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Abstract

We introduce best response dynamics for settings where agents’ preferences are diverse. Unde
these dynamics, which are defined on the space of Bayesian strategies, rest points and B
equilibria are identical. We prove the existence and uniqueness of solution trajectories to th
namics, and provide methods of analyzing the dynamics based on aggregation.
 2004 Elsevier Inc. All rights reserved.

JEL classification: C72; C73

1. Introduction

We study best response dynamics for populations with diverse preferences. Th
variables for our dynamics are Bayesian strategies: that is, maps from preferences
tributions over actions. We prove the existence, uniqueness, and continuity of solut
these dynamics, and show that the rest points of the dynamics are the Bayesian equilib
of the underlying game. We then characterize the dynamic stability of Bayesian equi
ria in terms of aggregate dynamics defined on the simplex, making it possible to ev
stability using standard dynamical systems techniques.

* Corresponding author.
E-mail addresses: jeffely@northwestern.edu (J.C. Ely), whs@ssc.wisc.edu (W.H. Sandholm).
URL: http://www.ssc.wisc.edu/~whs (W.H. Sandholm).
0899-8256/$ – see front matter 2004 Elsevier Inc. All rights reserved.
doi:10.1016/j.geb.2004.09.003



ARTICLE IN PRESS
S0899-8256(04)00132-0/FLA AID:1175 Vol.•••(•••) [DTD5] P.2 (1-27)
YGAME:m1 v 1.29 Prn:15/11/2004; 10:34 ygame1175 by:Rima p. 2

2 J.C. Ely, W.H. Sandholm / Games and Economic Behavior ••• (••••) •••–•••

ving
y the
xplic-
gical
ces are

ence
havior,
dels of

ed for
havior

nary
idered
ry in
sym-
g role.
hts

their
y-

th any
plete
on
r is
the

e and
ntro-

ic,
nse to
t

s

s-
ce
haviors.
under

2.2.
We offer three motivations for this study. First, we feel that in interactions invol
large populations, different individuals are unlikely to evaluate payoffs in precisel
same way. Therefore, in constructing evolutionary models, it seems realistic to e
itly allow for diversity in preferences. We shall see that doing so eliminates patholo
solution trajectories that can arise under best response dynamics when preferen
common.

A second motivation for our study is to provide foundations for models of prefer
evolution.1 In these models, natural selection of preferences is mediated through be
as the preferences that survive are those that induce the fittest behavior. Ideally, mo
preference evolution should be built up from models of behavior adjustment defin
settings where preferences are diverse but fixed. By providing tools for analyzing be
under diverse preferences, this paper provides the groundwork forstudying competition
among the preferences themselves.

Our third and most important motivation is to provide methods for the evolutio
analysis of Bayesian games. Nearly all work in evolutionary game theory has cons
games with complete information. At the same time, the proliferation of game theo
applied economic analysis is in large part due to its deft handling of informational a
metries; in this development, games of incomplete information have played a leadin
In offering evolutionary techniques for studying Bayesian games, we hope that the insig
of evolutionary game theory can be brought to bear more broadly in applied work.

We consider a population of agents facing a recurring strategic interaction. Unlike
counterparts in standard evolutionary models, different agents in our model evaluate pa
offs using different payoff functions. We assume that the subpopulation of agents wi
given payoff function is of negligible size relative to the population as a whole. A com
description of behavior is given by a Bayesian strategy: a map that specifies the distributi
of actions played in each subpopulation. The appropriate notion of equilibrium behavio
Bayesian equilibrium, which requires that each subpopulation play a best response to
aggregate behavior of the population as a whole.

Our goal is to model the evolution of behavior in a diverse population in a plausibl
tractable way. To do so, we build on the work of Gilboa and Matsui (1991), who i
duced thebest response dynamic for the common preference setting. Under their dynam
the distribution of actions in a population always adjusts toward some best respo
current behavior. To define ourBayesian best response dynamic, we require instead tha
the distribution of actionswithin each subpopulation adjust toward that subpopulation’
current best response.

To complete the definition of the Bayesiandynamic, we must specify a notion of di
tance between Bayesian strategies.2 We utilize theL1 norm, which measures the distan
between two Bayesian strategies as the average change in the subpopulations’ be
We establish that the law of motion of the Bayesian dynamic is Lipschitz continuous
this norm, enabling us to prove that solutions to the dynamic exist and are unique.

1 See, for example, Güth and Yaari (1992), Ely and Yilankaya (2001), and Sandholm (2001).
2 By doing so, we fix the interpretation of the differential equation that defines the dynamic—see Section
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This uniqueness result is of particular interest because it fails to hold when p
ences are common. Under common preferences, multiple solution trajectories to th
response dynamic can originate from a single initial condition. This property is the sourc
of surprising solution trajectories: Hofbauer (1995) offers a game in which solutions
best response dynamic cycle in and out of a Nash equilibrium in perpetuity. Our uniquene
result implies that even slight diversity in preferences renders such solution trajector
possible.

Since our dynamic is defined on the (L1) space of Bayesian strategies, it is difficult
analyze directly. To contend with this, we introduce anaggregate best response dynamic
defined directly on the simplex. We show that there is a many-to-one mapping from
tions to the Bayesian dynamic to solutions to the aggregate dynamic; the relevant m
is the one that converts Bayesian strategies to the aggregate behavior they induce.
we run the Bayesian dynamic from two Bayesian strategies whose aggregate behav
the same, the two solutions to the Bayesian dynamic exhibit the same aggregate b
at all subsequent times.

Were we only interested aggregate behavior, we could focus our attention entirely
aggregate dynamic. But in most applications of Bayesian games, the full Bayesian s
is itself of cardinal importance. For example, in a private value auction, the distrib
of bids is on its own an inadequate description of play; to determine efficiency, one
also know which bidders are placing which bids. Knowing the entire Bayesian strate
is also critical in studying preference evolution: there we must know which prefere
lead players to choose the fittest actions, as these are the preferences that will thriv
natural selection.

Since the full Bayesian strategy is of central interest, it is important to be able to
mine which Bayesian equilibria are dynamicallystable. To accomplish this, we establi
a one-to-one correspondence between the equilibria that are stable under the Bayesian
namic and the distributions that are stable under the aggregate dynamic. Using this
one can determine which Bayesian equilibria are stable under the originalL1 dynamic by
considering a much simpler dynamic defined on the simplex.3

Of course, this simpler dynamic is still a nonlinear differential equation, so it is not im
mediately clear whether these aggregation results are of practical importance. Fortunate
Hofbauer and Sandholm (2002, 2004) have established global convergence results
aggregate best response dynamic in a number of interesting classes of games. In additio
a companion to the present paper (Sandholm, 2003) uses the aggregation results de
here to prove dynamic versions of Harsanyi’s (1973) purification theorem.

Ellison and Fudenberg (2000) study fictitious play in a population with diverse pr
ences. In fictitious play, all players choose a best response to the time average of past p
Since this time average is the model’s statevariable, fictitious play defines a dynamic d
rectly on the simplex even when preferences are diverse. In fact, it is easy to show that t
dynamic studied by Ellison and Fudenberg (2000) isequivalent (after a time reparamete

3 Were the mapping between solution trajectories one-to-one as well, the stability results would follow
immediate consequence. However, since this mapping is actually many-to-one, these results are not obvious—s
Section 6.
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zation) to ouraggregate best response dynamic. The connections between these pro
are considered in greater detail in the final section of the paper.

2. The best response dynamic

A unit mass of agents recurrently plays a population game. Each agent chooses
n actions, which we identify with standard basis vectors inRn: S = {e1, e2, . . . , en}.4 We
let ∆ = {x ∈ Rn+:

∑
i xi = 1} denote the set of distributions over actions.

2.1. Common preferences

In typical evolutionary models, all agentsshare the same preferences. Here, we re
sent these preferences by a Lipschitz continuous functionπ :∆ → Rn;πi(x) represents the
payoff to strategyi when aggregate behavior isx. An important special case is based
random matching in a symmetric normal form game with payoff matrixA ∈ Rn×n; in this
case, the payoff function is the linear functionπ(x) = Ax. More generally, our setup als
allows the payoffs to each action to depend nonlinearly on the population state, a featu
that is essential in some applications—see Sandholm (2004).

Let BRπ : ∆ ⇒ ∆ denote the best response correspondence for payoff functionπ :

BRπ(x) = argmax
y∈∆

y · π(x).

Action distributionx∗ ∈ ∆ is aNash equilibrium underπ if x∗ ∈ BRπ(x∗): that is, if each
agent chooses an action that is optimal given the behavior of the others.

Thebest response dynamic on∆ is defined by

(BR) ẋ ∈ BRπ(x) − x.

The usual interpretation of this dynamic is that agents occasionally consider switch
actions, choosing a best response whenever they do so. The−x term arises because at ea
moment in time, all agents are equally likely to consider a switch.

Gilboa and Matsui (1991), Matsui (1992), and Hofbauer (1995) study the best res
dynamic in the context of random matching in normal form games. For most payof
trices, there are action distributions thatadmit multiple best responses, and hence m
possible directions of motion under (BR); hence, solutions to (BR) need not be u
For example, if the population begins at a Nash equilibriumx∗, agents who switch to be
responses can do so in proportionsx∗, resulting in a stationary solution trajectory atx∗.
But if the agents who switch to a best response do so in proportions other thanx∗, the
population may move away from the equilibrium. This can lead to complicated solutio
trajectories: Hofbauer (1995) presents a game in which the population continually t
though cycles of varying lengths, passingthrough a Nash equilibrium at the start of ea
circuit.

