Θ for all P ∈ P .

Otherwise, θ is partially identified relative to P.

Θ0(P ) has been characterized in many examples ...

... can often be characterized using moment inequalities.
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Confidence Regions

If θ is identified relative to P (so, θ = θ(P )), then we require that

lim inf
n→∞

inf
P∈P

P{θ(P ) ∈ Cn} ≥ 1− α .

Now we require that

lim inf
n→∞

inf
P∈P

inf
θ∈Θ0(P )

P{θ ∈ Cn} ≥ 1− α .

Refer to as conf. region for points in id. set unif. consistent in level.

Remark: May also be interested in conf. regions for identified set itself:

lim inf
n→∞

inf
P∈P

P{Θ0(P ) ⊆ Cn} ≥ 1− α .

See Chernozkukov et al. (2007) and Romano & Shaikh (2010).
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Confidence Regions (cont.)

Unif. consistency in level vs. pointwise consistency in level, i.e.,

lim inf
n→∞

P{θ ∈ Cn} ≥ 1− α for all P ∈ P and θ ∈ Θ0(P ) .

May be for every n there is P ∈ P and θ ∈ Θ0(P ) with cov. prob. � 1− α.

In well-behaved prob., distinction is entirely technical issue.

(e.g., conf. regions for the univariate mean with i.i.d. data.)

In less well-behaved prob., distinction is more important.

(e.g., conf. regions in even simple partially id. models!)

Some “natural” conf. reg. may need to restrict P in non-innocuous ways.

(e.g., may need to assume model is “far” from identified.)

See Imbens & Manski (2004).
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Moment Inequalities

Henceforth, Wi, i = 1, . . . , n are i.i.d. with common marg. distr. P ∈ P.

Numerous ex. of partially identified models give rise to mom. ineq., i.e.,

Θ0(P ) = {θ ∈ Θ : EP [m(Wi, θ)] ≤ 0} ,

where m takes values in Rk.

Goal: Conf. reg. for points in the id. set that are unif. consistent in level.

Remark: Assume throughout mild uniform integrability condition ...

... ensures CLT and LLN hold unif. over P ∈ P and θ ∈ Θ0(P ).
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Moment Inequalities (cont.)

How: Construct tests φn(θ) of

Hθ : EP [m(Wi, θ)] ≤ 0

that provide unif. asym. control of Type I error, i.e.,

lim sup
n→∞

sup
P∈P

sup
θ∈Θ0(P )

EP [φn(θ)] ≤ α .

Given such φn(θ),

Cn = {θ ∈ Θ : φn(θ) = 0}

satisfies desired coverage property.

Below describe five different tests, all of form

φn(θ) = I{Tn(θ) > ĉn(θ, 1− α)} .
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Moment Inequalities (cont.)

Some Notation:

µ(θ, P ) = EP [m(Wi, θ)].

m̄n(θ) = sample mean of m(Wi, θ).

Ω̂n(θ) = sample correlation of m(Wi, θ).

σ2
j (θ, P ) = VarP [mj(Wi, θ)].

σ̂2
n,j(θ) = sample variance of mj(Wi, θ).

D̂n(θ) = diag(σ̂n,1(θ), . . . , σ̂n,k(θ)).
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Moment Inequalities (cont.)

Test Statistic:

In all cases,

Tn(θ) = T (D̂−1
n (θ)

√
nm̄n(θ), Ω̂n(θ))

for an appropriate choice of T (x, V ), e.g.,

– modified method of moments:
∑

1≤j≤k max{xj , 0}2

– maximum: max1≤j≤k max{xj , 0}

– quasi-likelihood ratio: inft≤0(x− t)′V −1(x− t)

Main requirement is that T weakly increasing in first argument.
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Moment Inequalities (cont.)

Critical Value:

Useful to define

Jn(x, s(θ), θ, P ) = P
{
T (D̂−1

n (θ)Zn(θ) + D̂−1
n (θ)s(θ), Ω̂n(θ)) ≤ x

}
,

where

Zn(θ) =
√
n(m̄n(θ)− µ(θ, P )) ,

which is easy to estimate.

On the other hand,

Jn(x,
√
nµ(θ, P ), θ, P ) = P{Tn(θ) ≤ x}

is difficult to estimate. See, e.g., Andrews (2000).

Indeed, not even possible to estimate
√
nµ(θ, P ) consistently!

Five diff. tests distinguished by how they circumvent this problem.
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Moment Inequalities (cont.)

Test #1: Least Favorable Tests:

Main Idea:
√
nµ(θ, P ) ≤ 0 for any P ∈ P and θ ∈ Θ0(P )

=⇒ J−1
n (1− α,

√
nµ(θ, P ), θ, P ) ≤ J−1

n (1− α, 0, θ, P ) .

