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Abstract

We introduce best response dynamics for settingsrevtagents’ preferees are diverse. Under
these dynamics, which are defined on the space of Bayesian strategies, rest points and Bayesian
equilibria are identical. We prove the existence and uniqueness of solution trajectories to these dy-
namics, and provide methods of analyzing the dynamics based on aggregation.
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1. Introduction

We study best response dynamics for populations with diverse preferences. The state
variables for our dynamics are Bayesian strategies: that is, maps from preferences to dis-
tributions over actions. We prove the existence, uniqueness, and continuity of solutions of
these dynamics, and show that the rest goaitthe dynamics are the Bayesian equilibria
of the underlying game. We thecharacterize the dynamic stability of Bayesian equilib-
ria in terms of aggregate dynamics defined on the simplex, making it possible to evaluate
stability using standard dynamical systems techniques.
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We offer three motivations for this study. First, we feel that in interactions involving
large populations, different individuals are unlikely to evaluate payoffs in precisely the
same way. Therefore, in constructing evolutionary models, it seems realistic to explic-
itly allow for diversity in preferences. We shall see that doing so eliminates pathological
solution trajectories that can arise under best response dynamics when preferences are
common.

A second motivation for our study is to provide foundations for models of preference
evolution! In these models, natural selection of preferences is mediated through behavior,
as the preferences that survive are those that induce the fittest behavior. Ideally, models of
preference evolution should be built up from models of behavior adjustment defined for
settings where preferences are diverse but fixed. By providing tools for analyzing behavior
under diverse preferences, this paper pes the groundwork fostudying canpetition
among the preferences themselves.

Our third and most important motivation is to provide methods for the evolutionary
analysis of Bayesian games. Nearly all work in evolutionary game theory has considered
games with complete information. At the same time, the proliferation of game theory in
applied economic analysis is in large part due to its deft handling of informational asym-
metries; in this development, games of incomplete information have played a leading role.
In offering evolutionary techniques for studgi Bayesian games, we hope that the insights
of evolutionary game theory can be brought to bear more broadly in applied work.

We consider a population of agents facing a recurring strategic interaction. Unlike their
counterparts in standard evolutionary moddifferent agents in our model evaluate pay-
offs using different payoff functions. We assume that the subpopulation of agents with any
given payoff function is of negligible size relative to the population as a whole. A complete
description of behavior is given by a Bayesiarategy: a map that specifies the distribution
of actions played in each subpogtibn. The appropriate notion of equilibrium behavior is
Bayesian equilibrium, which requires theach subpopulation play a best response to the
aggregate behavior of the population as a whole.

Our goal is to model the evolution of behavior in a diverse population in a plausible and
tractable way. To do so, we build on the work of Gilboa and Matsui (1991), who intro-
duced thebest response dynamic for the common preference setting. Under their dynamic,
the distribution of actions in a population always adjusts toward some best response to
current behavior. To define olrayesian best response dynamic, we require instead that
the distribution of actionsvithin each sibpopulation adjust towdrthat subpopulation’s
current best response.

To complete the definition of the Bayesidgnamic, we must specify a notion of dis-
tance between Bayesian stratediédfe utilize theL! norm, which measures the distance
between two Bayesian strategies as the average change in the subpopulations’ behaviors.
We establish that the law of motion of the Bayesian dynamic is Lipschitz continuous under
this norm, enabling us to prove that solutions to the dynamic exist and are unique.

1 see, for example, Giith and Yaari (1992)y Bnd Yilankaya (2001), and Sandholm (2001).
2 By doing so, we fix the interpretation of the diffet&h equation that defines the dynamic—see Section 2.2.
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This uniqueness result is of particular interest because it fails to hold when prefer-
ences are common. Under common preferences, multiple solution trajectories to the best
response dynamic can originate from a singiéal condition. This property is the source
of surprising solution trajectories: Hofbauer (1995) offers a game in which solutions to the
best response dynamic cycle in and out of atiNaguilibrium in perpetuity. Our uniqueness
resultimplies that even slight diversity in preferences renders such solution trajectories im-
possible.

Since our dynamic is defined on the!{) space of Bayesian strategies, it is difficult to
analyze directly. To contend with this, we introduceaggregate best response dynamic
defined directly on the simplex. We show that there is a many-to-one mapping from solu-
tions to the Bayesian dynamic to solutions to the aggregate dynamic; the relevant mapping
is the one that converts Bayesian strategies to the aggregate behavior they induce. Thus, if
we run the Bayesian dynamic from two Bayesian strategies whose aggregate behaviors are
the same, the two solutions to the Bayesian dynamic exhibit the same aggregate behavior
at all subsequent times.