4 All results in this paper are easily extended to allow multiple populations (i.e., to allow different subs
the agents to choose from different sets of actions).
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We show that the existence of solutions that leave Nash equilibria is a conseque
the assumption that all agents’ preferences are identical. The source of the nonuniq
of solutions to (BR) is the fact that for most payoff matrices, there is a set of action di
utions admitting multiple best responses. Indeed, Hofbauer’s (1995) example is generic
that all payoff matrices close to the one he considers yield qualitatively similar dynami

Our analysis shows that there is another sense in which Hofbauer’s (1995) exam
not generic. The analysis relies on the following observation: if we fix a distribution
actions, the set of payoff matrices that generate indifference at that distribution is neg
gible. Therefore, in a population with diverse preferences, best responses are “ess
unique,” and the function that defines the bestresponse dynamic in this context is sing
valued. To establish the uniqueness of solutions, and thus the equivalence of res
and Bayesian equilibria, we must establish that this function is not only single value
also Lipschitz continuous. We show below that this is true if distances between Ba
strategies are measured in an appropriate way.

2.2. Diverse preferences

To incorporate diverse preferences, we suppose that the distribution of payoff fun
in the population is described by a probability measureµ on the set of payoff function
Π = {π :∆ → Rn|π is Lipschitz continuous}. In the language of Bayesian games,µ rep-
resents the distribution of types, which in the current context are simply the agents’ p
functions. The common preferences model corresponds to the case in whichµ places all
mass on a single point inΠ . We rule out this case below, focusing instead on settings
genuine diversity.

We suppose that there are a continuum of agents with each preferenceπ ∈ Π in the sup-
port of µ. Each agent chooses a pure action inS. The behavior of the subpopulation wi
preferenceπ is described by a distribution in∆. A Bayesian strategy is a mapσ :Π → ∆,
whereσ(π) is the distribution over pure actions chosen in aggregate by the age
type π . Each Bayesian strategyσ can be viewed as a random vector on the probab
space (Π,µ) that takes values in∆. The setΣ = {σ :Π → ∆} contains all (Borel measu
able) Bayesian strategies. We consider a pair of Bayesian strategiesσ,ρ ∈ Σ equivalent
if σ(π) = ρ(π) for µ-almost everyπ . In other words, we do not distinguish betwe
Bayesian strategies that indicate the same action distribution for almost every type.

Let E denote expectation taken with respect to the probability measureµ. The pro-
portion of agents who play actioni under the Bayesian strategyσ is then given byEσi =∫
Π

σi(π)dµ, and theaggregate behavior induced byσ ∈ Σ is Eσ ≡ (Eσ1, . . . ,Eσn) ∈ ∆.
That is, the operatorE takes both random variables and random vectors as arguments
dling each in the appropriate way. We sometimes callEσ the distribution induced byσ .
Our notion of distance between distributions is the summation norm onRn: for x ∈ Rn, let

|x| =
n∑

|xi|.

i=1
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Each agent’s best responses are defined with respect to current aggregate behax =
Eσ ∈ ∆. We letB :∆ ⇒ Σ denote the best response correspondence, which we defi

B(x)(π) ≡ BRπ (x) = argmax
y∈∆

y · π(x).

The best responseB(x) ∈ Σ is a Bayesian strategy; for eachπ ∈ Π,B(x)(π) is the set
of distributions in∆ that are best responses against aggregate behaviorx for agents with
preferenceπ .

We state some weak but useful conditions on the preference distributionµ in terms of
the best response correspondenceB; classes of preference distributions that satisfy th
conditions are introduced below. Condition (C1) requires that for all aggregate beh
x ∈ ∆, the set of agents with multiple best responses has measure zero:

(C1) B is single valued.

Under condition (C1), all selections fromB(x) are equivalent, allowing us to rega
B :∆ → Σ as a function rather than as a correspondence.

Each Bayesian strategyσ ∈ Σ induces some distributionEσ ∈ ∆; the best response t
this distribution isB(E(σ)). We say that the Bayesian strategyσ ∗ is aBayesian equilib-
rium if it is a best response to itself: that is, ifσ ∗ = B(E(σ ∗)). We letΣ∗ ⊆ Σ denote
the set of Bayesian equilibria. Observe that under condition (C1), all aggregate behavi
induce a unique,pure best response: for allx,µ{π : B(x)(π) ∈ {e1, . . . , en}} = 1. Hence,
all Bayesian equilibria must also be pure.5

TheBayesian best response dynamic is described by the law of motion

(B) σ̇ = B
(
E(σ)

) − σ

onΣ , the space of Bayesian strategies. The right hand side of this equation is a ma
Σ to Σ̂ = {σ :Π → Rn}, a linear space containing all directions of motion throughΣ .

To complete the definition of the dynamic,we must specify the norm used to meas
distances between points in̂Σ . To interpret Eq. (B) preference by preference, one wo
employ theL∞ norm,

‖σ‖L∞ = ess sup
π∈Π

∣∣σ(π)
∣∣.

This norm defines too strong a topology for our purposes. To see why, consider two s
distributionsx, y ∈ ∆ that lie close to one another. As long as there is a non-null s
preferences whose best responses tox and y differ, the Bayesian best responsesB(x)

andB(y) are far apart in theL∞ norm:‖B(x) − B(y)‖L∞ = 2. For this reason, the law o
motion (B) is discontinuous in this norm, so standard methods of establishing the exi
and uniqueness of solution trajectories fail.

To create a tractable model, we need to use a norm onΣ̂ that makes it easier for tw
points to be close to one another, so that under this norm Eq. (B) defines a cont
law of motion. In particular, we want pairs of Bayesian strategies that only differ in

5 Of course, this observation is originally due to Harsanyi (1973).
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choices of agents whose preferences lie in some set of small measure to be rega
close together. One appropriate choice of norm is theL1 norm, which we denote by‖ · ‖:

‖σ‖ ≡
n∑

i=1

E|σi | = E

(
n∑

i=1

|σi |
)

= E|σ |.

Under this norm, the distance between a pair of Bayesian strategies is determined by
average change in behavior over all subpopulations. Hence, if the best responses tx and
y differ only for a set of preferences of measureε, then these best responses are clos
L1 norm:‖B(x) − B(y)‖ = 2ε.6

In order to establish existence and uniqueness of solution trajectories to the Ba
best response dynamic, it is enough to know that the dynamic is Lipschitz continuous. Th
following lemma is a first step in this direction.

Lemma 2.1. E :Σ → ∆ is Lipschitz continuous (with Lipschitz constant 1).

Proof. SinceE is linear, it is enough to show that|Eσ | � ‖σ‖. And indeed,

|Eσ | =
n∑

i=1

|Eσi | �
n∑

i=1

E|σi | = ‖σ‖. �

Given Lemma 2.1, Lipschitz continuity ofthe dynamic is a consequence of the follo
ing condition:

(C2) B is Lipschitz continuous (with respect to theL1 norm).

Condition (C2) asks that small changes in aggregate behaviorx lead to correspondingl
small changes in the best responseB(x), where the distance between best response
measured using theL1 norm.

Our two conditions on the functionB will hold as long as the preference distributionµ

is both sufficiently diverse and sufficiently smooth. We illustrate this using two exam
Our first example concerns random matching in normal form games. In this example
agent’s payoffs are derived from some payoff matrixA ∈ Rn×n, but different agents hav
different payoff matrices.

Proposition 2.2. Let λ be a probability measure on Rn×n, and define the preference dis-
tribution µ by µ{π : π(x) = Ax for some A ∈ M} = λ(M). If λ admits a bounded density
function with compact support, then B satisfies conditions (C1) and (C2).

For our second example, we suppose that all agents’ preferences are based on t
(possibly nonlinear) payoff function, but that each agent has idiosyncratic preferencesθi

in favor of or against each actioni ∈ S.

6 The choice of norm is also important issue in other models of evolution with infinite dimensional
variables. For example, in Oechssler and Riedel’s (2001) work on replicator dynamics for games with infin
strategy spaces, the choice of norm determines the set of payoff functions for which the dynamic is well define
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Proposition 2.3. Let F ∈ Π be a Lipschitz continuous payoff function, let ν be a
probability measure on Rn, and define the preference distribution µ by µ{π : π(x) =
F(x) + θ for some θ ∈ Θ} = ν(Θ). Suppose that ν admits a bounded density function
f : Rn → R and that either (i) ν has compact support, (ii) ν is a product measure, or (iii)
for each pair (i, j), i 	= j , the density gji : R → R for the difference θj − θi is bounded.
Then B satisfies conditions (C1) and (C2).

Proofs of these two propositions can be found in Appendix A.

3. Basic properties

We now establish some basic properties of solutions to the Bayesian best respo
namic (B). Since we will interpret Eq. (B) in theL1 sense, we begin by reviewing th
notions of continuity and differentiability for trajectories through theL1 space (̂Σ,‖ · ‖);
see Lang (1997) for additional details.

