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Abstract

In the presence of intertemporal substitution, static demand estimation yields bi-

ased estimates and fails to recover long run price responses. Our goal is to present a

computationally simple way to estimate dynamic demand using aggregate data. Pre-

vious work on demand dynamics is computationally intensive and relies on (hard to

obtain) household level data. We estimate the model using store level data on soft

drinks and �nd: (i) a disparity between static and long run estimates of price re-

sponses, and (ii) heterogeneity consistent with sales being driven by discrimination

motives. The model�s simplicity allows us to compute mark-ups implied by dynamic

pricing.
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1 Introduction

Demand estimation plays a key role in many applied �elds. A typical exercise is to estimate a

demand system and use it to infer conduct, simulate the e¤ects of a merger, evaluate a trade

policy or compute cost pass-through.1 While for the most part the demand models used

are static, there is evidence that product durability or storability may generate dynamics,

which could contaminate estimates. Focusing on storable products, a number of papers

(Erdem, Imai and Keane, 2003, and Hendel and Nevo, 2006b) use household level data to

structurally estimate consumer inventory models and simulate long run price responses. The

computational burden and (household level) data requirement have limited the use of these

dynamic demand models.

We propose an alternative model to incorporate demand dynamics. Our goal is to present

a computationally simple way to estimate dynamic demand for storable products, or test for

its presence, using aggregate, rather than household level, data. In many studies dynamics

are not the essence. A test for the presence of dynamics may help rule them out. If dynamics

are present their impact can be quanti�ed by comparing static estimates to estimates from

our model.

The model allows us to separate purchases for current consumption from purchases for

future consumption. That way we can relate consumption and prices, to recover preferences

(clean of storage decisions); and translate short run responses to prices, observed in the data,

into long run reactions. The latter are the object of interest in most applications. The way

we impute purchases for storage is quite simple but intuitive. Its advantage is that it does

not require solving the value function of the consumer and the estimation is straightforward.

A key to the simplicity of the model is in the storage technology: consumers are assumed

to be able to store for a pre-speci�ed number of periods. This assumption simpli�es the

solution to the consumer�s problem. The intuition of the model can best be demonstrated

by a simple example. Suppose there is a single variety of a product with (1) prices that take

on two values: a sale and a non-sale price; and (2) some consumers can store the product

for one period (while others cannot store). Given these assumptions the model de�nes four

states depending on the current and previous period price. The states determine whether

there are purchases for storage or not, and whether consumption comes out of storage. Thus,

1See, for example, Berry, Levinsohn, and Pakes (1995, 1999), Goldberg (1995), Hausman, Leonard and
Zona (1994).
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for each period there is a well de�ned demand curve, which is a function of the state, the

(long run) demand parameters, and the fraction of consumers who can store. For example,

consider a non-sale preceded by a non-sale. All consumers purchase for consumption. Since

it is not a sale there is no incentive to store, and since the previous period was also not a

sale none of the consumers have any inventory. Similarly, during a non-sale that follows a

sale only consumers that cannot store will purchase, since those who can store bought in the

previous period.

Using the illustrative example we see that the parameters of the model can be estimated

in one of two ways. We could restrict attention to periods where dynamics do not play a role.

In the above example these are two consecutive non-sale periods, as well as two consecutive

periods with sales. Alternatively, we could look at all periods and use the model to predict

purchases, accounting for the fraction of consumers who may be stockpiling.

The model we propose builds on the intuition of the example. We formalize the required

assumptions and show that they simplify the state space. The problem remains dynamic,

but easy to characterize. Solving the value function is not necessary. The approach can be

seen as an alternative model of storage (where storage is based on periods of consumption as

opposed to physical units) or as an approximation to a complex dynamic inventory decision.

We present simulations to evaluate how well the approximation works.

Using the model we describe the biases generated by neglecting dynamics. Estimated

own price responses are upward biased. The reason is that estimates re�ect a weighted

average of long run price responsiveness (dictated by the underlying preferences) and short

run inventory (intertemporal) considerations. In addition, the model suggests that standard

static estimation controls for the wrong price of the competing goods. The "e¤ective" price

(the actual opportunity cost of consumption) in this dynamic setup might di¤er from current

price. We show that the consequences of using the wrong price is to bias the estimated cross

price e¤ect downward. For most antitrust applications the interest lies in long run elasticities.

For example, in assessing unilateral e¤ects in merger analysis, both biases, the upward bias

in own price e¤ect and downward bias in cross price e¤ect, attenuate the computed unilateral

e¤ect.

We apply the model to weekly store-level data on purchases of 2-liter bottles of colas. The

estimates using our model deliver, as expected, lower own and higher cross price responses
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than the static estimates. The order of magnitude of the bias is comparable to what Hendel

and Nevo (2006b) �nd when they estimate a dynamic inventory model for laundry detergents.

We discuss alternative approaches in Section 7. Alternatives to dealing with dynamics

include aggregating the data from weekly to monthly and quarterly frequency, or approxi-

mating the missing inventory by including lagged prices/quantities (and computing long run

e¤ects using impulse response). We show these alternatives perform poorly, yielding negative

cross price e¤ects. We argue that the alternative methods also require a model to translate

the estimated coe¢ cients into preferences.

Another advantage of the simplicity of the model is to make the supply side tractable.

In principle, the presence of demand dynamics makes the pricing problem quite di¢ cult to

solve. Especially so when there are multiple products sold by di¤erent sellers. In contrast,

the demand framework we propose leads to a simple solution to the sellers�pricing problem.

Studying the supply side is interesting in its own right, but it is particularly important

in many applications. Demand elasticities are typically used in conjunction with static �rst

order conditions to infer market power. Demand dynamics render static �rst order conditions

irrelevant. A supply framework consistent with demand dynamics is needed. We show that

sellers�optimal behavior can still be characterized by �rst order conditions. Interestingly, the

demand estimates show that consumers who store are signi�cantly more price sensitive than

non-storers, which is consistent with price discrimination being the motive behind sales.

We use the estimated demand elasticities and the dynamic �rst order conditions to infer

markups.

Section 2 presents motivating facts and reviews the literature. The model is presented

in Section 3 and the estimation in Section 4. Section 5 presents an application to soft

drinks. Extensions of the model are presented in Section 6. Section 7 discusses alternative

approaches.
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2 Evidence of Demand Accumulation

2.1 Motivating Facts

Several papers (discussed in the next sub-section) have documented demand dynamics. We

�rst look at typical scanner data for direct evidence on the relevance of intertemporal demand

e¤ects.