Were we only interested aggregate behavior, we could focus our attention entirely on the
aggregate dynamic. But in most applications of Bayesian games, the full Bayesian strategy
is itself of cardinal importance. For example, in a private value auction, the distribution
of bids is on its own an inadequate description of play; to determine efficiency, one must
also know which bidders are placing which sidKnowing the entire Bayesian strategy
is also critical in studying preference evolution: there we must know which preferences
lead players to choose the fittest actions, as these are the preferences that will thrive under
natural selection.

Since the full Bayesian strategy is of central interest, it is important to be able to deter-
mine which Bayesian equilibria are dynamicadable. To accomplish this, we establish
a one-to-one correspondencevbeen the equilibria that are stable under the Bayesian dy-
namic and the distributions that are stable under the aggregate dynamic. Using this result,
one can determine which Bayesian #ifuia are stable under the original dynamic by
considering a much simpler dynamic defined on the simplex.

Of course, this simpler dynamic is still a rlorear differential equation, so it is not im-
mediately clear whether these aggregationltesre of practical importance. Fortunately,
Hofbauer and Sandholm (2002, 2004) have established global convergence results for the
aggregate best response dynamic in a numbmteresting classes of games. In addition,

a companion to the present paper (Sandholm, 2003) uses the aggregation results developed
here to prove dynamic versions of Harsanyi’s (1973) purification theorem.

Ellison and Fudenberg (2000) study fictitious play in a population with diverse prefer-
ences. In fictitious play, all players choose attresponse to the time average of past play.
Since this time average is the model’s steteiable, fictitious play defines a dynamic di-
rectly on the simplex even when preferencasdiverse. In fact, it is easy to show that the
dynamic studied by Ellison and Fudenberg (200@dsivalent (after a time reparameteri-

3 Were the mapping between solution trajectories one-to-one as well, the stability results would follow as an
immediate consequence. Howevencs this mapping is actually many-tme, these results are not obvious—see
Section 6.
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zation) to ouraggregate best response dynamic. The connections between these processes
are considered in greater detail in the final section of the paper.

2. Thebest response dynamic

A unit mass of agents recurrently plays a population game. Each agent chooses one of
n actions, which we identify with standard basis vectorRin S = {e1, eo, ..., e,}.* We
let A={x e R’: ), x; = 1} denote the set of distributions over actions.

2.1. Common preferences

In typical evolutionary models, all agerghare the same preferences. Here, we repre-
sent these preferences by a Lipschitz continuous funetioh — R”; ; (x) represents the
payoff to strategy when aggregate behavioris An important special case is based on
random matching in a symmetric normal form game with payoff matrix R"*"; in this
case, the payoff function is the linear functioix) = Ax. More generally, our setup also
allows the payoffs to each action to depend lirerarly on the population state, a feature
that is essential in some applications—see Sandholm (2004).

LetBR" : A = A denote the best response cgpendence for payoff function:

BR" (x) = argmaxy - w(x).
yeA
Action distributionx* € A is aNash equilibriumunderrn if x* € BR” (x*): that is, if each
agent chooses an action that is optimal given the behavior of the others.
Thebest response dynamic on A is defined by

(BR) xeBR"(x)—x.

The usual interpretation of this dynamic tsat agents occasionally consider switching
actions, choosing a best response whenever they do se-A'term arises because at each
moment in time, all agents are equally likely to consider a switch.

Gilboa and Matsui (1991), Matsui (1992), and Hofbauer (1995) study the best response
dynamic in the context of random matching in normal form games. For most payoff ma-
trices, there are action distributions tlatmit multiple best responses, and hence many
possible directions of motion under (BR); hence, solutions to (BR) need not be unique.
For example, if the population begins at a Nash equilibridmagents who switch to best
responses can do so in proportiorfs resulting in a stationary solution trajectory.ét.

But if the agents who switch to a best response do so in proportions othexthéme
population may move away from the equilibriufrhis can lead to complicated solution
trajectories: Hofbauer (1995) presents a game in which the population continually travels
though cycles of varying lengths, passihgough a Nash equilibrium at the start of each
circuit.

4 All results in this paper are easily extended to allow multiple populations (i.e., to allow different subsets of
the agents to choose from different sets of actions).
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We show that the existence of solutions that leave Nash equilibria is a consequence of
the assumption that all agents’ preferences are identical. The source of the nonuniqueness
of solutions to (BR) is the fact that for most payoff matrices, there is a set of action distrib-
utions admitting multiple best responses.dad, Hofbauer’s (1995) example is generic, in
that all payoff matrices close the one he considers yield qualitatively similar dynamics.