Let {σt } = {σt }t�0 be a trajectory througĥΣ . We say that̄σ ∈ Σ̂ is theL1 limit of σs

ass approachest , denoted̄σ = L1 lims→t σs , if

lim
s→t

‖σs − σ̄‖ = lim
s→t

E|σs − σ̄ | = 0.

The trajectory{σt } is L1 continuous if σt = L1 lims→t σs for all t . If there exists ȧσt ∈ Σ̂

such that

σ̇t = L1 lim
ε→0

(
σt+ε − σt

ε

)
,

we call σ̇t theL1 derivative of trajectory{σt } at timet .
As usual, theL1 derivativeσ̇t describes the direction of motion of the trajectory{σt } ⊂

Σ̂ at timet . But even when this derivative exists, the (standard) derivative d(σt (π))/dt of
the distribution trajectory{σt (π)} ⊂ Rn of any particular preferenceπ need not exist: the
slope(σt+ε(π) − σt (π))/ε ∈ Rn of the line segment from(t, σt (π)) to (t + ε,σt+ε(π))

may not converge asε approaches zero. For theL1 derivative to exist, the measure of t
set of preferencesπ for which this slope is not close tȯσt (π) ∈ Rn must become arbitrarily
small asε vanishes.

A Lipschitz continuous functionf : Σ̂ → Σ̂ defines a law of motion

(D) σ̇ = f (σ)

on Σ̂ . A trajectoryσ : R+ → Σ̂ is anL1 solution to Eq. (D) if σ̇t = f (σt ) µ-almost surely
for all t , whereσ̇t is interpreted as anL1 derivative.7

Theorem 3.1 sets out the basic properties of solutions of the Bayesian dynamic. It
is provided in Appendix A.

7 The definition of anL1 solution requires that the derivativėσt exist at all timest � 0. In contrast, since th
standard best response dynamic (BR) has a discontinuous law of motion, to ensure that solutions to (BR) e
one must allow differentiability to fail at a zero measure set of times.
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Theorem 3.1 (Basic properties of solutions to (B)).
(i) There exists an L1 solution to (B) starting from each σ0 ∈ Σ . This solution is unique

in the L1 sense: if {σt } and {ρt } are L1 solutions to (B) such that ρ0 = σ0 µ-a.s., then
ρt = σt µ-a.s. for all t .

(ii) If {σt } and {ρt } are L1 solutions to (B), then

‖σt − ρt‖ � ‖σ0 − ρ0‖eKt ,

where K is the Lipschitz constant of f (σ) = B(E(σ)) − σ .
(iii) Solutions to (B) remain in Σ at all times t ∈ [0,∞).
(iv) From each σ0 ∈ Σ there is an L1 solution to (B) with the property that

µ(π : σt (π) is continuous in t) = 1.

(v) σ ∗ is a rest point of (B) if and only if it is a Bayesian equilibrium.

Part (i) guarantees the existence and uniqueness of solutions to (B), while parts (
(iii) establish continuity in initial conditions and forward invariance ofΣ . Since (B) is
Lipschitz, these results are nearly standard; the main technicality that must be addre
the fact that the domainΣ of the dynamic is closed.

If {σt } is anL1 solution to (B), then so is any trajectory{σ̂t } that differs from{σt } on
some measure zero sets of preferencesΠt ⊂ Π at arbitrary timest . Thus, while part (i)
of the theorem guarantees the existence of a uniqueL1 solution to (B), this result impose
no restrictions on the distribution trajectory{σt (π)} of an individual preferenceπ : as time
passes, it is possible for the behavior of the subpopulation with preferenceπ to jump
haphazardly about the simplex. Fortunately, part (iv) of the theorem shows that we c
always find anL1 solution with the property that the behavior associated with almost e
preference changes continuously over time. Finally, part (v) of the theorem observ
the rest points of (B) are precisely the Bayesian equilibria of the underlying game.

4. Aggregation and equilibrium

We have established that solution trajectories of the best response dynamic (B) ex
are unique. However, since this dynamic operates on anL1 space, working with it directly
is rather difficult. In the coming sections, we show that many important properties o
dynamic can be understood by analyzing an aggregate dynamic. The aggregate dyn
defined on the simplex, and so can be studied using standard methods.

Before introducing the aggregate dynamic,we reconsider the Bayesian equilibriaσ ∗ ∈
Σ∗, which are the rest points of (B). Since the Bayesian strategyσ induces the distribution
E(σ) ∈ ∆, Bayesian equilibria satisfyσ ∗ = B(E(σ ∗)).

If the current distribution isx ∈ ∆, the Bayesian strategy that is a best response to
distribution isB(x), which in turn induces the distributionE(B(x)). We therefore cal
x∗ ∈ ∆ an equilibrium distribution if x∗ = E(B(x∗)), and let∆∗ ⊆ ∆ denote the set o
equilibrium distributions.

The connection between Bayesian equilibria and equilibrium distributions is estab
in the following result.
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Theorem 4.1 (Characterization of equilibria). The map E :Σ∗ → ∆∗ is a homeomorphism
whose inverse is B :∆∗ → Σ∗.

Proof. First, we show thatE mapsΣ∗ into ∆∗. Let σ ∈ Σ∗ be a Bayesian equilibrium
σ = B(E(σ)). ThenE(σ) = E(B(E(σ))), soE(σ) ∈ ∆∗.

Second, we show thatE is onto. Fix a distributionx ∈ ∆∗, so thatx = E(B(x));
we need to show that there is a Bayesian strategyσ ∈ Σ∗ such thatE(σ) = x. Let
σ = B(x). Then sincex ∈ ∆∗,E(σ) = E(B(x)) = x. Furthermore, this equality implie
thatB(E(σ)) = B(x) = σ , soσ ∈ Σ∗. Thus,E is onto, andB(x) ∈ E−1(x).

Third, we show thatE is one-to-one, which implies thatB(x) = E−1(x). Fix two
Bayesian equilibriaσ,σ ′ ∈ Σ∗, and suppose thatE(σ) = E(σ ′). Thenσ = B(E(σ)) =
B(E(σ ′)) = σ ′.

Finally, the continuity ofE andB follows from Lemma 2.1 and condition (C2).�
The spaceΣ of Bayesian strategies is considerably more complicated than the spac

of distributions∆. Nevertheless, Theorem 4.1 shows that if we are only concerned
Bayesian equilibriaσ ∗ ∈ Σ∗, it is sufficient to consider the equilibrium distributionsx∗ ∈
∆∗. We can move between the two representations of equilibria using the mapsE andB,
whose restrictions to the equilibrium sets are inverses of one another.

If we are concerned with disequilibrium behavior, then the one-to-one link bet
Bayesian strategies and distributions no longer exists:E maps many Bayesian strategi
to the same distribution over actions, and if the Bayesian strategyσ is not an equilibrium,
B does not invertE: that is,B(E(σ)) 	= σ .

Fortunately, we are able to prove analogues of Theorem 4.1 for solutions to the Ba
best response dynamic (B). To do so, we introduce the aggregate best response d
(AB), which is defined on the simplex. In the next section, we show that the expec
operatorE is a many-to-one map from solutions to (B) to solutions to (AB). In Sectio
we establish a one-to-one correspondence between stable rest points of (B) and
rest points of (AB). Therefore, while the Bayesian dynamic operates on the compl
spaceΣ , the answers to many important questions about this dynamic can be obtain
applying standard tools to dynamics on the simplex.

5. Aggregation of solution trajectories

Under the dynamic (B), the Bayesian strategyσt always moves toward its best respon
B(E(σt )). Hence, the target point only depends onσt through its distributionE(σt ). This
“bottleneck” provides the basis for our aggregation results.

We define theaggregate best response dynamic by

(AB) ẋt = E
(
B(xt )

) − xt .

Under this law of motion, the distributionxt moves toward the distribution induced b
the best response toxt . Lemma 2.1 and condition (C2) imply that this dynamic is Lipschitz
continuous. Therefore, solutions to (AB) exist, are unique, are Lipschitz continuo
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their initial conditions, and leave∆ forward invariant (see Theorem A.1 in Appendix A
Moreover, the rest points of (AB) are easily characterized.

Observation 5.1. The set of rest points of (AB) is ∆∗, the set of equilibrium distributions.

Let f :Σ → Σ̂ andg :∆ → Rn be Lipschitz continuous functions, and consider
following laws of motion onΣ and∆:

(D) σ̇ = f (σ);
(AD) ẋ = g(x).

We say that the dynamic (D)aggregates to the dynamic (AD) if whenever{σt } is anL1

solution to (D),{Eσt } is a solution to (AD).

Theorem 5.2 (Aggregation of solution trajectories). The Bayesian best response dynamic
(B) aggregates to the aggregate best response dynamic (AB).

Theorem 5.2 tells us that the dynamic (AB) completely describes the evolution o
gregate behavior under the dynamic (B). If{σt } is a solution to (B), then the distributio
it induces at timet,Eσt , is equal toxt , where {xt } is the solution to (AB) starting from
x0 = Eσ0. Since aggregate behavior at timet under (B) is fully determined by aggrega
behavior at time 0, Bayesian strategies that induce the same aggregate behavior als
the same aggregate behavior trajectories.