Figure 1 shows the price of a 2-liter bottle of Coke in a store over a year. The pattern is

typical of pricing observed in scanner data: regular prices and occasional sales, with return

to the regular price. Since soft-drinks are storable, pricing like this creates an incentive for

consumers to anticipate purchases: buy during a sale for future consumption.
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Figure 1: A typical pricing pattern

Quantity purchased shows evidence of demand accumulation. Table 1 displays the quan-

tity of 2-liter bottles of Coke sold during sale and non-sale periods (we present the data in

more detail below). During sales the quantity sold is signi�cantly higher (623 versus 227,

or 2.75 times more). More importantly, the quantity sold is lower if a sale was held in the

previous week (399 versus 465, or 15 percent lower).
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The impact of previous sales is even larger if we condition on whether or not there is

a sale in the current period (532 versus 763, or 30 percent lower, if there is a sale and 199

versus 248, or 20 percent lower in non sale periods).

We interpret the simple patterns present in Table 1 as evidence that demand dynamics

are important and that consumers�ability to store detaches consumption from purchases.

Table 1 shows that purchases are linked to previous purchases, or at least, to previous prices.

Table 1: Quantity of 2-Liter Bottles of Coke Sold

St�1 = 0 St�1 = 1

St = 0 247.8 199.4 227.0

St = 1 763.4 531.9 622.6

465.0 398.9

Note: The table presents the average across 52 weeks and 729 stores of the number of 2-litter
bottles of Coke sold during each period. As motivated below, a sale is de�ned as any price below
1 dollar.

2.2 Related Literature

Numerous papers in Economics and Marketing document demand dynamics, speci�cally,

demand accumulation (see Blattberg and Neslin (1990) for a survey of the Marketing lit-

erature). Boizot et al. (2001) and Pesendorfer (2002) show that demand increases in the

duration from previous sales. Hendel and Nevo (2006a) document demand accumulation

and demand anticipation e¤ects, namely, duration from previous purchase is shorter during

sales, while duration to following purchase is longer for sale periods. Erdem, Imai and Keane

(2003), and Hendel and Nevo (2006b) estimate structural models of consumer inventory be-

havior.

Several explanations have been proposed in the literature to why sellers o¤er temporary

discounts. Varian (1980) and Salop and Stiglitz (1982) propose search based explanations

which deliver mixed strategy equilibria, interpreted as sales. Sobel (1984), Conlisk Gerstner

and Sobel (1984), Pesendorfer (2002), Narasimhan and Jeuland (1985) and Hong, McAfee

and Nayyar (2002) present di¤erent models of intertemporal price discrimination. Our es-

timates show that sellers have incentives to intertemporally price discriminate, suggesting

that sales are probably driven by discrimination motives.
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3 The Model

In order to convey the main ideas we start with the simplest model of product di¤erentiation

with storage. We later show the model can be generalized in several dimensions. For exam-

ple, the proposed estimation can be applied to more �exible demand systems, e.g., Berry,

Levinsohn and Pakes (1995).

3.1 The Main Assumptions

Assume quadratic preferences:

U(q;m) = Aq � q0Bq +m (1)

where q = [q1; q2; :::; qN ] is the vector of quantities consumed of the di¤erent varieties of the

product (colas in our application) and m is the outside good. Absent storage, quadratic

preferences lead to a linear demand system:

qti(p) = �� �ipti +
X
j

ijp
t
j (2)

In a multi-period set up with storage, consumers can anticipate purchases for future

consumption. We make the following assumptions:

A1: two prices: sale and non-sale (pS < pN)

The transition between sale and non-sale periods could be random or deterministic. In

the next section we discuss exactly how consumers form expectations regarding future prices.

Assumption A1 is stronger than needed. A key for our method to work is to be able

to de�ne a sale price, i.e., a price at which (some) consumers store for future consumption.

When prices take on two values the de�nition of a sale is immediate. There can be several

sale prices (as well as non-sale ones), all we need is to correctly de�ne periods at which

consumers store. Namely, periods of demand anticipation.

Next we make assumptions on the storage technology.

A2: storage is free

A3: inventory lasts for T periods (depreciates afterwards)
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Initially we will focus on the T = 1 case, which makes the analysis more transparent.

Allowing inventory to last for a single period reduces the state space: we only have to consider

whether there was a sale in the previous period. In Section 3.4 we show how to modify the

estimation for T > 1. Notice the data can guide what the relevant T is, for example, by

examining the e¤ect of lagged sales on the quantity purchased.

A4: a proportion ! of consumers do not store.

We assume that a proportion of customers do not have access to the storing technology.

This assumption helps us explain why we see purchases in a non-sale period after a sale.

If everyone stored in the previous period our model would predict no purchases. With two

prices this assumption is not very restrictive, but as we add more prices it will have bite

since it assumes that the fraction of non-storers does not change with price.

In Section 3.4 we discuss the assumptions, their limitations, and possible generalizations.

3.2 Purchasing Patterns

We now characterize consumer behavior. To ease exposition we ignore discounting. The

application involves weekly data, and therefore discounting does not play a big role.

Consumers who store, purchase for storage at pS, and never store at pN : When they

store, they do so for one period. Thus, to predict consumer behavior we only need to de�ne

4 events (or types of periods): a sale preceded by a sale (SS), a sale preceded by a non-sale

(NS), a non-sale preceded by a sale (SN ), and two non-sale periods (NN ). We assume for

now perfect price foresight, and later discuss (in section 6) behavior under rational price

expectations.

Assume, for a moment, that only product i is stored. Given Assumptions A1-A4 and

perfect foresight, product i aggregate purchases, xi(p); are:

xi(p
t) =

8>>>>><>>>>>:
qi(p

t
i; p

t
�i)

!qi(p
t
i; p

t
�i)

!qi(p
t
i; p

t
�i) + (1� !)(qi(pti; pt�i) + qi(pti; pt+1�i ))

!qi(p
t
i; p

t
�i) + (1� !)qi(pti; pt+1�i )

if

pt�1i = pti = p
N
i

pSi = p
t�1
i < pti = p

N
i

pNi = p
t�1
i > pti = p

S
i

pt�1i = pti = p
S
i

(3)
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where qi(pti; p
t
�i) is the long run demand (we are after). Here we assume identical preferences

for all consumers, but it is easy to allow storers and non-storers to have di¤erent demands,

which we do in the application.

The four rows represent events NN , SN , NS, and SS; respectively. For the fraction

! of non-storers demand is equal to consumption and therefore in all states contributes

!qi(p
t
i; p

t
�i) to aggregate demand. For storers, demand is dictated by the model. At high

prices there are no incentives to store, in which case purchases equal either: consumption,

de�ned by the long run demand, or zero, if there was a sale in the previous period (i.e., in

SN consumption is out of storage). During sales preceded by a non-sale period purchases

include current consumption as well as inventory. During periods of sale preceded by a sale,

current consumption comes from stored units, so purchases are for future consumption only,

and the contribution to aggregate demand is (1� !)qi(pti; pt+1�i ):
2

Notice the di¤erence in the second argument of the anticipated purchases relative to

purchases for current consumption (i.e., during NN): Purchases for future consumption take

into account the expected consumption of products�i:Here, for simplicity, we assume perfect
foresight of future prices and therefore future demand is a function of pt+1�i . Alternatively,

under rational price expectations the consumer would purchase based on the expected future

price (see Section 6).