Our analysis shows that there is another sense in which Hofbauer's (1995) example is
not generic. The analysis relies on the following observation: if we fix a distribution over
actions, the set of payoff matrices that gemreiiadifference at that distribution is negli-
gible. Therefore, in a population with diverse preferences, best responses are “essentially
unique,” and the function that defines the bestponse dynamic in this context is single
valued. To establish the uniqueness of solutions, and thus the equivalence of rest points
and Bayesian equilibria, we must establish that this function is not only single valued, but
also Lipschitz continuous. We show below that this is true if distances between Bayesian
strategies are measured in an appropriate way.

2.2. Diverse preferences

To incorporate diverse preferences, we suppose that the distribution of payoff functions
in the population is descrdal by a probability measune on the set of payoff functions
I = {r: A — R"|n is Lipschitz continuous In the language of Bayesian gamastep-
resents the distribution of types, which in the current context are simply the agents’ payoff
functions. The common preferences model corresponds to the case inwhplekes all
mass on a single point iif. We rule out this case below, focusing instead on settings with
genuine diversity.

We suppose that there are a continuum of agents with each preferentkein the sup-
port of . Each agent chooses a pure actior§ iThe behavior of the subpopulation with
preferencer is described by a distribution iA. A Bayesian strategy is amapo : [T — A,
whereo () is the distribution over pure actions chosen in aggregate by the agents of
type 7. Each Bayesian strategy can be viewed as a random vector on the probability
space {1, 1) that takes values in.. The setX¥ = {o : [T — A} contains all (Borel measur-
able) Bayesian strategies. We cioles a pair of Bayesian strategiesp € X equivalent
if o(7) = p(xr) for u-almost everyr. In other words, we do not distinguish between
Bayesian strategies that indicate the same action distribution for almost every type.

Let E denote expectation taken with respect to the probability megsunehe pro-
portion of agents who play actionunder the Bayesian strategyis then given byFo; =
fn oi (7r) du, and theaggregate behavior induced by € X' is Eo = (Eo1, ..., Eo,) € A.
That s, the operataE takes both random variables and random vectors as arguments, han-
dling each in the appropriate way. We sometimes £aill the distribution induced byo .
Our notion of distance between distributions is the summation norRt'offor x € R”, let

n
el =)"|xil.
i=1
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Each agent’s best responses are defined with respect to current aggregate hekavior
Eo € A.We letB: A = X denote the best response correspondence, which we define by

B(x)(m) =BR" (x) = argmaxy - 7 (x).
yeA

The best responsB(x) € X' is a Bayesian strategy; for eaahe I1, B(x) () is the set
of distributions inA that are best responses against aggregate behafaoragents with
preferencer.

We state some weak but useful conditions on the preference distrihuiioterms of
the best response correspondeRceclasses of preference distributions that satisfy these
conditions are introduced below. Condition (C1) requires that for all aggregate behaviors
x € A, the set of agents with multiple best responses has measure zero:

(C1) Bissingle valued.

Under condition (C1), all selections fromi(x) are equivalent, allowing us to regard
B: A — X as afunction rather than as a correspondence.

Each Bayesian strategye X induces some distributioBic € A; the best response to
this distribution isB(E (c)). We say that the Bayesian strategy/ is a Bayesian equilib-
rium if it is a best response to itself: that is,df = B(E(c*)). We let ¥* C X denote
the set of Bayesian equilibria. Observetthader condition (C1), all aggregate behaviors
induce a uniquepure best response: for all, w{z: B(x)(w) € {e1,...,e,}} = 1. Hence,
all Bayesian equilibria must also be piire.

TheBayesian best response dynamic is described by the law of motion

(B) 6=B(E())—o0

on X, the space of Bayesian strategies. The right hand side of this equation is a map from
¥ to ¥ ={o : 1T — R"}, alinear space containing all directions of motion through

To complete the definition of the dynamige must specify the norm used to measure
distances between points n. To interpret Eq. (B) preference by preference, one would
employ theL* norm,

lollz = esssupy ()|.
well

This norm defines too strong a topology for our purposes. To see why, consider two strategy
distributionsx, y € A that lie close to one another. As long as there is a non-null set of
preferences whose best responses @nd y differ, the Bayesian best responsgér)
andB(y) are far apart in thé&. > norm:||B(x) — B(y)||L~ = 2. For this reason, the law of
motion (B) is discontinuous in this norm, so standard methods of establishing the existence
and uniqueness of solution trajectories fail.