It is important to note that this mapping between solution trajectories is many-to
For example, consider a solution{σt } to (B) whose initial Bayesian strategy aggrega
to an equilibrium distribution:Eσ0 = x∗ ∈ ∆∗. Observation 5.1 and Theorem 5.2 imp
that the distribution trajectory {Eσt } induced by{σt } is degenerate:Eσt = x∗ for all t .
However,{σt } is itself degenerate only ifσ0 is a Bayesian equilibrium; there are ma
Bayesian strategiesσ ∈ E−1(x∗) that aggregate tox∗ but are not Bayesian equilibria, an
hence are not rest points of the dynamic (B). As we shall see in Section 6, the fact t
mapping between solutions is many-to-one rather than one-to-one makes relating s
under (B) and (AB) more difficult than it may first appear to be.

Theorem 5.2 is an immediate consequence of Theorem 5.4, which characteriz
dynamics onΣ that can be aggregated. The proof of Theorem 5.4 requires the follo
lemma.

Lemma 5.3. If {σt } ⊂ Σ̂ is an L1 differentiable trajectory, then E(σ̇t ) = dEσt/dt .

Proof. SinceE is continuous by Lemma 2.1,

E(σ̇t ) = E

(
L1 lim

ε→0

σt+ε − σt

ε

)
= lim

ε→0
E

(
σt+ε − σt

ε

)
= lim

ε→0

Eσt+ε − Eσt

ε

= d

dt
Eσt . �
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Theorem 5.4. The dynamic (D) aggregates to the dynamic (AD) if and only if (E ◦f )(σ ) =
(g ◦ E)(σ) for all σ ∈ Σ .

Proof. Let {σt } be anL1 solution to (D). Applying Lemma 5.3, and taking expectations
both sides of (D), we find that

d

dt
Eσt = Eσ̇t = Ef (σt ).

Thus, ifE ◦ f ≡ g ◦ E, it follows thatg(Eσt ) = Ef (σt ) = dEσt/dt ; hence,{Eσt } solves
(AD), and sof aggregates tog. Conversely, iff aggregates tog, then{Eσt } solves (AD),
so g(Eσt ) = dEσt/dt = Ef (σt ). As σ0 was chosen arbitrarily, it follows thatE ◦ f ≡
g ◦ E. �

Theorem 5.4 implies that given any Lipschitz continuous functionF :∆ → Σ , the dy-
namic

σ̇ = F
(
E(σ)

) − σ

aggregates to (AD) withg(x) = E(F(x)) − x. Thus, dynamics onΣ can be aggregate
whenever the target pointF(E(σ)) is only a function of aggregate behavior. In fact, t
stability results in the next section extend immediately to all dynamics of this form.

Before considering the question of stability, we use Theorem 5.2 to establish an in
ity result. Suppose that the aggregate best response dynamic (AB) exhibits a limit c8

or that equilibrium distributions are avoided in some more complicated fashion. Wh
can we say about behavior under the Bayesian dynamic (B)?

Theorem 5.5. Let σ0 ∈ Σ and x0 = Eσ0 ∈ ∆, and let {σt } and {xt } be the solutions to (B)
and (AB) from σ0 and x0. Let σ ∗ ∈ Σ∗ and x∗ = Eσ ∗ ∈ ∆∗. Then

‖σt − σ ∗‖ � |xt − x∗| and ‖σ̇t‖ � |ẋt | for all t � 0.

In particular, if {xt} avoids an ε-neighborhood of ∆∗ and maintains a speed of at least δ,
then {σt } avoids an ε-neighborhood of Σ∗ and maintains a speed of at least δ.

Proof. Theorem 5.2 tells us thatEσt = xt for all t � 0. Hence, Lemma 2.1 implies that

‖σt − σ ∗‖ � |Eσt − Eσ ∗| = |xt − x∗|,
while Lemmas 2.1 and 5.3 imply that

‖σ̇t‖ � |Eσ̇t | =
∣∣∣∣ d

dt
Eσt

∣∣∣∣ = ∣∣ẋt

∣∣.
The remaining claims follow from these inequalities and Theorem 4.1.�

8 This can occur, for example, if we introduce payoff perturbations to a Rock–Paper–Scissors game wh
unique Nash equilibrium is not an ESS.
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6. Aggregation and stability

As we discussed in the introduction, it is important in many applications to be
to predict not only the behavior distributionEσ , but the full Bayesian strategyσ . This
observation motivates our stability analysis of the Bayesian dynamic (B). The resu
this section establish that under three standard notions of stability, stability of Bayesia
strategies under (B) is equivalent to stability ofdistributions under (AB). Thus, to evalua
the stability of Bayesian strategies under (B), it is enough to determine the stabi
the corresponding distributions in∆ ⊂ Rn, which can be accomplished using stand
techniques.

We begin by reviewing the three notions of dynamic stability we will consider. LeZ

be a subset of a Banach space(Ẑ,‖ · ‖), and let the functionh :Z → Ẑ define a dynamic
onZ via the equation of motion

(M) ż = h(z).

Suppose thatZ is forward invariant under the dynamic (M), and letz∗ ∈ Z be a rest poin
of the dynamic:h(z∗) = 0. We say thatz∗ is Lyapunov stable under (M) if for each se
A ⊂ Z containingz∗ that is open (relative toZ) there is an open setA′ ⊂ A that contains
z∗ such that any trajectory that begins inA′ always stays inA: if {zt } is a solution to (M)
with z0 ∈ A′, then{zt } ⊂ A. We callz∗ asymptotically stable under (M) if it is Lyapunov
stable and if there is an open setA containingz∗ such that any trajectory starting inA
converges toz∗: if {zt } is a solution to (M) withz0 ∈ A, then limt→∞ zt = z∗. If we can
chooseA = Z, we callz∗ globally asymptotically stable.

The following lemma underlies many of our stability results.

Lemma 6.1. Let σ ∈ Σ , let x = Eσ ∈ ∆, and let y ∈ ∆. Then there exists a ρ ∈ Σ satisfy-
ing Eρ = y and ‖ρ − σ‖ = |y − x|.

Lemma 6.1 says that if the Bayesian strategyσ has a distributionx that isε away from
the distributiony, there is another Bayesian strategyρ that is ε away fromσ and that
aggregates toy. A constructive proof of this lemma can be found in Appendix A. T
result is not obvious because in constructingρ, we must make certain that the distributi
ρ(π) played by each preferenceπ lies in the simplex.

We first characterize Lyapunov stability under the Bayesian dynamic.

Theorem 6.2 (Lyapunov stability). The distribution x∗ ∈ ∆∗ is Lyapunov stable under
(AB) if and only if the Bayesian strategy σ ∗ = B(x∗) ∈ Σ∗ is Lyapunov stable under (B).

To establish this connection, we need ways of moving between neighborhoo
Bayesian equilibriaσ ∗ and equilibrium distributionsx∗. Since the operatorsE :Σ → ∆

andB :∆ → Σ are continuous and map equilibria to equilibria, they along with Lemma 6.
are the tools we need.

That the Lyapunov stability ofσ ∗ implies the Lyapunov stability ofx∗ follows easily
from these facts. The proof of the converse requires an additional lemma.
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Lemma 6.3. Let A ⊂ Σ̂ be an open convex set, and let {σt } ⊂ Σ̂ be an L1 differentiable
trajectory with σ0 ∈ A and such that σt + σ̇t ∈ A for all t . Then {σt } ⊂ A.

The pointσt + σ̇t is the location of the head of the vectorσ̇t if its tail is placed atσt ,
and so represents the target toward which the trajectory is moving at timet . The lemma,
which is proved in Appendix A, says that if the trajectory starts in the open, convexA
and always moves toward points inA, it never leavesA.

Now, suppose thatx∗ is Lyapunov stable. IfV is a convex neighborhood ofσ ∗, then
B−1(V ) is a neighborhood ofx∗. Sincex∗ is Lyapunov stable, trajectories that start
some open setW ⊂ B−1(V ) stay inB−1(V ). Therefore, if the Bayesian trajectory{σt }
starts atσ0 ∈ E−1(W) ∩ V , then the distribution trajectory{Eσt } stays inB−1(V ), and
hence the Bayesian trajectory{B(E(σt ))} stays inV . Since the trajectory{σt } begins inV
and always heads toward pointsB(E(σt )) ∈ V , Lemma 6.3 implies that it never leavesV .

Proof of Theorem 6.2. First, suppose thatσ ∗ = B(x∗) is Lyapunov stable under (B). T
show thatx∗ is Lyapunov stable under (AB), we need to show that for each open setO con-
tainingx∗ there is an open setO ′ ⊂ O containingx∗ such that solutions to (AB) that sta
in O ′ never leaveO . SinceE :Σ → ∆ is continuous,E−1(O) is open; sinceEσ ∗ = x∗
by Theorem 4.1,σ ∗ ∈ E−1(O). Becauseσ ∗ is Lyapunov stable, there exists an open b
C ⊂ E−1(O) aboutσ ∗ of radiusε such that solutions to (B) that start inC stay inE−1(O).

Let O ′ be an open ball aboutx∗ of radius less thanε that is contained in the ope
set B−1(C) ∩ O . Let {xt } be a solution to (AB) withx0 ∈ O ′. By our choice ofO ′,
|x0 − x∗| < ε. Thus, by Lemma 6.1, there exists a Bayesian strategyσ0 such thatEσ0 = x0

and‖σ0 − σ ∗‖ = |x0 − x∗| < ε; the inequality implies thatσ0 ∈ C. Hence, if{σt } is the
solution to (B) starting fromσ0, then{σt } ⊂ E−1(O). Therefore, Theorem 5.2 implies th
{xt } = {Eσt } ⊂ O .