The key observation, regardless of price expectations, is the following: if a product is

currently on sale we know its e¤ective next period price is pS (since the product will be stored

today for consumption tomorrow). In other words, the way to incorporate the dynamics

dictated by storage is to consider the e¤ective cost (or price) of consumption, which does

not necessarily coincide with current price. In an inventory model, the e¤ective or shadow

price is a complicated creature that requires solving the value function. In our framework

e¤ective prices is just the minimum of current and previous prices.

When all products are storable, the case we consider from here onward, accounting for

the storability is no more complicated. We just need to control for the e¤ective cross price.

For example, consider the event NN (product i is not on sale at t or at t � 1) and assume
that product �i was on sale at t� 1 (but is not on sale at t). The demand from consumers

2When a sale follows a sale under our assumptions the consumer is indi¤erent between storing for con-
sumption next period or buying now. We break the tie by assuming she buys now. This is justi�ed with
even a small amount of uncertainty about coming to the store in the next period or about future prices.
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who store is qi(pti; pe
t
�i) instead of qi(p

t
i; p

t
�i), where pe

t
�i is the e¤ective price, in this case

pt�1�i . A similar adjustment is needed in all other states.

An important implication is that current prices of other products are the wrong prices to

control for in the estimation. Controlling for current price generates a bias in the estimated

cross price e¤ect.

3.3 Predicted Biases

We now explore the model�s implications for biases that may arise from neglecting dynamics.

Suppose we observe several price regimes, with constant prices within each regime. Since

prices are constant within each regime, there is no reason to store and therefore the di¤erence

in purchases (and consumption) across regimes helps recover preference parameters � and :

Instead of observing long lasting price di¤erences we may observe high frequency price

changes, like in the case of sales. Consider for simplicity just three periods, and suppose

product 1�s price decreases during the second period: p11 = p
3
1 = p

N
1 and p

S
1 = p

2
1 < p

1
1; while

product 2�s price remains constant at p2. Denote by �p1 = p
2
1 � p11 = pS1 � pN1 < 0:

Since storing is free, consumers (who store) will purchase all of period 3 consumption,

q1(p
S
1 ; p2); in period 2: Notice the e¤ective price of product 1 in period 3 is actually the

lowest of periods 2 and 3 prices, minfp21; p31g = pS1 : The consumer can time her purchases to
minimize expenses. In this case, period 3 consumption is determined by p21:

Quantities purchased by a storing consumer over the three periods (according to equation

3) are:

t = 1 t = 2 t = 3

pt1 = pN pS pN

x1 = q11 2(q11 � ��p1) 0

x2 = q12 q12 + �p1 q12 + �p1

where q11 = q1(p
N
1 ; p2) and q

1
2 = q2(p

S
1 ; p2). Should we estimate demand statically we

would estimate the following price e¤ects:

Own price

k � 2� + 3q11
2�p1

k > k � �k
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Cross price reaction


2
< 

There is an over estimation of long run own price reaction and underestimation of long

run cross price e¤ects.

The over estimation of own price e¤ects is caused by attributing the response to a tem-

porary price reduction as an increase in consumption, while the consumer is purchasing for

storage. In addition, the price increase in period 3 coincides with a decline in purchases,

which is also misconstrued as a decline in consumption.

While it is natural to expect an overestimation of own price responses, the impact of

dynamics on cross prices responses is more delicate. Previous work has documented the

e¤ect on cross price responses, but did not show the expected bias theoretically. The model

predicts cross price e¤ects are understated. In period 3 the observed and e¤ective prices

di¤er. The e¤ective price, which dictates consumption of good 1, is the period 2 purchase

price. In the estimation we would instead interpret the price increase (observed in period

3), which is not accompanied by an increase in purchases of product 2, as lack of cross price

reactions.

3.4 Discussion of the Main Assumptions

The model greatly simpli�es the consumer problem. We now discuss the key assumptions

that deliver the simplicity. A good point of comparison is the dynamic inventory model

where the consumer maximizes the discounted expected �ow of utility from consumption

minus the price of the product and the cost of holding inventory. If we assume that prices

follow a �rst order Markov process then the state variables are current prices and a vector

of inventories.3 We will refer to this model as the (standard) inventory model.

Assumption A1 simpli�es the determinants of demand anticipation. If current price

is high then future prices will be (weakly) lower and there is no incentive to store. If

instead current price is low then future prices will be (weakly) higher and consumers buy

for inventory. The two-price support assumption is restrictive, and stronger than needed.

What is really needed is that the periods of accumulation are well de�ned. The same logic

3The state space can be simpli�ed to include a smaller number of inventories. See Erdem, Imai and Keane
(2003) or Hendel and Nevo (2006b).
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applies even with a more general price process as long as we can properly de�ne a sale (i.e.,

periods of demand anticipation). The simplicity comes with a cost. We need to de�ne a sale,

which is easy with 2 prices, but can be more di¢ cult in general. In the inventory model a

de�nition of a sale is not necessary. Instead consumption and purchases are determined by

current price, and the other state variables.

Assumptions A2 and A3 de�ne the storage technology. We assume that consumers can

store for a pre-speci�ed period of time. Taken literally this assumption �ts perishable prod-

ucts like milk or yogurt. For more storable products the relevant constraint on advance

purchases is probably storage space at home or transportation from the store. The assump-

tion is quite convenient. First, it simpli�es the dynamics. Under a capacity constraint, as in

the inventory model, the researcher and the consumer need to keep track of how much is left

in storage in di¤erent states. Second, it helps detach the storage decision of di¤erent prod-

ucts. If the binding constraint is storage capacity, storing one product restrains the ability

to store the other. Under A3 the optimal storage of one product depends on the e¤ective

price of the other product (as can be seen in equation 3), but not on the quantity stored.

Such a link between products is quite easy to incorporate, we just control for e¤ective prices

of alternative products as oppose to their observed prices.

So far we assumed T = 1: We can increase the number of periods that consumers can

store. If T > 1 predicted purchases depend on a larger number of lags. For example, if T = 2

we have to condition on 2 lags rather than one. As we see in equation 3, for T = 1 purchases

in state NN are dictated by long-run needs, q(). When T = 2 we need to distinguish between

NNN , where everyone buys according to the long-run demand q(), and SNN , where only

non-storers buy. For T = 2 there are 8 states. Since some of the states involve similar

predicted purchases (as shown in the Appendix) the model is easy to generalize to T = 2:

The number of states (in the state space) does not burden the estimation. But the more

states the more tedious accounting is needed. In order to incorporate a longer horizon but

keep the accounting to a minimum, we experimented with the following approximation:

x(pt) =

8>>>>><>>>>>:
q(pt)

!q(pt)

! + T (1� !)q(pt)
q(pt)

if

NN

SN

NS

SS

(4)
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The shortcut is based on equation 3 and predicted purchases for T = 2 (described in the

Appendix). Some states (like SN and SS) are una¤ected by longer histories, while others

are. We are back to 4 states, knowing that predictions in states NN and NS are not exact.