To create a tractable model, we need to use a normx dhat makes it easier for two
points to be close to one another, so that under this norm Eq. (B) defines a continuous
law of motion. In particular, we want pairs of Bayesian strategies that only differ in the

5 Of course, this observation is originally due to Harsanyi (1973).
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choices of agents whose preferences lie in some set of small measure to be regarded as
close together. One appropriate choice of norm isitheorm, which we denote by- |I:

n n
loll=) Eloi|= E(D«m) = Elo].
i=1 i=1

Under this norm, the distance between a p&iBayesian strategies is determined by the
average change in behavior over all subpopulations. Hence, if the best responsesito
y differ only for a set of preferences of measurghen these best responses are close in
LY norm:||B(x) — B(y)|| = 2¢.5

In order to establish existence and uniqueness of solution trajectories to the Bayesian
best response dynamic, it is enough to knovt tha dynamic is Lipschitz continuous. The
following lemma is a first step in this direction.

Lemma 2.1. E: ¥ — A isLipschitz continuous (with Lipschitz constant 1).

Proof. SinceE is linear, it is enough to show thpEo | < |lo||. And indeed,
n n
|Eo| =) |Eo;| <Y Eloil=lol. O
i=1 i=1

Given Lemma 2.1, Lipschitz continuity dfie dynamic is a consequence of the follow-
ing condition:

(C2) B is Lipschitz continuous (with respect to tiié norm).

Condition (C2) asks that small changes in aggregate behavead to correspondingly
small changes in the best resporge), where the distance between best responses is
measured using the! norm.

Our two conditions on the functioB will hold as long as the preference distributian
is both sufficiently diverse and sufficiently smooth. We illustrate this using two examples.
Our first example concerns random matching in normal form games. In this example, every
agent’s payoffs are derived from some payoff mattix R"*", but different agents have
different payoff matrices.

Proposition 2.2. Let A be a probability measure on R"*", and define the preference dis-
tribution w by w{m: 7(x) = Ax for some A € M} = A(M). If A admits a bounded density
function with compact support, then B satisfies conditions (C1) and (C2).

For our second example, we suppose that all agents’ preferences are based on the same
(possibly nonlinear) payoff function, but theach agent has idigscratic preference
in favor of or against each actiore S.

6 The choice of norm is also important issue in other models of evolution with infinite dimensional state
variables. For example, in Oechssler and Ried&80(Q) work on replicator dynamics for games with infinite
strategy spaces, the choice of norm determines the patyoff functions for which the dynamic is well defined.
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Proposition 2.3. Let F € IT be a Lipschitz continuous payoff function, let v be a
probability measure on R”", and define the preference distribution o by u{r: 7 (x) =
F(x) + 60 for some6 € ®} = v(®). Suppose that v admits a bounded density function
fR" — R and that either (i) v has compact support, (ii) v isa product measure, or (iii)
for each pair (i, j), i # j, the density g;; : R — R for the difference 6; — 6; is bounded.
Then B satisfies conditions (C1) and (C2).

Proofs of these two propositions can be found in Appendix A.

3. Basic properties

We now establish some basic properties of solutions to the Bayesian best response dy-
namic (B). Since we will interpret Eq. (B) in the! sense, we begin by reviewing the
notions of continuity and differeiability for trajectories through thé! space E - 1D;
see Lang (1997) for additional details.

Let {o;} = {01}:>0 be a trajectory througl'. We say that € X is the L limit of o,
ass approaches, denoteds = LYlim,_, oy, if

lim |joy — & = lim E|oy — 5| = 0.
Ss—>t Ss—>t

The trajectory{o;} is L continuousif o; = L1lim,_,, o, for all 7. If there exists @&, € £
such that

. . Ot+e — Ot
6 = LYlim[ 22— ),
e—0 &

we calls; the L derivative of trajectory{o;} at timer.

As usual, thel. derivatives; describes the direction of motion of the trajectésy} C
¥ at timer. But even when this derivative exists, the (standard) derivative(d))/d¢ of
the distribution trajectoryo; (r)} ¢ R" of any particular preference need not exist: the
slope (o;4¢ () — 0: (7)) /e € R" of the line segment fron(z, o; (7)) to (¢t + &, 614 (7))
may not converge asapproaches zero. For tié derivative to exist, the measure of the
set of preferences for which this slope is not close & () € R” must become arbitrarily
small ass vanishes.