Now suppose thatx∗ is Lyapunov stable under (AB). To show thatσ ∗ = B(x∗) is Lya-
punov stable under (B), it is enough to show that for each setU ⊂ Σ containingσ ∗ that
is open relative toΣ , there is an setU ′ ⊂ U containingσ ∗ that is open relative toΣ such
that solutions to (B) that start inU ′ never leaveU .

Let V be an open ball in̂Σ aboutσ ∗ such thatV ∩ Σ ⊂ U . Since can view the cont
nous functionB :∆ → Σ as having rangêΣ ⊃ Σ,B−1(V ) ⊂ ∆ is open relative to∆ and
containsx∗. Becausex∗ is Lyapunov stable, we can find an setW ⊂ B−1(V ) that contains
x∗ and that is open relative to∆ such that solutions to (AB) that start inW never leave
B−1(V ).

The setE−1(W) is open relative toΣ and containsσ ∗; therefore,U ′ = E−1(W) ∩ V

possesses both of these properties as well. Let{σt } be a solution to (B) withσ0 ∈ U ′. Then
Eσ0 ∈ W . Therefore, since{Eσt } solves (AB) by Theorem 5.2,Eσt ∈ B−1(V ) for all t ,
and soB(E(σt )) ∈ V for all t . But sinceσ̇t = B(E(σt )) − σt , σt + σ̇t ∈ V for all t . Thus,
Lemma 6.3 implies that{σt } ⊂ V . Moreover, Theorem 3.1 (ii) implies that{σt } ⊂ Σ ; we
therefore conclude that{σt } ⊂ V ∩ Σ ⊂ U . �

We continue by characterizing asymptotic stability.
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Theorem 6.4 (Asymptotic stability). The distribution x∗ ∈ ∆∗ is asymptotically stable
under (AB) if and only if the Bayesian strategy σ ∗ = B(x∗) ∈ Σ∗ is asymptotically stable
under (B).

That the asymptotic stability of the Bayesian strategyσ ∗ implies the asymptotic stabilit
of its distributionx∗ follows easily from Lemma 6.1 and Theorem 5.2. The proof of
converse also requires the following lemma.

Lemma 6.5. Let {σt } be the solution to (B) from some σ0 ∈ Σ with Eσ0 = x∗ ∈ ∆∗, and
let σ ∗ = B(x∗) ∈ Σ∗. Then limt→∞ σt = σ ∗. Indeed,

σt ≡ e−t σ0 + (
1− e−t

)
σ ∗.

If {σt } is a Bayesian trajectory whose initial distribution is an equilibrium, then whilσt

may change over time, its distribution does not:Eσt = x∗ for all t . Consequently, under th
best response dynamic (B),σt always heads fromσ0 directly toward the pointB(E(σt )) =
σ ∗. The proof of Lemma 6.5 can be found in Appendix A.

Now, suppose thatx∗ is asymptotically stable under (AB). Then ifσ0 is close enough
to σ ∗, Eσ0 will be close tox∗, so if {σt } solves (B), Theorem 5.2 tells us that{Eσt }
converges tox∗. Lemma 6.1 then implies that ift is large, we can find a Bayesian strate
σ̂ that is close toσt and that aggregates tox∗; by Lemma 6.5, the solution to (B) from
σ̂ converges toσ ∗. That {σt } must converge toσ ∗ then follows from the continuity o
solutions to (B) in their initial conditions.

Proof of Theorem 6.4. Since Lyapunov stability is covered by Theorem 6.2, we need
consider convergence of nearby trajectories toσ ∗ andx∗. For allε > 0 and anyσ ∈ Σ and
x ∈ ∆, defineNε(σ) = {ρ ∈ Σ: ‖ρ − σ‖ � ε} andNε(x) = {y ∈ ∆: |y − x| � ε} to be the
ε neighborhoods ofσ andx, respectively.

Suppose thatσ ∗ = B(x∗) is asymptotically stable. Then there exists anε > 0 such that
solutions to (B) withσ0 ∈ Nε(σ

∗) converge toσ ∗. Now suppose that{xt} is a solution to
(AB) with x0 ∈ Nε(x

∗). By Lemma 6.1, there exists âσ0 ∈ Nε(σ
∗) satisfyingEσ0 = x0;

therefore, the solution{σ̂t } converges toσ ∗. Sincext = Eσ̂t by Theorem 5.2, and sinceE
is continuous by Lemma 2.1,

lim
t→∞xt = lim

t→∞Eσ̂t = E
(
L1 lim
t→∞ σ̂t

)
= Eσ ∗ = x∗.

Hence, all solutions to (AB) starting inNε(x
∗) converge tox∗.

Now suppose thatx∗ is asymptotically stable and letσ ∗ = B(x∗). We can choose a
ε > 0 such that all solutions to (AB) starting inNε(x

∗) converge tox∗. Now suppose tha
σ0 ∈ Nε(σ

∗); we will show that{σt }, the solution to (B) starting fromσ0, must converge
to σ ∗. First, observe that

|Eσ0 − x∗| = ∣∣Eσ0 − E
(
B(x∗)

)∣∣ = ∣∣E(σ0 − σ ∗)
∣∣ � E|σ0 − σ ∗| = ‖σ0 − σ ∗‖ � ε,

so Eσ0 ∈ Nε(x
∗). Theorem 5.2 implies that{Eσt } is the solution to (AB) starting from

Eσ0; hence, limt→∞ Eσt = x∗.



ARTICLE IN PRESS
S0899-8256(04)00132-0/FLA AID:1175 Vol.•••(•••) [DTD5] P.16 (1-27)
YGAME:m1 v 1.29 Prn:15/11/2004; 10:34 ygame1175 by:Rima p. 16

16 J.C. Ely, W.H. Sandholm / Games and Economic Behavior ••• (••••) •••–•••

f this

ets of

dynamic
re-

inuous

ated as
of
Fix η > 0. It is enough to show that there exists aT such that‖σt − σ ∗‖ < η for
all t � T . Let K be the Lipschitz coefficient off (σ) = B(E(σ)) − σ , and let δ =
n−K(η/2)K+1. Since limt→∞ Eσt = x∗, there is aτ1 such that|Eσt − x∗| < δ whenever
t � τ1. Let τ2 = log(2n/η), and chooseT = τ1 + τ2.

Fix t > T . Then, sincet − τ2 > T − τ2 = τ1, Lemma 6.1 implies that there is aσ̂0 such
thatEσ̂0 = x∗ and∥∥σt−τ2 − σ̂0

∥∥ = |Eσt−τ2 − x∗| < δ.

Let {σ̂t } be the solution to (B)with initial conditionσ̂0. Since no two points inΣ are further
than distancen apart, Lemma 6.5 implies that∥∥σ̂τ2 − σ ∗∥∥ = e−τ2

∥∥σ̂0 − σ ∗∥∥ � ne−τ2.

Moreover, it follows from Theorem 3.1 (ii) that∥∥σt − σ̂τ2

∥∥ �
∥∥σt−τ2 − σ̂0

∥∥eKτ2.

Therefore,

‖σt − σ ∗‖ �
∥∥σt − σ̂τ2

∥∥ + ∥∥σ̂τ2 − σ ∗∥∥
�

∥∥σt−τ2 − σ̂0
∥∥eKτ2 + ne−τ2

< δeKτ2 + ne−τ2

= η

2
+ η

2
= η. �

We conclude this section by characterizing global asymptotic stability. The proof o
result is analogous to that of Theorem 6.4.

Theorem 6.6 (Global asymptotic stability). The distribution x∗ ∈ ∆∗ is globally asymptot-
ically stable under (AB) if and only if the Bayesian strategy σ ∗ = B(x∗) ∈ Σ∗ is globally
asymptotically stable under (B).

Remark 6.7. While we have stated our stability results for isolated equilibriax∗ ∈ ∆∗
andσ ∗ = B(x∗) ∈ Σ∗, one can extend these results to allow for closed connected s
equilibriaX∗ ⊂ ∆∗ andB(X∗) ⊂ Σ∗.

7. Best response dynamics and fictitious play

Under common preferences, the close connections between the best response
and fictitious play are well known. In fictitious play, players always choose a best
sponse to their beliefs, which are given by the time average of past play. In the cont
time formulation, if we letct denote current behavior, thenat = (1/t)

∫ t

0 cs ds represents
beliefs. The requirement that current behavior be a best response to beliefs is st
ct ∈ BRπ(at ). By differentiating the definition ofat and substituting, we obtain the law
motion for beliefs under fictitious play:
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(FP) ȧt = 1

t
ct − 1

t2

t∫
0

cs ds = 1

t

(
BRπ(at ) − at

)
.

Therefore, after a reparameterization of time, the evolution of beliefs under (FP) is ide
to the evolution of behavior under the best response dynamic (BR).