Choosing

ĉn(1− α, θ) = estimate of J−1
n (1− α, 0, θ, P )

therefore leads to valid tests.

See Rosen (2008) and Andrews & Guggenberger (2009).

Closely related work by Kudo (1963) and Wolak (1987, 1991).
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Moment Inequalities (cont.)

Test #1: Least Favorable Tests (cont.):

Remark: Deemed “conservative,” but criticism not entirely fair:

– In Gaussian setting, these tests are (α- and d-) admissible.

– Some are even maximin optimal among restricted class of tests.

– See Lehmann (1952) and Romano & Shaikh (unpublished).

Nevertheless, unattractive:

– Tend to have best power against alternatives with all moments > 0.

– As θ varies, many alternatives with only some moments > 0.

– May therefore not lead to smallest confidence regions.

Following tests incorporate info. about
√
nµ(θ, P ) in some way.

=⇒ better power against such alternatives.
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Moment Inequalities (cont.)

Test #2: Subsampling:

See Politis & Romano (1994).

Main Idea: Fix b = bn < n with b→∞ and b/n→ 0.

Compute Tn(θ) on each of
(
n
b

)
subsamples of data.

Denote by Ln(x, θ) the empirical distr. of these quantities.

Use Ln(x, θ) as estimate of distr. of Tn(θ), i.e.,

Jn(x,
√
nµ(θ, P ), θ, P ) .

Choosing

ĉn(1− α, θ) = L−1
n (1− α, θ)

leads to valid tests.

See Romano & Shaikh (2008) and Andrews & Guggenberger (2009).
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Moment Inequalities (cont.)

Test #2: Subsampling (cont.):

Why: Ln(x, θ) is a “good” estimate of distr. of Tb(θ), i.e.,

Jb(x,
√
bµ(θ, P ), θ, P ) .

See general results in Romano & Shaikh (2012).

Moreover,
√
nµ(θ, P ) ≤

√
bµ(θ, P )

for any P ∈ P and θ ∈ Θ0(P )

=⇒ J−1
n (1− α,

√
nµ(θ, P ), θ, P ) ≤ J−1

n (1− α,
√
bµ(θ, P ), θ, P ) .

Desired conclusion follows.

Remark: Incorporates information about
√
nµ(θ, P ) ...

... but remains unattractive because choice of b problematic.

16



Moment Inequalities (cont.)

Test #3: Generalized Moment Selection:

See Andrews & Soares (2010).

Main Idea: Perhaps possible to estimate
√
nµ(θ, P ) “well enough”?

Consider, e.g., ŝgms
n (θ) = (ŝgms

n,1 (θ), . . . , ŝgms
n,k (θ))′ with

ŝgms
n,j (θ) =

0 if
√
nm̄n,j(θ)
σ̂n,j(θ)

> −κn
−∞ otherwise

,

where 0 < κn →∞ and κn/
√
n→ 0.

Choosing

ĉn(1− α, θ) = estimate of J−1
n (1− α, ŝgms

n (θ), θ, P )

leads to valid tests.
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Moment Inequalities (cont.)

Test #3: Generalized Moment Selection (cont.):

Why: For any sequence Pn ∈ P and θn ∈ Θ0(Pn)

ŝgms
n,j (θn) =

0 if
√
nµj(θn, Pn)→ c ≤ 0

−∞ if
√
nµj(θn, Pn)→ −∞

w.p.a.1 .

In this sense, ŝgms
n (θ) provides an asymp. upper bound on

√
nµ(θ, P ).

Remark: Also incorporates information about
√
nµ(θ, P ) ...

... and, for typical κn and b, more powerful than subsampling.

Main drawback is choice of κn:

– In finite-samples, smaller choice always more powerful.

– First- and higher-order properties do not depend on κn.

See Bugni (2014).

– Precludes data-dependent rules for choosing κn.
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Moment Inequalities (cont.)

Test #4: Refined Moment Selection:

See Andrews & Barwick (2012).

Main Idea: In order to develop data-dep. rules for choosing κn, ...

... change asymp. framework so κn does not depend on n.

Consider, e.g., ŝrms
n (θ) = (ŝrms

n,1 (θ), . . . , ŝrms
n,k (θ))′ with

ŝrms
n,j (θ) =

0 if
√
nm̄n,j(θ)
σ̂n,j(θ)

> −κ

−∞ otherwise
.

Note ŝrms
n (θ) no longer an asymp. upper bound on

√
nµ(θ, P ), so ...

... critical value replacing ŝgms
n (θ) with ŝrms

n (θ) is too small.

For appropriate size-corr. factor η̂n(θ) > 0, choosing

ĉn(1− α, θ) = estimate of J−1
n (1− α, ŝrms

n (θ), θ, P ) + η̂n(θ)

leads to valid tests (whose first-order properties depend on κ.)
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Moment Inequalities (cont.)