A Lipschitz continuous functiorf : Y — ¥ defines a law of motion

(D) ¢=f(o)

on . Atrajectoryo : Ry — ¥ is anL! solutionto Eq. (D) if6; = f(o,) u-almost surely
for all 1, wheres; is interpreted as ah?! derivative’

Theorem 3.1 sets out the basic properties of solutions of the Bayesian dynamic. Its proof
is provided in Appendix A.

7 The definition of anL1 solution requires that the derivative exist at all timeg > 0. In contrast, since the
standard best response dynamic (BR3 haliscontinuous law of motion, to ensure that solutions to (BR) exist
one must allow differentiability to fail at a zero measure set of times.
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Theorem 3.1 (Basic properties of solutions to (B))

(i) Thereexistsan L solution to (B) starting from each og € X. Thissolution is unique
in the L sense: if {0,} and {p,} are L1 solutions to (B) such that po = oo u-a.s., then
o = oy w-a.s. for all ¢.

(ii) If {o;} and {p,} are L! solutionsto (B), then

Kt
llor = pell < lloo — poli€™",

where K isthe Lipschitz constant of (o) = B(E(0)) — 0.
(i) Solutionsto (B) remainin X at all timest € [0, o).
(iv) Fromeach og € X thereisan L solution to (B) with the property that

u(m: oy () iscontinuousint) = 1.

(V) o* isarest point of (B) if and only if it is a Bayesian equilibrium.

Part (i) guarantees the existence and uniqueness of solutions to (B), while parts (ii) and
(ii) establish continity in initial conditions and forward invariance d@. Since (B) is
Lipschitz, these results are nearly standard; the main technicality that must be addressed is
the fact that the domai®' of the dynamic is closed.

If {0;} is anL! solution to (B), then so is any trajectof#,} that differs from{o;} on
some measure zero sets of preferen@es 1 at arbitrary times. Thus, while part (i)
of the theorem guarantees the existence of a unidusplution to (B), this result imposes
no restrictions on the distribution trajectofey; (x)} of an individual preference: as time
passes, it is possible for the behavior of the subpopulation with preferertogump
haphazardly about the simplex. Fortunatgsirt (iv) of the theorem shows that we can
always find an..1 solution with the property that the behavior associated with almost every
preference changes continuously over time. Finally, part (v) of the theorem observes that
the rest points of (B) are precisely thagesian equilibria of the underlying game.

4. Aggregation and equilibrium

We have established that solution trajectories of the best response dynamic (B) exist and
are unique. However, since this dynamic operates oh'aspace, working with it directly
is rather difficult. In the coming sections, we show that many important properties of the
dynamic can be understood by analyzing an aggregate dynamic. The aggregate dynamic is
defined on the simplex, and so can be studied using standard methods.

Before introducing the aggregate dynamie reconsider the Bayesian equilibeid €
X*, which are the rest points of (B). Since the Bayesian strateigiluces the distribution
E(o) € A, Bayesian equilibria satisfy* = B(E(c*)).

If the current distribution i € A, the Bayesian strategy that is a best response to this
distribution is B(x), which in turn induces the distributiof (B(x)). We therefore call
x* € A anequilibrium distribution if x* = E(B(x*)), and letA* C A denote the set of
equilibrium distributions.

The connection between Bayesian equilibria and equilibrium distributions is established
in the following result.
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Theorem 4.1 (Characterization of equilibriaJhemap E : ¥* — A* isa homeomorphism
whoseinverseis B: A* — X*,

Proof. First, we show thaE mapsX™* into A*. Leto € X* be a Bayesian equilibrium:
o0 = B(E(0)). ThenE(o) = E(B(E(0))), SOE(0) € A*.

Second, we show thaE is onto. Fix a distributionx € A*, so thatx = E(B(x));
we need to show that there is a Bayesian strategy ¥* such thatE(c) = x. Let
o = B(x). Then sincex € A*, E(c) = E(B(x)) = x. Furthermore, this equality implies
that B(E(c)) = B(x) =0, SOc € X*. Thus,E is onto, andB(x) € E~1(x).

Third, we show thatE is one-to-one, which implies tha(x) = E~1(x). Fix two
Bayesian equilibriar, o’ € X*, and suppose tha(c) = E(¢’). Theno = B(E(0)) =
B(E(c")) =0".

Finally, the continuity ofE and B follows from Lemma 2.1 and condition (C2).00

The spaceX of Bayesian strategies is considbly more complicad than the space
of distributionsA. Nevertheless, Theorem 4.1 shows that if we are only concerned with
Bayesian equilibria™* € X*, it is sufficient to consider the equilibrium distribution’ €
A*. We can move between the two representations of equilibria using the fnapd B,
whose restrictions to the equilibrium sets are inverses of one another.