The shortcut seems to perform reasonably well.

Assumption A4 holds the fraction of storers constant. If Assumption A1 holds in the

sample this is not restrictive for the purpose of estimation, but if the price takes on additional

values this assumption has some bite. Even if in the data there are only two prices, this

assumption might be problematic for counterfactuals. The fraction of consumers who store

might be a function of price. The current model does not allow it, but in principle we could

extend the model to allow ! to vary with prices.

Section 6 discusses extensions like discrete choice models instead of linear demand and

rational expectations about future prices.

3.5 Simulation Results

The model can be taken literally or as an approximation to a standard inventory model. In

this section we apply the proposed estimation to data generated from an inventory model.

The goal is to assess how well the proposed estimation does in recovering preferences when

applied to data generated from an inventory model.

The data was generated by computing the optimal (dynamic) behavior of a consumer with

quadratic preference, linear inventory costs, and facing stochastic prices. We assume there

are two prices, sales occur with probability 0.2, half (0.5) of the consumers store according

to the standard inventory model while the other half have a static demand, and the discount

factor is 0.995. The preference parameters used to generate the data imply � = 4. We

compute the consumer�s value function and optimal policy, and then simulate purchases for

100, 200, and 500 periods for di¤erent storage cost levels. We perform 1,000 repetitions of

each estimation.

Figure 2 shows consumption and storage predicted by the inventory model as a function

of the storage parameter. The di¤erent storage costs trace situations where storage is quite

high (over twice the �ow consumption) to no storage.
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Simulated Consumption and Storage

0

2

4

6

8

10

12

14

0.08 0.11 0.14 0.17 0.2 0.23 0.26 0.29 0.32 0.35 0.38 0.41 0.44 0.47 0.5

Storage Cost

Storage
Consumption

Figure 2: Optimal Dynamic Behavior as a Function of Storage Costs

Figure 3 displays the percent bias in the price coe¢ cient for OLS estimates and our �x

assuming T = 1 and T = 2. For moderate levels of anticipated purchases the proposed �x

does well. On the other hand, OLS shows substantial bias, about 60%, even for modest

levels of storage. For very low storage costs all estimates overstate price responses. However,

while the T = 1 �x is o¤ the mark by 40% the OLS estimate is over 160% o¤. As expected

the T = 2 �x does better than the T = 1 �x for very low storage costs.
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Figure 3: Percent Bias in Estimated Slope Parameter

Table 2 presents mean estimates and mean squared error of the di¤erent estimates by

storage cost. It shows that the T = 1 �x does best when the average storage (conditional

on holding storage) is in the ballpark of one period of consumption (i.e., c = 0:29 and 0:38),

while the T = 2 �x is closest to target for c = 0:17 when the average storage is about twice

the �ow consumption. Both uniformly dominate OLS, unless storage is absent.
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Table 2: Monte Carlo Simulations

Mean � MSE �

Simulated Data OLS T = 1 T = 2 OLS T = 1 T = 2

c Consumption Storage N=100

0.08 4.80 16.20 10.57 5.82 4.73 43.98 3.59 0.66

0.17 4.19 9.31 8.36 4.89 4.07 19.26 0.92 0.13

0.29 3.64 5.80 6.50 4.08 4.30 6.39 0.14 0.35

0.38 3.54 5.05 6.16 3.91 4.37 4.75 0.15 0.38

0.50 2.97 0 3.99 4.00 3.99 0.05 0.20 0.19

N=200

0.08 4.80 16.20 10.50 5.71 4.68 42.59 3.02 0.52

0.17 4.19 9.31 8.35 4.87 4.07 19.06 0.83 0.07

0.29 3.64 5.80 6.50 4.07 4.29 6.32 0.07 0.21

0.38 3.54 5.05 6.14 3.90 4.35 4.63 0.08 0.23

0.50 2.97 0 4.00 4.01 3.99 0.03 0.09 0.09

N=500

0.08 4.80 16.20 10.48 5.66 4.66 42.08 2.79 0.46

0.17 4.19 9.31 8.32 4.84 4.05 18.69 0.73 0.03

0.29 3.64 5.80 6.47 4.05 4.28 6.13 0.03 0.12

0.38 3.54 5.05 6.13 3.89 4.33 4.52 0.04 0.15

0.50 2.97 0 4.00 4.00 4.00 0.01 0.04 0.03

Note: Means and mean squared error of estimates of the slope coe¢ cient, beta, computed based
on 1,000 repetitions of each estimation. The data was generated using with a slope parameter of 4.
The storage level is the average storage conditional on being positive, as oppose to Figure 2 that
shows the unconditional average storage.

4 Identi�cation and Estimation

4.1 How Do We Recover Preferences?

Before presenting the estimation we discuss intuitively how the model helps recover prefer-

ences. We o¤er two approaches, both are part of the full estimation, but discussing them
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separately helps clarify what variation in the data identi�es the parameters. The �rst ap-

proach is based on events without storage, while the second approach imputes storage and

purges it from purchases.

For simplicity, assume a single product (and T = 1) in which equation 3 suggests that

during NN and SS demand is given by q(pt), while during SN demand is scaled down by !

and duringNS it is scaled up by 2�!. This suggests two di¤erent ways to recover the model�s
parameters from the data. We will refer to the �rst as "timing" restrictions. According to

the model during sale periods that follow a sale (event SS) purchases equal consumption:

x(p) = q(p): Basically, after purchasing for storage, the pantry is �lled, consumers (whether

they are a storer or not) purchase for a single consumption event. Since both NN and SS

events involve purchases dictated by q(p) we can rely on them to estimate preferences. Price

variation across these states, across di¤erent stores during these states or within these states

(if there are more than 2 prices), can identify long-run responses.

A di¤erent way to map purchases into preferences is to take advantage of the data from

all periods but use the model to adjust the predicted purchases to account for storage. We

will refer to the additional restrictions as "accounting" restrictions. For example, during SN

we need to scale down demand because only non-storers purchase, while during NS we have

to scale up purchases due to storing. This approach is more e¢ cient, since it uses all the

data, but it also adds additional parameters and imposes Assumption A4.

We note that the model is over-identi�ed. For example, we can recover ! by looking at

the ratio of purchases during SN to purchases during NN , or by looking at 2 minus the

ratio of purchases during NS to purchases during SS: In principle we can use the additional

degrees of over-identi�cation to enrich the model somewhat.