Test #4: Refined Moment Selection (cont.):

Remark: Incorporates information about
√
nµ(θ, P ) ...

... in asymp. framework where first-order prop. depend on κ.

Main drawback is computation of η̂n(θ):

– Requires approx. max. rejection probability over k-dim. space.

– Andrews & Barwick (2012) examine 2k−1 − 1 extreme points.

– Provide numerical evidence in favor of this simplification.

– Some results in McCloskey (2015).

– Even so, remains computationally infeasible for k > 10.

Precludes many applications, e.g.,

– Bajari, Benkard & Levin (2007) (k ≈ 500 or more!)

– Ciliberto & Tamer (2009) (k = 2m+1 where m = # of firms).
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Moment Inequalities (cont.)

Test #5: Two-Step Tests:

See Romano, Shaikh & Wolf (2014).

Main Idea:

Step 1: Construct conf. region for
√
nµ(θ, P ), i.e., Mn(1− β, θ) s.t.

lim inf
n→∞

inf
P∈P

inf
θ∈Θ0(P )

P
{√

nµ(θ, P ) ∈Mn(1− β, θ)
}
≥ 1− β ,

where 0 < β < α.

An upper-right rect. conf. reg. is computationally attractive, i.e.,

Mn(1− β, θ) =

{
µ ∈ Rk : µj ≤ m̄n,j(θ) +

σ̂n,j(θ)q̂n(1− β, θ)√
n

}
,

where q̂n(1− β, θ) may be easily constructed using, e.g., bootstrap.
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Moment Inequalities (cont.)

Test #5: Two-Step Tests:

Main Idea (cont.):

Step 2: Use Mn(1− β, θ) to restrict possible values for
√
nµ(θ, P ).

Consider “largest” s ≤ 0 with s ∈Mn(1− β, θ), i.e.,

ŝts
n (θ) = (ŝts

n,1(θ), . . . , ŝts
n,k(θ))′

with

ŝts
n,j(θ) = min{

√
nm̄n,j(θ) + σ̂n,j(θ)q̂n(1− β, θ), 0} .

Choosing

ĉn(1− α, θ) = estimate of J−1
n (1− α+ β, ŝts

n (θ), θ, P ) ,

leads to valid tests (whose first-order properties depend on β).

Closed-form expression for ŝts
n (θ) a key feature!
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Moment Inequalities (cont.)

Test #5: Two-Step Tests (cont.):

Why: Argument hinges on simple Bonferroni-type inequality.

Remark: Also incorporates information about
√
nµ(θ, P ) ...

... in asymp. framework where first-order prop. depend on β.

But, importantly:

– Remains feasible even for large values of k.

– Despite “crudeness” of ineq., remains competitive in terms of power.

Many earlier antecedents:

– In statistics, e.g., Berger & Boos (1994) and Silvapulle (1996).

– In economics, e.g., Stock & Staiger (1997) and McCloskey (2012).

– Computational simplicity key novelty here.
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Subvector Inference for Moment Inequalities

Despite advances, methods not commonly employed.

Methods difficult (infeasible?) when dim(θ) even moderately large ...

... but interest often only in few coord. of θ (or a fcn. of θ)!

Let λ(·) : Θ→ Λ be function of θ of interest.

Identified set for λ(θ) is

Λ0(P ) = λ(Θ0(P )) = {λ(θ) : θ ∈ Θ0(P )} ,

where

Θ0(P ) = {θ ∈ Θ : EP [m(Wi, θ)] ≤ 0} .

Goal: Conf. reg. for points in id. set that are unif. consistent in level.

Remark: Methods require same assumptions plus possibly others.
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Subvector Inference for Moment Inequalities (cont.)

How: Construct tests φn(λ) of

Hλ : ∃ θ ∈ Θ with EP [m(Wi, θ)] ≤ 0 and λ(θ) = λ

that provide unif. asym. control of Type I error, i.e.,

lim sup
n→∞

sup
P∈P

sup
λ∈Λ0(P )

EP [φn(λ)] ≤ α .

Given such φn(λ),

Cn = {λ ∈ Λ : φn(λ) = 0}

satisfies desired coverage property.

Below describe three different tests.
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Subvector Inference for Moment Inequalities (cont.)

Test #1: Projection:

Main Idea: Utilize previous tests φn(θ):

φproj
n (λ) = inf

θ∈Θλ
φn(θ) ,

where

Θλ = {θ ∈ Θ : λ(θ) = λ} .

Properties of φn(θ) imply this is a valid test.

Remark: As noted by Romano & Shaikh (2008) ...

... generally conservative, i.e., may severely over cover λ(θ).

Computationally difficult when dim(θ) large.

Related work by Kaido, Molinari & Stoye (in progress) ...

... adjust critical value in φn(θ) to avoid over-coverage.

26



Subvector Inference for Moment Inequalities (cont.)