If we are concerned with disequilibrium behavior, then the one-to-one link between
Bayesian strategies and distributions no longer existmaps many Bayesian strategies
to the same distribution over actions, and if the Bayesian stratdégyot an equilibrium,

B does notinverkE: thatis,B(E(c)) # 0.

Fortunately, we are able to prove analogues of Theorem 4.1 for solutions to the Bayesian
best response dynamic (B). To do so, we introduce the aggregate best response dynamic
(AB), which is defined on the simplex. In the next section, we show that the expectation
operatorE is a many-to-one map from solutions to (B) to solutions to (AB). In Section 6,
we establish a one-to-one correspondence between stable rest points of (B) and stable
rest points of (AB). Therefore, while the Bayesian dynamic operates on the complicated
spaceX’, the answers to many important questions about this dynamic can be obtained by
applying standard tools to dynamics on the simplex.

5. Aggregation of solution trajectories

Under the dynamic (B), the Bayesian strategylways moves toward its best response
B(E(0;)). Hence, the target point only dependsarthrough its distributiorE (o). This
“bottleneck” provides the basis for our aggregation results.

We define theaggregate best response dynamic by

(AB) X = E(B(x))) — x;.

Under this law of motion, the distributiary} moves toward the distribution induced by
the best response ig. Lemma 2.1 and condition (C2) imypthat this dynamic is Lipschitz
continuous. Therefore, solutions to (AB) exist, are unique, are Lipschitz continuous in
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their initial conditions, and leava forward invariant (see Theorem A.1 in Appendix A).
Moreover, the rest points of (AB) are easily characterized.

Observation 5.1. The set of rest pointsof (AB) is A*, the set of equilibrium distributions.

Let f:X — ) andg: A — R”" be Lipschitz continuous functions, and consider the
following laws of motion onX andA:

(D) o= f(o);
(AD) x=g().

We say that the dynamic (Djggregates to the dynamic (AD) if whenevefo,} is an L1
solution to (D),{Eo;} is a solution to (AD).

Theorem 5.2 (Aggregation of solution trajectories)he Bayesian best response dynamic
(B) aggregates to the aggregate best response dynamic (AB).

Theorem 5.2 tells us that the dynamic (AB) completely describes the evolution of ag-
gregate behavior under the dynamic (B){df} is a solution to (B), then the distribution
it induces at time, Eoy, is equal tox,, where {x,;} is the solution to (AB) starting from
xo = Eog. Since aggregate behavior at timender (B) is fully determined by aggregate
behavior at time 0, Bayesian strategies that induce the same aggregate behavior also induce
the same aggregate behavior trajectories.

It is important to note that this mapping between solution trajectories is many-to-one.
For example, consider a solutidn;} to (B) whose initial Bayesian strategy aggregates
to an equilibrium distributionEog = x* € A*. Observation 5.1 and Theorem 5.2 imply
that the distribution trajectoryKo,} induced by{o;} is degenerateEo; = x* for all ¢.
However,{c;} is itself degenerate only ifp is a Bayesian equilibrium; there are many
Bayesian strategies € E~1(x*) that aggregate to* but are not Bayesian equilibria, and
hence are not rest points of the dynamic (B). As we shall see in Section 6, the fact that the
mapping between solutions is many-to-one rather than one-to-one makes relating stability
under (B) and (AB) more difficult than it may first appear to be.

Theorem 5.2 is an immediate consequence of Theorem 5.4, which characterizes the
dynamics on¥' that can be aggregated. The proof of Theorem 5.4 requires the following
lemma.

Lemmab.3.If {o;} C SisanL! differentiable trajectory, then E(6;) = dEo; /dt.

Proof. SinceE is continuous by Lemma 2.1,

. . Otye — O . Ot4e — O . FEoyi e —Eo
EG)=E(L lim 22— ) —lim B[ 22— ) = lim =2 —¢
e—0 & e—0 & e—0 &

dE O
= — L Oy.
dr '
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Theorem 5.4. The dynamic (D) aggregatesto thedynamic (AD) ifand onlyif (Eo f) (o) =
(goE)(o)forall o e X.