To demonstrate how the di¤erent restrictions work we can use the numbers in Table

1 to recover the demand parameters. As a benchmark, we note that the static estimate

of the slope coe¢ cient is b�Static = xS�xN
�p

= 623�227
0:4

= 988, where �p = 0:4 is the price

di¤erence between sale and non-sale periods. Estimating the same slope using only the

timing restrictions yields b�Time = xSS�xNN
pSS�pNN =

532�248
0:4

= 710.

Since the model is over-identi�ed, there are several ways to impose the accounting re-

strictions. One way is to use only the information from NN , SS, and SN and recover

! = xNN=xSN = 0:8 and b� = !xSS�xSN
!�p

= 708. Another way is to use the information from

NN , SS, andNS, which implies ! = 2�xNS=xSS = 0:57 and b� = xNS�(2�!)xNN
(2�!)�p = 713:More
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e¢ cient estimators, coming in the next section, will combine all this information and further

control for di¤erences across stores, prices of other products, and promotional activities.

Notice that both restrictions render a lower price sensitivity than the one implied by the

static estimates.

4.2 Estimation

We follow the two strategies described above to estimate preferences. The �rst strategy uses

data only from the NN and SS periods, which involve no storage. The second approach uses

data from all periods, and is therefore more e¢ cient, but it requires non-linear estimation.

Linear estimation allows us to recover all the parameters of the model, except the fraction

of consumers who store. To obtain the exact estimating equations we combine equations 2

and 3, and allow for a panel structure (that exists in the data we use below). To account

for the store level �xed e¤ects we de-mean the data. For prices this is straightforward.

For quantities we have to account for the re-scaling in di¤erent regimes. We show in the

Appendix how to modify the estimating equation to account for this re-scaling.

We estimate all the parameters by least squares, linear or non-linear depending on the

equation. In principle, we could use instrumental variables to allow for correlation between

prices and the econometric error term. However, we do not think correlation between prices

and the error term is a major concern in the example below.

5 An Empirical Application: Demand for Colas

The average numbers (from Table 1) used in the previous section do not exploit price vari-

ation across stores, or within a regime (for a given store). They also neglect to properly

control for the prices of substitute products.4 We now estimate the model using all the

events adding these additional controls.

4This is a serious concern since promotions of Coke and Pepsi are probably correlated, thus, a low Coke
price may be also re�ecting a high price of the closest substitute, thus contaminating the price reactions we
infer.
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5.1 Data

The data we use was collected by Nielsen and it includes store-level weekly observations of

prices and quantity sold. The data set includes information at 729 stores that belong to

8 di¤erent chains throughout the Northeast, for the 52 weeks of 2004. We focus on 2-liter

bottles of Coke, Pepsi and store brands, which have a combined market share of over 95

percent of the market.

There is substantial variation in prices over time and across chains. A full set of week

dummy variables explains approximately 20 percent of the variation in the price in either

Coke or Pepsi, while a full set of chain dummy variables explains less than 12 percent of

the variation.5 On the other hand, a set of chain-week dummy variables explains roughly 80

percent of the variation in price. Suggesting similarity in pricing across stores of the same

chain (in a given week), but prices across chains look quite di¤erent. As a �rst approximation

it seems that all chains charge a single price each week. However, three of the chains appear

to de�ne the week di¤erently than Nielsen. This results in a change in price mid week,

which implies that in many weeks we do not observe the actual price charged just a quantity

weighted average. In principle we could try to impute the missing prices. Since this is

orthogonal to our main point we drop these chains.

We need a de�nition of a sale, or more precisely, we need to identify periods of advance

purchases. Figure 4 displays the distribution of the price of Coke in the �ve chains we

examine below. The distribution seems to have a break at a price of one dollar, which we

use as the threshold to de�ne a sale. Any price below a dollar is considered a sale, namely,

a price at which storers purchase for future consumption. This is an arbitrary de�nition. A

more �exible de�nition may allow for chain speci�c thresholds, or perhaps moving thresholds

over time. For the moment we prefer to err on the side of simplicity. Using this de�nition

we �nd that approximately 30 (36) percent of the observations are de�ned as a sale for

Coke (Pepsi). Interestingly, sales are somewhat asynchronized with only 7 percent of the

observations exhibiting both Pepsi and Coke on sale (compared to a 10.5 percent predicted

if the sales were independent).

5These statistics are based on the whole sample, while the numbers in Table 2 below are based on only
�ve chains as we explain next.
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Figure 4: The Distribution of the Price of Coke

For the analysis below we use 24,674 observations from �ve chains. The descriptive

statistics for the key variables are presented in Table 3.

Table 3: Descriptive Statistics

% of variance explained by:

Variable Mean Std chain week chain-week

QCoke 446.2 553.2 5.6 20.4 52.5

QPepsi 446.0 597.8 2.8 24.4 46.7

PCoke 1.25 0.25 7.1 29.7 79.9

PPepsi 1.19 0.23 7.5 30.7 79.8

Coke Sale 0.30 0.46 6.4 30.0 86.6

Pepsi Sale 0.36 0.48 9.3 29.2 89.0

Note: Based on 24,674 observations for �ve chains, as explianed in the text. As sale is de�ned as
any price below one dollar.
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5.2 Results

The estimation results are presented in Tables 4 and 5. All columns present least squares

estimates of linear demand. The dependent variable is the number of 2-liter bottles of Coke

or Pepsi sold in a week in a particular store. All the columns include the price of the store

brand and store �xed-e¤ects. The �rst column displays estimates from a static model, with

store �xed e¤ects. Column 2 presents our model with T = 1, estimated using the timing

restriction only (namely, using the sub-sample with the events in which the model predicts

no storage). Columns 3 and 4 present estimates of the full model, for T = 1.

The di¤erence between columns 3 and 4 is that in column 3 we control for the current

price of the competing products. Column 4 instead controls for the e¤ective price. According

to the model the e¤ective price faced by a storer is the minimum of current and last period

price.6

In column 5 we present the results from a model that allows di¤erent price sensitivity

between storers and non-storers. Finally, in column 6 we present results where we replace

the perfect foresight assumption with a rational expectation assumptions. We discuss this

model and the results in the next section.

All the estimates from our model suggest lower (in absolute value) own price e¤ects and

higher cross price e¤ects, for both Coke and Pepsi. The estimated proportion of consumers

who do not stockpile is around half the population, and is slightly higher for Coke. Consistent

with this estimate, the di¤erences between the static and dynamic estimates are larger for

Pepsi than for Coke.