Ellison and Fudenberg (2000) study fictitious play in a population with diverse
erences. As in the standard case, players choose a best response to the time
at = (1/t)

∫ t

0 cs ds of past behavior. Since players are matched with opponents drawn
the population as a whole, the object that is averaged to determine beliefs isct = E(B(at )),
the distribution of behavior at timet . This yields the law of motion

(PFP) ȧt = 1

t

(
E

(
B(at )

) − at

)
,

which is a reparameterization of our aggregate best response dynamic (AB).
Observe that the state variable underpopulation fictitious play is the averagedistribu-

tion of past behavior,at ∈ ∆. If one keeps track of this, one can always compute the
responseB(at ) ∈ Σ as well as the best response distributionE(B(at )) ∈ ∆. The latter ob-
ject determines the direction in which the time averageat evolves. In contrast, the Bayesia
best response dynamic must specify how behavior in every subpopulation evolves,
relevant state variable is not the distribution of behaviorxt ∈ ∆, but the Bayesian strateg
σt ∈ Σ . Thus, while the dynamics (PFP) and (AB) are nearly identical, the evolution o
Bayesian strategies under population fictitiousplay and under the Bayesian best respo
dynamic are quite different.

As an illustration, suppose that (PFP) and (AB) are currently at stateat = xt . Under
population fictitious play, the current Bayesian strategy must beB(at ), thebest response
to beliefsat ; in particular, it is always pure. Under the best response dynamic, the cu
Bayesian strategyσt must be one thataggregates to at : in other words,σt ∈ E−1(at ) =
{σ ∈ Σ: E(σ) = at }. In fact,B(at ) is an element ofE−1(at ) only if at is an equilibrium
distribution andσt = B(at ) is the corresponding Bayesian equilibrium.

On the other hand, if the solution to (AB) fromat = xt converges to some equilib
rium distributionx∗, then one can show that under bothpopulation fictitious play and th
Bayesian best response dynamic, the Bayesian strategyσt converges to the Bayesian equ
librium σ ∗ = B(x∗). Indeed, by proving that equilibrium and stability analyses for
Bayesian best response dynamic (B) can be performed directly in terms of the agg
dynamic (AB), we have demonstrated that the close connections between fictitious p
and the best response dynamic from the common preference case persist when pre
are diverse.

Ellison and Fudenberg (2000) use their model of population fictitious play to investigate
the evolutionary stability of purified equilibria (Harsanyi, 1973), obtaining stability an
instability results for 2× 2 and 3× 3 games. By building on the results in this paper a
recent studies of perturbed best responsedynamics, one can investigate the stability
purified equilibria in games with arbitrary numbers of strategies. This question is pu
in a companion paper, Sandholm (2003).
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Appendix A

A.1. Basic properties of dynamical systems on ∆ and Σ

We begin this appendix by establishing the existence, uniqueness, and forward
ance of solution trajectories of the aggregate best response dynamic (AB). In fact, w
establish this result for a more general class of dynamics on the simplex.

Let g :∆ → Rn be a vector field on the simplex that satisfies

(LC) g is Lipschitz continuous on∆.

(FI1)
∑

i gi(x) = 0 for all x ∈ ∆.

(FI2) For allx ∈ ∆, gi(x) � 0 wheneverxi = 0.

Condition (LC) is the usual Lipschitz condition used to prove the existence of unique so
tion trajectories to the differential equationẋ = g(x). Condition (FI1) says that

∑
i ẋi = 0,

implying the invariance of the affine spacẽ∆ = {x ∈ Rn:
∑

i xi = 1}. Condition (FI2) says
that whenever the componentxi equals zero, its rate of changeẋi is non-negative.

Theorem A.1. Let g :∆ → Rn satisfy (LC), (FI1), and (FI2), and let g̃ be a Lipschitz
continuous extension of g from ∆ to ∆̃. Then solutions to ẋ = g̃(x) from each x0 ∈ ∆ exist,
are unique, are Lipschitz continuous in x0, and remain in ∆ at all positive times.

Let |x|E =
√∑

i x
2
i denote the Euclidean norm onRn. The proof of Theorem A.1 relie

on this geometrically obvious observation that we state without proof.

Observation A.2. Let C be a compact, convex subset of Rn, and define the closest point
function c : Rn → C by

c(x) = argmin
z∈C

|x − z|E.

Then |c(x) − c(y)|E � |x − y|E for all x, y ∈ Rn. Hence, by the equivalence of norms on
Rn, there exists a k > 0 such that |c(x) − c(y)| � k|x − y| for all x, y ∈ Rn.

Proof of Theorem A.1. Defineĝ : ∆̃ → Rn by ĝ(x) = g(c(x)). Then condition (LC) and
Observation A.2 imply that̂g is Lipschitz. Therefore, standard results (e.g., Hirsch
Smale, 1974, Chapter 8) show that solutions toẋ = ĝ(x) exist, are unique, and are Lipsch
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on

(ii),

ry

)),
continuous in their initial conditions. The forward invariance of∆ underẋ = ĝ(x) follows
from Theorem 5.7 of Smirnov (2002).

Now consider any Lipschitz continuous extensiong̃ of g to ∆̃, and fix an initial condi-
tion x0 ∈ ∆. Since the solution{xt}t�0 to ẋ = ĝ(x) starting fromx0 does not leave∆, and
sinceg̃ andĝ are identical on∆, this solution is also a solution tȯx = g̃(x). But sinceg̃
is Lipschitz, this is the only solution tȯx = g̃(x) from x0. We therefore conclude that∆ is
forward invariant under̃g. Since∆ is closed, forward invariance implies that the solut
is well defined at all timest ∈ [0,∞) (see, e.g., Hale, 1969, pp. 17–18).�

We now prove an analogue of Theorem A.1 for dynamics onΣ . Let f :Σ → Σ̂ satisfy

(LC′) f is L1 Lipschitz continuous onΣ.

(FI1′)
∑

i fi (σ )(π) = 0 for all σ ∈ Σ andπ ∈ Π.

(FI2′) For allσ ∈ Σ andπ ∈ Π,fi(σ )(π) � 0 wheneverσi(π) = 0.

(UB) For allσ ∈ Σ andπ ∈ Π, |f (σ)(π)| � M.

The first three conditions are analogues of theconditions considered previously. Conditi
(FI1′) ensures that solutions stay in the affine spaceΣ̃ = {σ ∈ Σ̂: σ(π) ∈ ∆̃ for all π ∈
Π}, while condition (FI2′) ensures that whenever no one in subpopulationπ uses strat-
egyi, the growth rate of strategyi in this subpopulation is non-negative. Finally, condition
(UB) places a uniform bound onf (σ)(π), which is needed becausef (σ) is infinite di-
mensional.

Existence, uniqueness, continuity in initial conditions, and forward invariance ofΣ for
L1 solutions toσ̇ = f (σ) are established in Theorem A.3. This result implies parts (i),
and (iii) of Theorem 3.1.

Theorem A.3. Let f :Σ → Rn satisfy (LC′), (FI1′), (FI2′), and (UB), and let f̃ be a
Lipschitz continuous extension of f from Σ to Σ̃ . Then solutions to σ̇ = f̃ (σ ) from each
σ0 ∈ Σ exist, are unique, are Lipschitz continuous in σ0, and remain in Σ at all positive
times.

In addition to these properties, we would also like to establish that someL1 solution
{σt } has continuous sample paths: in other words, that for eachπ ∈ Π , the behaviorσt (π)

of the subpopulation with preferenceπ changes continuously over time. While not eve
L1 solution has this property, we can prove that there is always one that does. Call{σ̃t } a
modification of {σt } if µ(π : st (π) = s̃t (π)) = 1 for all t .

Theorem A.4. Let {σt } be an L1 solution to σ̇ = f̃ (σ ), where f̃ : Σ̃ → Σ̂ is L1 continu-
ous and pointwise bounded. Then there exists a modification {σ̃t } of {σt } with continuous
sample paths: i.e., such that µ(π : σ̃t (π) is continuous int) = 1.

While of interest in its own right (in particular, because it implies Theorem 4.1(iv
Theorem A.4 is also useful for proving Theorem A.3.

To prove these two results, we introduce the notion of anL1 integral of a trajec-
tory throughΣ̂ ; for a complete treatment, see Lang (1997, Chapter 10). If{σt } is an
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w that

s.
L1 continuous trajectory througĥΣ , then itsL1 integral over the interval[a, b], denoted∫ b

a
σt dt , is theL1 limit of the integrals of any sequence of step functions{σn

t } satisfying
limn→∞ supt∈[a,b] ‖σn

t − σt‖ = 0. If {σt } is anL1 solution toσ̇ = f̃ (σ ), then by defin-

ition we have thatσu = σ0 + ∫ u

0 f̃ (σt )dt . Moreover, ifτ :Π → [0, u] is a random time
andf is pointwise bounded, then a step function approximation can be used to sho
σu = στ + ∫ u

0 f̃ (σt )1{t�τ } dt .

Proof of Theorem A.3. Define f̂ : Σ̃ → Σ̂ by f̂ (σ ) = f (c(σ )), where c(σ )(π) ≡
c(σ (π)). Then for allσ,ρ ∈ Σ̃ ,∥∥f̂ (σ ) − f̂ (ρ)

∥∥ = ∥∥f
(
c(σ )

) − f
(
c(ρ)

)∥∥
� K

∥∥c(σ ) − c(ρ)
∥∥

= K · E∣∣c(σ(π)
) − c

(
ρ(π)

)∣∣
� K · Ek

∣∣σ(π) − ρ(π)
∣∣

= Kk
∥∥σ − ρ

∥∥,

whereK andk are the Lipschitz constants forf andc, respectively. Hence,̂f is L1 Lip-
schitz onΣ̃ . Therefore, standard results imply that there exist unique solutions toσ̇ = f̂ (σ )

from each initial conditionσ0 ∈ Σ̃ , and that solutions are Lipschitz continuous inσ0.
Let σ0 ∈ Σ , let {σt } be theL1 solution toσ̇ = f̂ (σ ) from σ0, and suppose thatσu /∈ Σ

for someu. Then for some strategyi the setAi = {π ∈ Π : [σu(π)]i < 0} has positive
measure underµ. By Theorem A.4, we can suppose that{σt } has continuous sample path
Hence, the random timeτ (π) = max{t � u: [σu(π)]i � 0} is well defined and is strictly
less thanu whenπ ∈ Ai .