Proof. Let{o;} be anL! solution to (D). Applying Lemma 5.3, and taking expectations of
both sides of (D), we find that

d .
EEO'[ = EU; = Ef(O'[)
Thus,ifEo f =go E, it follows thatg(Ec;) = Ef (0;) = dEo; /dt; hence{Eo;} solves
(AD), and sof aggregates tg. Conversely, iff aggregates tg, then{Es,} solves (AD),
so g(Eoy) = dEo,/dt = Ef(oy). As og was chosen arbitrarily, it follows thaf o f =
goE. O

Theorem 5.4 implies that given any Lipschitz continuous funciam — X, the dy-
namic
6=F(E(@))—0

aggregates to (AD) witlz(x) = E(F(x)) — x. Thus, dynamics o can be aggregated
whenever the target poirfi(E (o)) is only a function of aggregate behavior. In fact, the
stability results in the nextegtion extend immediately to all dynamics of this form.

Before considering the question of stability, we use Theorem 5.2 to establish an instabil-
ity result. Suppose that the aggregate best response dynamic (AB) exhibits a lim# cycle,
or that equilibrium distributions are avoided in some more complicated fashion. What we
can we say about behavior under the Bayesian dynamic (B)?

Theorem 5.5. Let og € X and xo = Eop € A, and let {0;} and {x;} be the solutionsto (B)
and (AB) fromog and xg. Let 6* € X* and x* = Ec™* € A*. Then

loy — o™l > |x, —x*| and |l&/]| > x| forallt>0.

In particular, if {x,} avoids an e-neighborhood of A* and maintains a speed of at least 3,
then {o;} avoids an e-neighborhood of X* and maintains a speed of at least §.

Proof. Theorem 5.2 tells us thdo; = x; for all t > 0. Hence, Lemma 2.1 implies that
lo; —o*|| > |Eoy — Ec™| = |x; — x¥|,
while Lemmas 2.1 and 5.3 imply that

. . d ,
||at||>|Ea,|=‘aEat = |-

The remaining claims follow from these inequalities and Theorem 4c1.

8 This can occur, for example, if we introduce payoéfrurbations to a Rock—Paper—Scissors game whose
unique Nash equilibrium is not an ESS.
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6. Aggregation and stability

As we discussed in the introduction, it is important in many applications to be able
to predict not only the behavior distributiafio, but the full Bayesian strategy. This
observation motivates our stability analysis of the Bayesian dynamic (B). The results in
this section establish that under threenstard notions of stability, stability of Bayesian
strategies under (B) is equivalent to stabilitydidtributions under (AB). Thus, to evaluate
the stability of Bayesian strategies under (B), it is enough to determine the stability of
the corresponding distributions id ¢ R”, which can be accomplished using standard
techniques.

We begin by reviewing the three notions of dynamic stability we will consider.A_et
be a subset of a Banach spaék | - ||), and let the functior : Z — Z define a dynamic
on Z via the equation of motion

M) z=h(2).

Suppose that is forward invariant under the dynamic (M), and éte Z be a rest point
of the dynamich(z*) = 0. We say that* is Lyapunov stable under (M) if for each set
A C Z containingz* that is open (relative t&) there is an open set’ C A that contains
z* such that any trajectory that beginsAn always stays im: if {z;} is a solution to (M)
with zg € A/, then{z,;} C A. We callz* asymptotically stable under (M) if it is Lyapunov
stable and if there is an open sétcontainingz* such that any trajectory starting i
converges ta*: if {z;} is a solution to (M) withzg € A, then lim_ » z; = z*. If we can
chooseA = Z, we callz* globally asymptotically stable.
The following lemma underlies many of our stability results.

Lemma6.l.Leto € X, letx = FEo € A,andlet y € A. Thenthereexistsa p € X' satisfy-
ing Ep=yand|p—ol=ly—x|

Lemma 6.1 says that if the Bayesian strategyas a distributionx that ise away from
the distributiony, there is another Bayesian strategythat ise away fromo and that
aggregates tg. A constructive proof of this lemma can be found in Appendix A. The
result is not obvious because in constructingve must make certain that the distribution
o () played by each prefereneelies in the simplex.

We first characterize Lyapunov stability under the Bayesian dynamic.

Theorem 6.2 (Lyapunov stability) The distribution x* € A* is Lyapunov stable under
(AB) if and only if the Bayesian strategy o* = B(x™) € X™* is Lyapunov stable under (B).

To establish this connection, we need ways of moving between neighborhoods of
Bayesian equilibriar* and equilibrium distributions*. Since the operator: ¥ — A
andB: A — X are continuous and map equilibria tpuélibria, they along with Lemma 6.1
are the tools we need.
That the Lyapunov stability of* implies the Lyapunov stability af* follows easily
from these facts. The proof of the converse requires an additional lemma.
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Lemma 6.3. Let A C £ be an open convex set, and let {o;} C £ be an L! differentiable
trajectory with og € A and such that o; + 6, € A for all ¢. Then {o;} C A.

