Economics C34: Lecture 9

Valuing Life
Overview

• Impossibility of riskless society
 – Can your life be “saved?”

• Risk-reduction is an economic “good”
 – “Demand” based on individual preferences
 – “Supply” based on technology (“production possibilities”)

• Aggregation: from individual risks to social statistics

• Health, Safety, and Environmental regulations can promote or impede economic efficiency
 – Risk-risk analysis
 – Equating the marginal costs of risk reduction
 – Reaching the “production possibility frontier”
Impossibility of a Riskless Society

• Risks are a significant part of daily life
 – Driving to work
 – Eating at a restaurant
 – Having sex
 – Drinking alcohol
 – Smoking
 – Being struck by lightening
• Some are voluntary, some are not
• Some can be reduced
 – But, at what cost?
• Few can be eliminated
Lives “saved” versus years of life saved

- Can anyone’s life be “saved?”
 - “. . . no one here gets out alive.”
- Lives can be *prolonged*, however
- Years of life saved per life prolonged differ from case to case
 - Open heart surgery on 100 year olds
 - Open heart surgery for new borns
- Ideally, policies should be evaluated in terms of the *cost per years of life saved*
“Willingness to Pay” for risk reduction: an economic choice

• Example setting:
 – Individual with wealth W
 – Can invest S in improving his personal safety
 – Probability of death is \(p(S) \)
 – Consumption is then \(C = W - S \)
 – Preferences over \(C \) and \(p \)

• \(W \) to Pay for risk reduction
 – Marginal rate of substitution between consumption and risk
 – Slope of indifference curve
 – \(W \) to \(P \) increases with increasing risk
Costs of providing risk reduction

- Costs of reducing risk increase at an increasing rate
 - E.g., \(p'(S) < 0 \) and \(p''(S) > 0 \)
- Impossible to eliminate risk completely
- Construct Consumption-Risk “production possibility frontier” for given wealth
- Consumption-Risk ppf expands with
 - Increasing wealth
 - Improved “safety technology”
An individual’s choice of risk

- Optimal choice requires tangency between ppf and indifference curves
- Each choice provides one estimate of “value of life”
- Different “values of life” estimates result from
 - Different wealth levels
 - Different “safety technology”
Aggregation: from individual *risks* to social *statistics*

- Probability of death becomes statistical deaths
- Social PPF represents feasible tradeoffs between GNP and statistical deaths
- Choice of a point on the PPF implies a “value of life” equal to the slope there
- Resist the temptation to draw “social indifference curves”
Reaching the “production possibility frontier”

• Example of risk-risk analysis:
 – Two (independent) risks of death: A and B
 – Overall risk
 \[p = p_A + p_B - p_A p_B \]
 – Each risk can be reduced by safety expenditures \(S_A \) and \(S_B \)
 • \(p_A = p_A(S_A) \)
 • \(p_B = p_B(S_B) \)
• Efficiently achieving risk level \(p \) for given \(S \)
 – Requires equating the marginal costs of risk reduction
Operating inside the PPF results in wasted lives

- Using different values of life for different risks puts society inside the PPF
- Points inside the PPF are economically inefficient because they imply
 - Higher risks than safety dollars
 could buy and/or
 - Lower consumption than necessary