Observe that ifσ ∈ Σ̃ has σi(π) � 0, then ci(σ )(π) = 0, and hencef̂i (σ )(π) =
fi(c(σ ))(π) � 0 by condition (FI2′). We therefore have the followingL1 integral inequal-
ity:

[σu]i = [στ ]i +
u∫

0

f̂i (σt )1{t�τ } dt � [στ ]i .

Observe that[στ (π)]i = 0 whenπ ∈ Ai . Hence, for almost everyπ ∈ Ai, [σu(π)]i � 0,
contradicting the definition ofAi . Therefore, the trajectory{σt } cannot leaveΣ , which is
thus forward invariant undeṙσ = f̂ (σ ).

Forward invariance ofΣ under any Lipschitz continuous extension off to Σ̃ is proved
in the same fashion as the analogous part of Theorem A.1.�

We now prove Theorem A.4. To do so, we introduce theL2 norm onΣ̂ :

‖σ‖L2 =
√√√√ n∑

Eσ 2
i .
i=1
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If the trajectory{σt } is L2 continuous, then itsL2 integral,
∮ b

a σt dt , is defined as the
L2 limit of the integrals of any sequence of step functions{σn

t } satisfying the condition
limn→∞ supt∈[a,b] ‖σn

t − σt‖L2 = 0. TheL2 integral satisfies this standard inequality:∥∥∥∥∥
b∮

a

σt dt

∥∥∥∥∥
L2

�
b∫

a

‖σt‖L2 dt .

Since µ is a finite measure, theL1 and L2 norms define the same topology
any set of functions satisfying the uniformboundedness condition (UB). In particula
L1 lims→t σs = L2 lims→t σs whenever either limit exists. It follows that if{σt } is point-
wise bounded andL1 continuous, itsL1 andL2 integrals are the same:

∫ b

a
σt dt = ∮ b

a
σt dt .

The proof of Theorem A.4 relies on Lemma A.5, which is a direct implication of
Kolmogorov continuity theorem (Karatzas and Shreve, 1991, Theorem 2.2.8).

Lemma A.5. Suppose that {σt } is L2 Lipschitz continuous (i.e., that there is a constant
K < ∞ such that ‖σt − σs‖L2 � K|t − s| for all s and t). Then there exists a modification
{σ̃t } of {σt } such that µ(π : σ̃t (π) is continuous int) = 1.

Proof of Theorem A.4. By definition, the trajectory{σt } satisfies theL1 integral equation

σt = σ0 +
t∫

0

f̃ (σs)ds.

Since the functionf̃ is L1 continuous and pointwise bounded by some constantM, the
trajectory{f̃ (σt )} is as well. Hence,

∫ t

s
f̃ (σu)du = ∮ t

s
f̃ (σu)du, and so

‖σt − σs‖L2 =
∥∥∥∥∥

t∫
s

f̃ (σu)du

∥∥∥∥∥
L2

=
∥∥∥∥∥

t∮
s

f̃ (σu)du

∥∥∥∥∥
L2

�
t∫

s

∥∥∥∥∥f̃ (σu)

∥∥∥∥∥
L2

du

� M|t − s|.
That is,{σt } is L2 Lipschitz. The result therefore follows from Lemma A.5.�
A.2. Other proofs

Proof of Proposition 2.2. Condition (C1), which requires thatB be single valued, obvi
ously holds, so we focus on the Lipschitz continuity condition (C2). In this proof, we

the Euclidean norm|x|E =
√∑

i x
2
i onRn. Since this norm is equivalent to the summat

norm, our proof implies the result for the latter norm as well.
It is enough to show that the Lipschitz inequality‖B(x) − B(y)‖ � C|x − y|E holds

when|x − y|E is sufficiently small. Fixx, y ∈ ∆ andi 	= j . The set of payoff matrices tha
choosei overj at x andj overi at y is

Πij = {
A: (Ax)i > (Ax)j and(Ay)i < (Ay)j

}
= {

A: (Ai − Aj) · x > 0 > (Ai − Aj) · y}
.
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Here,Ai andAj denote rows of the matrixA.
We can associate with each payoff matrixA a difference vectordij = Ai −Aj ∈ Rn. Let

f : Rn×n → R denote the density function of the measureλ, and letgij : Rn → R be the
density of the measure on the differencedij that is induced byλ. If [−c, c]n×n contains the
support off , andM is an upper bound onf , then by integrating out irrelevant compone
and changing variables, one can show that

gij (d) � (2c)n
2−nM for all d ∈ Rn.

Moreover, the support ofgij is contained in the cube[−2c,2c]n, and hence in the ba
S ⊂ Rn centered at the origin with radiusr = 2c

√
n.

Let

Dij = {d ∈ S: d · x > 0 > d · y},
and letm represent Lebesgue measure onRn. Suppose we can show that

m(Dij ) � K|x − y|E (3)

for someK independent ofx, y, i, andj . Then since a change in best response requir
reversal of preferences for at least one strategy pair, it follows that∥∥B(x) − B(y)

∥∥ = 2µ
(
π : B(x)(π) 	= B(y)(π)

)
(4)

� 2
∑
i,j 	=i

λ(Πij )

� 2
∑
i,j 	=i

(2c)n
2−nMm(Dij )

� 2
(
n2 − n

)
(2c)n

2−nMK|x − y|E.

To boundm(Dij ), we first change coordinates inRn via an orthogonal transforma
tion T ∈ Rn×n so thatx ′ = T x and y ′ = Ty satisfy x ′ = (x ′

1,0,0, . . . ,0) and y ′ =
(y ′

1, y
′
2,0, . . . ,0), with x ′

1, y
′
1, y

′
2 � 0. The orthogonal operatorT is the composition o

a sequence of rotations and reflections, and so preserves Euclidean distance, inn
ucts, and Lebesgue measure (see Friedberg et al., 1989, Sections 6.5 and 6.10)
Dij = {d ∈ S: T d · T x > 0 > T d · Ty}, and so

D′
ij = {d ′ ∈ S: d ′ · x ′ > 0> d ′ · y ′}

= {d ′ ∈ S: d ′ · T x > 0 > d ′ · Ty}
= {d ′ ∈ S: d ′ = T d for somed ∈ Dij }.

Therefore,m(Dij ) = m(D′
ij ).

Whether a vector is an element ofD′
ij only depends on its first two coordinates. F

d ′ ∈ S, let α(d ′) ∈ [0,2π) be the amount by which the vector(1,0) ∈ R2 must be rotated
counterclockwise before it points in the same direction as(d ′

1, d
′
2). Since alld ′ ∈ D′

ij form
acute angles withx ′ and obtuse angles withy ′, we see that

D′
ij = {

d ′ ∈ S: α(d ′) ∈ [
0, π

2

) ∪ (3π
2 ,2π

)
andα(d ′) ∈ (

α(y ′) + π
2 , α(y ′) + 3π

2

)}
= {

d ′ ∈ S: α(d ′) ∈ ( 3π ,α(y ′) + 3π
)}

.
2 2
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Hence, sincem(S) < (2r)n,

m(D′
ij ) = α(y ′)

2π
m(S) < α(y ′)(2r)n. (5)

Therefore, to prove inequality (3) it is enough to show that

α(y ′) � k|x − y|E = k|x ′ − y ′|E. (6)

(To see why the equality in expression (5) holds, let (X1,X2, . . . ,Xn) represent a random
vector drawn from a uniform distribution on the ballS. Then the random angleΘ formed
by the first two components, defined by

(cosΘ,sinΘ) =
(
X1

/√
X2

1 + X2
2,X2/

√
X2

1 + X2
2

)
,

is independent of the remaining components.)
To establish inequality (6), we fixc > ε � 0 and letZε = {z ∈ R2: |(c,0)− (z1, z2)|E =

ε, z2 � 0} be the set of vectors inR2 with a positive second component that areε away from
the vector (c,0). The largest possible angle between the vector (1, 0) and a vector inZε is

θ(ε) ≡ max
z∈Zε

α(z) = cos−1
(

min
z∈Zε

cos
(
α(z)

)) = cos−1
(

min
z∈Zε

(1,0) · (z1, z2)

|(1,0)|E|(z1, z2)|E
)

.

If we let δ = c − z1, then the minimization problem becomes

min
δ∈[0,ε]

(1,0) · (c − δ,
√

ε2 − δ2 )

|(c − δ,
√

ε2 − δ2 )|E
= min

δ∈[0,ε]
c − δ√

c2 − 2cδ + ε2
.

Taking the derivative of this expression with respect toδ and setting it equal to zero yield
δ = ε2/c; hence,

θ(ε) = cos−1
(√

c2 − ε2

c

)
.