The estimates in column 3 are of no interest on their own. According to the model,

the cross prices controls are incorrect. The model prescribes the use of past prices during

periods preceded by a sale (i.e., the e¤ective price that dictates the consumption of storers

is the lagged price). However, if the model is irrelevant, or demand dynamics absent, as

we move from column 3 to column 4 we would be introducing noise in the price of the

competing product. As such we would expect the coe¢ cient of Pepsi in the Coke equation

(and Coke�s in the Pepsi equation) to be lower, due to measurement error (assuming the

introduced noise will generate classical measurement error). Interestingly, both cross price

6For the non-storer the current price is the e¤ective one. Thus, because of linerity of the demand curve,
the aggregate e¤ective price is the weighted average of the prices faced by storers and non-storer; weighted by
the proportion of each type of buyer in the population. The price is recomputed as the estimation algorithm
seaches for the optimal !:
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e¤ects increase substantially as we replace current price by e¤ective price. Suggesting the

latter is the correct control, and that indeed dynamics are present.

Table 4: Demand for Coke

FE Timing Only All Restrictions Di¤erent slopes Rational Exp

(1) (2) (3) (4) (5) (6)

PCoke -1428.2 -743.4 -967.4 -938.9 -522.4 -767.8

(11.1) (11.8) (11.2) (11.1) (35.1) (8.8)

PPepsi 66.5 191.6 82.8 150.1 -73.1 195.4

(11.9) (10.9) (11.0) (11.4) (36.4) (12.3)

PCoke storers -1273.1

(16.7)

PPepsi storers 145.01

(21.3)

! (fraction non- storers) 0.53 0.53 0.35 0.57

(0.01) (0.01) (0.01) (0.01)

Cross price Corrections No Yes Yes Yes

Note: All estimates are from least squares regressions. The dependent variable is the quantity of
Coke sold at a store in a week. The regression in column (1) includes store �xed e¤ects. The
regression in column (2) is the same as in column (1) but uses only the NN and SS periods. The
regressions of columns (3)-(4) impose all the restrictions of the model using the actual and e¤ective
price. Column (5) allows for di¤erent slopes for consumers who store and those that do not. Column
(6) assumes rational expectations rather than perfect foresight. Standard errors are reported in
pharenthesis.
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Table 5: Demand for Pepsi

FE Timing Only All Restrictions Di¤erent Slopes Rational Exp

(1) (2) (3) (4) (5) (6)

PCoke -20.9 71.8 62.8 106.6 -246.2 140.0

(12.2) (11.0) (10.5) (10.5) (26.9) (12.1)

PPepsi -1671.3 -994.0 -1016.5 -996.9 -341.3 -762.3

(13.1) (15.8) (11.6) (11.6) (29.3) (8.9)

PCoke storers 216.7

(13.3)

PPepsi storers -1255.0

(14.8)

! (fraction non-storers) 0.44 0.44 0.28 0.47

(0.01) (0.01) (0.01) (0.01)

Cross Price Corrections No Yes Yes Yes

All estimates are from least squares regressions. The dependent variable is the quantity of Pepsi
sold at a store in a week. The regression in column (1) includes store �xed e¤ects. The regression
in column (2) is the same as in column (1) but usese only the NN and SS periods. Column (5)
allows for di¤erent slopes for consumers who store and those that do not. Column (6) assumes
rational expectations rather than perfect foresight. Standard errors are reported in pharenthesis.

The �ndings are consistent with the biases predicted in Section 3. Both proposed �xes

lower own price e¤ects by purging purchases for storage. At the same time the �xes raise

cross price e¤ects, by accounting for e¤ective price variation (i.e., eliminating measurement

problems in prices of substitute products).

In column 5 we allow for di¤erent price sensitivity between consumers who store and those

who do not. We �nd that storers are substantially more price sensitive. This is consistent

with price discrimination as being a motivation for the existence of sales. We return to this

below.

5.3 Implications of the Estimates

The bias in the estimated elasticities has implications for almost all applications of the

estimates. One common use of demand elasticities in the IO and trade literature is to plug
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them into a �rst order condition and recover margins and implied marginal costs. For single

product �rms the price-cost margins are equal to the inverse of the price elasticity.

Using the static estimates from column 1 of Tables 4 and 5 implies a margin of 25 percent

for Coke and 22 percent for Pepsi, which translates into a marginal cost of 0.94 for Coke and

0.92 for Pepsi.7 Repeating this computation but using instead the estimates from column

4, i.e., those estimated using all the restrictions of the model, the implied margins are 38

percent and the implied marginal costs are 0.77 for Coke and 0.73 for Pepsi.

A natural concern with this sort of calculation is that it ignores the dynamic aspect of

demand. It would be unsatisfactory to resort to a static �rst order condition after we argued

demand is dynamic.

One rationale for sales is to price discriminate between consumers who store and those

who do not. The estimates in column 5 allow us to check this theory. Indeed, the estimates

imply that consumers who store are signi�cantly more price sensitive than consumers who

do not. So the estimated preferences render sales pro�table, as a way to price discriminate.

Fully solving the dynamic pricing problem is beyond the scope of this paper. However,

the case of a single product monopolist who commits to prices is simple to characterize given

the demand structure we propose. Optimal behavior is characterized by two �rst order

conditions, not that di¤erent from the static ones. The seller pro�ts increase by holding

sales rather than a constant price.

Let p�S and p
�
NS be the monopoly prices that maximize �static�pro�ts from selling to

the populations of storers and non-storers respectively, and p�ND the monopoly price of a

non-discriminating monopolist facing the whole population. The monopolist will pick a pair

of prices, p and p, to maximize

(!QNS(p) + 2(1� !)Qs(p))(p� c) + !QNS(p)(p� c)

where QNS() and QS() are the demands of non-storers and storers, and c is the (constant)

marginal cost. The �rst term represents variable pro�ts during sales, targeting storers who

purchase for two periods, and non-storers for one period. The last term represents pro�ts

from non-storers, during non-sale periods. By repeating a two period pricing cycle the

monopolist maximizes the present value of pro�ts.

7These numbers are computed using the average prices and quantities for the sample presented in Table
3.
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As long as p�NS > p
�
S then p = p

�
NS while p is the price charged by a non-discriminating

monopolist who faces demand !QNS(p) + 2(1 � !)Qs(p); namely, demand with additional
weight on the storing population. It is easy to see that p�S < p < p

�
ND:

Optimal pricing involves high prices targeting non-storers who are less price sensitive

and sales, targeting storers. Under constant prices the seller would set a price that targets

the average demand. The price cycle enables the seller to increase pro�ts from non-storers

without compromising pro�ts from the storer. Naturally, the price cycle is of length T + 1:

We can use the estimates in column 5 to compute the margins implied by this pricing

rule. The results suggest that Coke�s margins during non-sale periods are 61 percent and the

implied marginal cost is 0.54. During sale the margin is lower, at 43 percent, but the implied

marginal cost is 0.53. Interestingly, the implied marginal cost is identical, even though we

did not impose this in any way during the estimation or computation.