Test #2: Subsampling:

See Romano & Shaikh (2008).

Main Idea: Reject Hλ for large values of profiled test statistic:

T prof
n (λ) = inf

θ∈Θλ
Tn(θ) ,

where Tn(θ) is one of test statistics from before.

Use subsampling to estimate distribution of T prof
n (λ).

High-level conditions for validity given by Romano & Shaikh (2008).

Remark: Less conservative than proj., but choice of b problematic.
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Subvector Inference for Moment Inequalities (cont.)

Test #3: Minimum Resampling:

See Bugni, Canay & Shi (2014).

Also rejects for large values of T prof
n (λ).

In order to describe critical value, useful to define

Jn(x,Θλ, s(·), λ, P ) = P

{
inf
θ∈Θλ

T (D̂−1
n (θ)Zn(θ) + D̂−1

n (θ)s(θ), Ω̂n(θ)) ≤ x
}
.

Note

Jn(x,Θλ,
√
nµ(·, P ), λ, P ) = P{T prof

n (λ) ≤ x} .
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Subvector Inference for Moment Inequalities (cont.)

Test #3: Minimum Resampling (cont.):

Old Idea: Replace s(·) with 0 or ŝgms
n (·).

Does not lead to valid tests.

Indeed, for P ∈ P and λ ∈ Λ0(P ),

√
nµ(θ, P ) need not be ≤ 0 for θ ∈ Θλ .

=⇒ neither 0 nor ŝgms
n (·) provide (asymp.) upper bounds on

√
nµ(·, P ).

In simple ex., may lead to tests with size 30% (vs. nominal size 5%).
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Subvector Inference for Moment Inequalities (cont.)

Test #3: Minimum Resampling (cont.):

Main Idea: (a) Replace Θλ with a subset, e.g.,

Θ̂n ≈ minimizers of Tn(θ) over θ ∈ Θλ ,

over which ŝgms
n (·) provides asymp. upper bound on

√
nµ(·, P ).

(b) Replace s(θ) with ŝbcs
n (θ) = (ŝbcs

n,1(θ), . . . , ŝbcs
n,k(θ))′ with

ŝbcs
n,j (θ) =

√
nm̄n,j(θ)

κnσ̂n,j(θ)
,

which does provide asymp. upper bound on
√
nµ(·, P ).

Critical values from (a) and (b) both lead to valid tests.

Combination of two ideas leads to even better test!
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Subvector Inference for Moment Inequalities (cont.)

Test #3: Minimum Resampling (cont.):

Remark: By combining both (a) and (b):

– Power advantages over both projection and subsampling

– Not true for (a) or (b) alone.

Main drawback is choice of κn.

Possible to generalize Romano, Shaikh & Wolf (2014) ...

... but even further generalizations possible!
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General Framework

Unions of Functional Moment Inequalities:

Canay, Santos & Shaikh (in progress).

Extend Romano, Shaikh & Wolf (2014) to following problem:

For Θ̄ ⊆ Θ, consider null hypothesis

HΘ̄ : ∃ θ ∈ Θ̄ with EP [f(Wi)] ≤ 0 for all f ∈ Fθ ,

where f is a function taking values in R.

With appropriate choice of Θ̄ and Fθ, includes previous problems:

– moment inequalities:

Θ̄ = {θ} and Fθ = {mj(Wi, θ) : 1 ≤ j ≤ k}.

– subvector inference for moment inequalities:

Θ̄ = Θλ and Fθ = {mj(Wi, θ) : 1 ≤ j ≤ k}.
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General Framework (cont.)

Unions of Functional Moment Inequalities (cont.):

But framework includes many other problems:

– conditional moment inequalities:

Following Andrews & Shi (2013),

Θ̄ = {θ} and Fθ = {mj(Wi, θ)I{Wi ∈ V } : V ∈ V, 1 ≤ j ≤ k},

where V is a suitable class of sets.

– subvector inference for conditional moment inequalities:

Θ̄ = Θλ and Fθ = {mj(Wi, θ)I{Wi ∈ V } : V ∈ V, 1 ≤ j ≤ k}

– specification testing for (conditional) moment inequalities:

Θ̄ = Θ and appropriate Fθ from above.

As well as others, e.g., tests of stochastic dominance.
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Important Omissions

1. Many Moment Inequalities, e.g.,

– Chernozhukov, Chetverikov & Kato (2013) and Menzel (2014)

2. Conditional Moment Inequalities, e.g.,

– Andrews & Shi (2013) and Chernozhukov, Lee & Rosen (2013)

3. Inference using Random Set Theory, e.g.,

– Beresteanu & Molinari (2008) and Kaido & Santos (2014)

4. Bayesian Approaches, e.g.,

– Moon & Schorfheide (2012) and Kline & Tamer (2014)

...
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