It follows that θ(0) = 0 and thatθ ′(ε) = 1/
√

c2 − ε2 wheneverε < c. Therefore, ifc �
1/

√
n andε � 1/

√
2n, thenθ ′(ε) �

√
2n, and so

θ(ε) �
√

2nε.

Now suppose that|x − y|E � 1/
√

2n. Then sincex ′
1 = |x ′|E = |x|E � 1/

√
n, setting

c = x ′
1 andε = |x − y|E = |x ′ − y ′|E yields

α(y ′) � θ
(|x − y|E

)
�

√
2n|x − y|E,

establishing inequality (6) for all cases in which|x − y|E is sufficiently small. Thus, in
equality (5) implies that

m(Dij ) = m(D′
ij ) � (2r)n · √2n|x − y|E,

and so inequalities (3) and (4) let us conclude that∥∥B(x) − B(y)
∥∥ � 2

(
n2 − n

)
(2c)n

2−nM · (2r)n · √2n|x − y|E. �
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Proof of Proposition 2.3. Again, condition (C1) clearly holds, so we need only consi
the Lipschitz continuity condition (C2). Fixx, y ∈ ∆ andi 	= j . LetΠij ⊂ Π represent the
set of preferences that prefer strategyi to strategyj at distributionx but preferj to i aty:

Πij = {
π : πi(x) > πj (x) andπi(y) < πj (y)

}
.

Then by definition,µ(Πij ) = ν(Dij ), whereDij ⊂ Rn is given by

Dij = {
θ : Fi(x) + θi > Fj (x) + θj andFi(y) + θi > Fj (y) + θj

}
= {

θ : Fi(x) − Fj (x) > θj − θi > Fi(y) − Fj (y)
}
.

Now suppose we could show thatν(Dij ) � K|x − y| for someK that is independent o
x, y, i, andj . Then∥∥B(x) − B(y)

∥∥ = 2µ
(
π : B(x)(π) 	= B(y)(π)

)
� 2

∑
i,j 	=i

µ(Πij )

= 2
∑
i,j 	=i

ν(Dij )

� 2
(
n2 − n

)
K|x − y|.

Each vectorθ ∈ Rn is associated with a single value ofθj − θi ∈ R. Let f : Rn → R
denote the density of the measureν, let M be the upper bound onf , and letgji : R → R
denote the density of the measure for the differenceθj − θi that is induced byν. In case (i),
there is a compact set[−c, c]n that contains the support off ; by integrating out irrelevan
components and changing variables, one can show that

gji(d) � (2c)n−2M for all d ∈ R.

In case (ii),f (θ) = ∏
i fi (θi) for some marginal densitiesfi . Sincef is bounded, there i

also a constant̂M that bounds all of the functionsfi . Hence, a convolution yields

gji(d) �
∞∫

−∞
fj (d − z)fi(−z)dz = Efj (d + θi) � M̂ for all d ∈ R.

Thus, cases (i) and (ii) both imply case (iii):gji � �M for some constant�M .
The interval of values ofθj − θi that lie in the setDij has length(

Fi(x) − Fj (x)
) − (

Fi(y) − Fj (y)
) = (

Fi(x) − Fi(y)
) + (

Fj (y) − Fj (x)
)

� 2KF |x − y|,
whereKF is the Lipschitz coefficient forF . Therefore,

ν(Dij ) � �M · 2KF |x − y|,
and we conclude that∥∥B(x) − B(y)

∥∥ � 2
(
n2 − n

) · �M · 2KF |x − y|. �
The proof of Lemma 6.1 relies on the following observation.
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Lemma A.6. Let a, b ∈ Rn. If a and b lie in the same orthant (i.e., if ai � 0 ⇔ bi � 0),
then |a + b| = |a| + |b|.

Proof of Lemma 6.1. Let x = Eσ , let d = y − x, and letC = {k: dk < 0}. For allk ∈ C,
defineδk ∈ Rn by

δk
j =


dk if j = k,

0 if j ∈ C − {k},
−(dj/

∑
i /∈C di) dk if j /∈ C.

Notice that
∑

j δk
j = 0 for eachk and that

∑
k∈C δk = d . Moreover, since eachδk lies in

the same orthant ofRn, Lemma A.6 implies that|∑k∈C δk| = ∑
k∈C |δk|.

For eachk ∈ C, let ηk = x + δk . We want to show thatηk ∈ ∆. To begin, observe tha∑
j ηk

j = ∑
j xj + ∑

j δk
j = 1. To check thatηk

j � 0 for all j , first note that ifj = k, then

ηk
k = xk + dk = yk � 0. If j ∈ C − {k}, thenηk

j = xj � 0. Finally, if j ∈ C, then sincedk is

negative,ηk
j = xj − (dj /

∑
i∈C di)dk � xj � 0.

For eachk ∈ C, definerk :Π → R+ by

rk(π) = max
{
r: σ(π) + rδk ∈ ∆

}
,

and definezk :Π → ∆ by

zk(π) = σ(π) + rk(π)δk.

Fix π ∈ Π ; we want to show thatzk
k(π) = 0. Suppose to the contrary thatzk

k(π) > 0.
Then sincezk(π) ∈ ∆,

∑
j 	=k zk

j (π) < 1, and sozk(π) ∈ int(∆); hence,zk(π) + εδk =
σ(π)+ (rk(π)+ε)δk ∈ ∆ for all small enoughε > 0, contradicting the definition ofrk(π).

Next, we show thatErk � 1. To see this, suppose to the contrary thatErk < 1. Then
ηk

k = xk + dk < xk + Erkδ
k
k = Ezk

k = 0, contradicting thatηk ∈ ∆. Therefore, if we let
tk = 1/Erk , thentk ∈ (0,1].

Now defineρ :Σ → ∆ by

ρ(π) = σ(π) +
∑
k∈C

tkrk(π)δk.

To see thatρ(π) ∈ ∆ for all π ∈ Π , observe that∑
j

ρj (π) =
∑
j

σj (π) +
∑
j

∑
k∈C

tkrk(π)δk
j = 1+

∑
k∈C

tkrk(π)

(∑
j

δk
j

)
= 1

and thatρj (π) � σj (π) only if j ∈ C, in which case

ρj (π) = σj (π) + tj rj (π)δ
j
j � σj (π) + rj (π)δ

j
j = z

j
j (π) = 0,

sinceδ
j

j < 0. Moreover,

Eρ = Eσ + E

(∑
k∈C

tkrkδ
k

)
= x +

∑
k∈C

tkδ
kErk = x +

∑
k∈C

δk = x + d = y.

Finally, applying Lemma A.6 twice, we find that
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at

72.
NJ.
‖ρ − σ‖ =
∥∥∥∥∑

k∈C

tkrkδ
k

∥∥∥∥ = E

∣∣∣∣∑
k∈C

tkrkδ
k

∣∣∣∣ = E

(∑
k∈C

∣∣tkrkδk
∣∣)

=
∑
k∈C

∣∣δk
∣∣E(tkrk) =

∑
k∈C

∣∣δk
∣∣ =

∣∣∣∣∑
k∈C

δk

∣∣∣∣ = |d| = |y − x|. �

Proof of Lemma 6.3. Let σ0 ∈ A, and suppose that{σt } leavesA in finite time. Since
{σt } ⊂ Σ̂ is continuous and sinceA is open,τ = min{t : σt /∈ A} exists, andρ ≡ στ lies on
the boundary ofA. To reach a contradiction, it is enough to show that{σt } cannot reachρ
in finite time.

The separation theorem for convex sets (Zeidler, 1985, Proposition 39.4) implies th
there is a continuous linear functionalF : Σ̂ → R such thatF(σ) < F(ρ) ≡ r for all σ ∈ A.
Therefore, to prove the lemma it is enough to show that ifσ0 ∈ A andF(σt + σ̇t ) � r for
all t , thenF(σt ) < r for all t . SinceF is continuous and linear, dF(σt )/dt = F(σ̇t ) �
r −F(σt ) (for details, see the proof of Lemma 5.3). Thus,F(σt ) will increase most quickly
if we maximize dF(σt )/dt by letting dF(σt )/dt = r − F(σt ) at all timest (which we can
accomplish by settinġσt ≡ ρ − σt ). In this case,F(σt ) = e−tF (σ0) + (1− e−t )r, which is
less thanr for all finite t . �
Proof of Lemma 6.5. Let {σt } be the solution to(B) from someσ0 ∈ Σ with Eσ0 = x∗ ∈
∆∗, and letσ ∗ = B(x∗). Since Theorem 5.2 implies that{Eσt } solves (AB), it follows from
Proposition 5.1 thatEσt = x∗ for all t . Hence,B(E(σt )) = B(x∗) = σ ∗ for all t . Since the
solution to (B) fromσ0 is unique, it is enough to verify thatσt ≡ e−t σ0 + (1 − e−t )σ ∗
satisfies Eq. (B). And indeed,

σ̇t = L1 lim
ε→0

(
σt+ε − σt

ε

)
= L1 lim

ε→0

(1

ε

(
e−(t+ε) − e−t

)
(σ0 − σ ∗)

)
= (σ0 − σ ∗) lim

ε→0

(
e−(t+ε) − e−t

ε

)
= (σ0 − σ ∗)

d

dt
e−t

= (σ ∗ − σ0)e−t

= σ ∗ − σt

= B
(
E(σt )

) − σt . �
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