6 Extensions

6.1 Rational Expectations

In the base model we assumed consumers have perfect foresight. The simplicity of assuming

perfect price foresight is that at any point in time the consumer maximizes U(q;m) (where q

are the quantities of the product and m the outside good) subject to the budget constraint.

Anticipated demand is found by plugging the e¤ective prices in equation 2. For example,

on a period of Coke sale but no Pepsi sale the consumer buys qC(pCt ; p
P
t+1) of Coke for

consumption in the coming period.

Absent perfect information about future prices all the consumer can do is to maximize

Et(Ut+1(q;m)), that is, the t+ 1 expected utility, given period t prices and the distribution

of prices. Going back to the example, where Coke is on sale and Pepsi is not, the consumer

has to decide how much Coke to purchase knowing Pepsi�s price may end up at two di¤erent

levels (assume A1 holds for Pepsi). The demand for Coke involves the solution of three �rst

order conditions for qC ; qP and qP ; where the last two quantities represent Pepsi consumption

(at t+ 1) if on sale, and consumption absent a sale. The demand for Coke, qC ; is still given

by equation 2, but replacing the price of Pepsi by its expected price.
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The quantities qP and qP are still linear in prices and have the same functional form, but

they di¤er from the demand functions of the static problem (in equation 2). The reason is

simple, in the static problem the consumer reacts to a Coke sale by adjusting both Coke and

Pepsi quantities. Instead, qP and qP take qC as given (since it was decided in the pervious

period before Pepsi prices where revealed). Thus, demand is slightly di¤erent from equation

2. Since demand for each good depends on whether the other was already purchased (on

sale), we need a �ner de�nition of the state.

The de�nition of the state involves the prices at t and t�1 of both (all) products. Demand
depends on this �ner state. For example, the demand for Coke from consumers who store

if Coke did not have a sale at t and t � 1, while Pepsi had a sale at t � 1; is given by qC :
Alternatively, if Coke has a sale at t but not at t�1, while Pepsi did not have a sale at either
period, demand for Coke is q(pCS ; p

P
NS) + q

C : The �rst quantity is for current consumption,

while the second if for consumption at t+1. Similar expressions can be written for all states.

In principle there are 16 states, but demand in some of them is identical so e¤ectively there

are 8 di¤erent states.

Column 6 of Tables 4 and 5 show demand estimates assuming rational expectations. As

before the estimation is done by minimizing (in a least squares sense) the distance between the

observed quantities and those predicted by the rational expectations model just described.

The results are not that di¤erent from the perfect foresight estimates: own prices elas-

ticities are lower in absolute value while cross price e¤ects are higher. If anything the results

suggest that the bias from neglecting dynamics is larger under rational expectations. This

shows that our previous results do not rely on, or are driven by, the perfect foresight as-

sumption.

6.2 Discrete Choice Demand

In the above analysis we assume linear demand. However, the analysis goes through with

more �exible functional forms. A popular model used in many recent applications, especially

when dealing with many products, is the discrete choice model. We now show how this model

�ts into our framework.

Assume the utility consumer i gets from product j is given by

uijt = �ij � �ipjt + "ijt
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where �ij is the utility from the attributes of the product both observed and unobserved8, �i

is the marginal utility of income and "ijt is a transitory shock. For now, we assume perfect

foresight of both prices and individual shocks. We can think of "ijt as capturing transitory

needs known in advance, like having guests the following week. As in the standard discrete

choice model, we assume that in each period the consumer consumes at most one unit (but

might consume none). However, the consumer can purchase additional units that can be

stored up to T periods (as in Assumption A3).

Demand has a structure similar to equation 3. In each period, depending on their "ijt+1;

consumers who store decide which brand they will consume next period. The choice is based

on the standard discrete choice thresholds using minfpjt; pj;t+1g as the (e¤ective) price. If
the optimal choice is product j, and that product is on sale at period t it will be purchased

then, otherwise it will be purchased at time t+ 1. For example, assuming no heterogeneity

in tastes or in the marginal utility of income and that "ijt is distributed i:i:d: extreme value

(i.e., the simple Logit model) aggregate demand for product j is given by

xi(p
t) =M

8>>>>>><>>>>>>:
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where M is the market size. Similar expressions can be written for more �exible demand

models (e.g., the model proposed by Berry, Levinsohn and Pakes, 1995).

Allowing for rational price expectation, instead of perfect price foresight, is slightly more

tedious but conceptually straightforward. Consumers, uncertain about future prices, com-

pare the �ow utility from purchasing today for future consumption to the option value of

waiting to buy the best alternative tomorrow. Tomorrow�s best alternative depends on un-

certain prices. Computing predicted market shares may require simulation, but the dynamics

involved are still immediate.

The option to wait is generated by uncertain future prices. On the other hand, we

assumed the vector {"ijt+1g is know while shopping at time t. The assumption that the

"ijt+1 are know in advance is quite handy, making the analysis simpler, but also appealing.

It is reasonable to assume consumers anticipate future need, as well as the future ranking

8In many applications �ij = Xj�i + �j where Xj are the observable attributes of product j, �i are the
consumer speci�c taste for these attributes and �j is the unobserved (to the reseacher) product characteristic.
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of the di¤erent products. In some applications an unknown "ijt+1 might be appropriate. In

which case the option value of waiting as well as the value of the anticipated purchases need

to be adjusted to re�ect preference uncertainty.

7 Alternative Approaches

There are alternative approaches used in the literature to recover preferences, besides struc-

tural estimation. A common method often used to compute long run price responses is to

include lagged prices as a way to control for dynamic e¤ects.9 Alternatively, lagged quanti-

ties, can be motivated through either a partial adjustment model or as approximating the

missing inventory variable. The long run e¤ect, in either case, is computed by tracing the

e¤ect of a price change if lagged quantity is included, or by summing the coe¢ cients of the

lagged prices. We focus on including lagged prices, which is more common.

In principle, including lagged prices as controls seems like an attractive, �exible and

model-free way of recovering long run responses. Indeed, in some cases the lagged controls

may help approximate a long run e¤ect, but this is not generally the case. In spirit, one

could claim that including lagged prices is similar to our model, where we advocate de�ning

events based on lagged sales. However, there is a di¤erence between our approach and this

alternative. It is evident from equation 3 that under our model simply including lagged

prices is not enough. The lagged prices need to be interacted with the state. This is clearly

evident in the cross price e¤ect. Our model advocates inclusion of the e¤ective cross price,

which is a function of lagged prices but the function varies by state. Simply including a

lagged structure, potentially with many lags, would not recover the actual long run cross

price e¤ects. We explore the performance of this method below.

Another common approach to deal with demand anticipation is to aggregate observations

over time, for example, from weekly to monthly data. There are cases where aggregation

might help solve the problem but they rely on strong assumptions (and may wipe out the

variation in prices). Consider the example in Section 3.3. Aggregation can solve the problem

under some special conditions. Suppose that we have data from an additional period, t = 0,

in which the prices and quantities are like period 1: If we aggregate the data from the �rst

9See, for example, van Heerde el at (2000).
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two periods (t = 0; 1) and the last two periods (t = 2; 3) and de�ne prices as revenue divided

by quantity, then estimation based on the aggregate data would recover long run e¤ects.

The success of this approach in recovering long run responses relies crucially on several

assumptions, like lack of heterogeneity in storage. We provide, in the Appendix, an analytic

example that shows this.

We now apply these alternative corrections. The results for Coke are presented in Table

6. The �rst two columns repeat the results from the store �xed-e¤ects regression, and from

our model. The next two columns present the long run e¤ect from models that include 1

and 4 lags, respectively. The results are not very promising. Both lagged prices models

impact the own price elasticity in the "right" direction but the magnitude is smaller than

our correction. The results do not look good for the cross price e¤ect. The �rst model does

not change the cross-price e¤ect by much. The second, with more lags, does but estimates

a negative cross-price elasticity.

The last two columns present the results from aggregating over time: into bi-weekly

periods and then by month. In both cases the own price elasticities move in the right

direction, in the case of monthly aggregation yielding numbers quite close to our estimates.

However, both models estimate a negative cross price elasticity (although in one case the

estimate is not signi�cantly di¤erent from zero). Overall, these alternative methods do not

seem to yield very sensible results.

Table 6: Demand for Coke �Alternative Corrections

FE Our lag 1 p lag 4 p agg bi-w agg month

(1) (2) (3) (4) (5) (6)

PCoke -1428.2 -938.9 -1131.3 -1239.3 -1130.2 -911.2

(11.1) (11.2) (15.1) (22.9) (9.8) (14.5)

PPepsi 66.5 150.1 63.3 -252.5 -31.5 -9.0

(11.9) (11.4) (17.1) (25.6) (11.1) (16.0)

! 0.53

(0.01)

Note: All estimates are from least squares regressions. The dependent variable is the quantity of
Coke sold at a store in a week. All regressions include store store �xed e¤ects and teh price of the
store brand. The regression in column (1) in a �xed e¤ects regression. The reults in column (2) are
the model estimates from Table 4. The regressions in columns (3) and (4) allow for 1 and 4 lags
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of prices. The regressions in columns (5) and (6) aggregate the data to a bi-weekly and monthly
level (and use unit prices). Standard errors are reported in pharenthesis.

8 Concluding Comments

We o¤er a simple model to account for demand dynamics due to consumer inventory behavior.

The model can be estimated using store level data. An application to demand for Coke

and Pepsi yields reasonable estimates. At the same time, corrections based on alternative

methods, like aggregation or control for lagged variables, do not perform well.

The base results rely on many assumptions, most of which can be relaxed. As we showed

we can allow for heterogeneity in preferences, more �exible demand systems, and rational

expectations. We can also let the fraction of consumers who store vary with price. Of

course, some of these extensions increase the complexity of the model and defeat our goal of

delivering a simple model.

We use the simplicity of the model to derive markups implied by dynamic pricing, rather

than plugging demand estimates into static �rst order conditions. The standard static ap-

proach underestimates market power for two reasons. First, demand elasticities biases (both

own and cross) imply lower markups. Second, the static �rst order conditions imply lower

mark-ups than the dynamic ones.
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10 Appendix

10.1 Purchases when T = 2

The predicted purchases when T = 2 (assuming a single product) are given by:

x(pt) =

8>>>>>>>>>>><>>>>>>>>>>>:

!q(pt)

q(pt)

!q(pt)

! + 3(1� !)q(pt)
! + 2(1� !)q(pt)

q(pt)

if

SNN

NNN

NSN or SSN

NNS

SNS

NSS or SSS

(5)

First, notice there are 8 states, some of them involve similar predicted purchases. In

contrast to equation 3 where demand is a¤ected by lagged prices, when T = 2 demand

depends on whether there was a sale two periods ago. Second, notice how (some) events are

split. Event NN needs to be split into SNN and NNN; because a storer who purchased

two periods ago on sale does not buy today at a regular price, while she would buy if two

periods earlier there was no sale, namely, in event NNN: Predicted purchases in events SS

and NS are not a¤ected by t� 2 events, thus they require no modi�cation from equation 3.

Purchases di¤er between SNS and NNS because in SNS current consumption comes out

of storage.

10.2 Estimating equations

We choose the parameters to minimize the sum of squares of the di¤erence between observed

purchase and those predicted by the model. The data consists of a panel of quantities and

prices in di¤erent stores. Since purchases are scaled di¤erently in di¤erent states in order to

account for store �xed e¤ects we need to transform the predicted purchases as follows. Let

j denote the store.

xijt = ft(
1

T

TX
�=1

(
xj�
f�
) + �(pijt � pi:t) + (pe�ijt � pe�i:t))
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where ft is the factor by which demand is scaled up in period t, pi:t is the within store

average, and pe is the e¤ective cross price (as de�ned in the text). Note, that the e¤ective

price is a function of !. For the base model

ft =

8>><>>:
1

!

2� !

if

NN or SS

SN

NS

10.3 Example where aggregation fails

Consider the following example where aggregation fails. Suppose there are two types of

consumers. Type A consumers can store for one period, type B cannot store. Assume four

time periods with p21 < p
0
1 = p

1
1 = p

3
1 (while p

0
2 = p

1
2 = p

2
2 = p

3
2): Purchases are given by

xA1 =

2666664
q11

q11

2(q11 � ��p1)
0

3777775 ; xA2 =

2666664
q12

q12

q12 + �p1

q12 + �p1

3777775 ; xB1 =

2666664
q11

q11

q11 � ��p1
q11

3777775 ; xA2 =

2666664
q12

q12

q12 + �p1

q12

3777775
Assuming one type of each consumer, and aggregating over periods, aggregate purchases

will be

x1 =

24 4q11

4q11 � 3��p1

35 ; x2 =

24 4q12

4q12 + 3�p1

35
If we used "consumer-week" weighted prices, i.e. p11 and

1
4
p11 +

3
4
p21 = p11 +

3
4
�p1, we

would recover the long run e¤ects. Note, that to �gure out the right price we need a

model and we need to know the fraction of each type. However, if we use unit value, i.e.

revenue divided by quantity, prices will be p11 and (1� �)p11 + �p21 = p11 + (1� �)�p1, where
� = 3(q11 � ��p1)=(4q11 � 3��p1) > 3=4:
Because of aggregation the unit-value price will generate a price that is too low in the

second period. Using this price (even if we know the true slopes of demand) will yield

estimates that are biased towards zero. For own price e¤ects this is the right direction,

giving the impression that the problem of demand dynamics has been attenuated. For cross

price e¤ects this is the wrong direction.
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