The pointo; + 6; is the location of the head of the vect@rif its tail is placed ato,,
and so represents the target toward which the trajectory is moving at tilitee lemma,
which is proved in Appendix A, says that if the trajectory starts in the open, convex set
and always moves toward points4n it never leavesi.

Now, suppose that* is Lyapunov stable. IV is a convex neighborhood of*, then
B~1(Vv) is a neighborhood of*. Sincex* is Lyapunov stable, trajectories that start in
some open seW ¢ B~1(V) stay in B~1(V). Therefore, if the Bayesian trajectofy;}
starts atog € E~1(W) N V, then the distribution trajectoryEo;} stays inB~1(V), and
hence the Bayesian trajectofB(E (o))} stays inV. Since the trajectoryo; } begins inV
and always heads toward poirB$E (o)) € V, Lemma 6.3 implies that it never leavi&s

Proof of Theorem 6.2. First, suppose that* = B(x*) is Lyapunov stable under (B). To
show thatc* is Lyapunov stable under (AB), we need to show that for each open seh-
tainingx* there is an open s&’ C O containingx™ such that solutions to (AB) that start
in O’ never leaveD. SinceE : ¥ — A is continuousE ~1(0) is open; sinceEo* = x*
by Theorem 4.1¢* € E~1(0). Becauses* is Lyapunov stable, there exists an open ball
C c E~1(0) abouts* of radiuse such that solutions to (B) that startéhstay inE ~1(0).

Let O’ be an open ball about* of radius less tham that is contained in the open
set B~1(C) N 0. Let {x;} be a solution to (AB) withxg € O’. By our choice of0’,
|xo — x*| < . Thus, by Lemma 6.1, there exists a Bayesian stratggych thattEog = xg
and|log — o*|| = |xo — x*| < ¢; the inequality implies thatg € C. Hence, if{o;} is the
solution to (B) starting fronag, then{s,} ¢ E~1(0). Therefore, Theorem 5.2 implies that
{x;}={Eo:} CO.

Now suppose that* is Lyapunov stable under (AB). To show that = B(x*) is Lya-
punov stable under (B), it is enough to show that for eactUset X containingo* that
is open relative ta>, there is an selV’ C U containingo™* that is open relative t& such
that solutions to (B) that start iti’ never leave/.

Let V be an open ball irE abouts* such thatV N X ¢ U. Since can view the conti-
nous functionB: A — X as having rang@ > X, B (V) c Ais open relative tat and
containsc*. Because* is Lyapunov stable, we can find an $étc B—1(V) that contains
x* and that is open relative td such that solutions to (AB) that start i never leave
B~ L(v).

The setE~Y(W) is open relative ta¥ and containg*; thereforeU’ = E-X(W) NV
possesses both of these properties as well{d;¢tbe a solution to (B) witlsg € U’. Then
Eog € W. Therefore, sincé Eo,} solves (AB) by Theorem 5.260, € B~1(V) for all ¢,
and soB(E(o;)) € V for all ¢. But sinces; = B(E(oy)) — oy, 0; + 6, € V forall ¢. Thus,
Lemma 6.3 implies thafo;} € V. Moreover, Theorem 3.1 (ii) implies thét;} C X'; we
therefore conclude thés,} cVNX cU. O

We continue by characterizing asymptotic stability.
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Theorem 6.4 (Asymptotic stability) The distribution x* € A* is asymptotically stable
under (AB) if and only if the Bayesian strategy o * = B(x*) € X* isasymptotically stable
under (B).

That the asymptotic stability of the Bayesian stratefjymplies the asymptotic stability
of its distributionx* follows easily from Lemma 6.1 and Theorem 5.2. The proof of the
converse also requires the following lemma.

Lemma 6.5. Let {o;} be the solution to (B) from some o € X with Eop = x* € A*, and
let o* = B(x*) € X*. Thenlim;_, o 0y = o *. Indeed,

or=€"'o0+ (1—e")o™

If {0;} is @ Bayesian trajectory whose initial distribution is an equilibrium, then while
may change over time, its distribution does niod; = x* for all . Consequently, under the
best response dynamic (By, always heads frorag directly toward the poinB(E (o;)) =
o*. The proof of Lemma 6.5 can be found in Appendix A.

Now, suppose that* is asymptotically stable under (AB). Thenad is close enough
to o*, Eop will be close tox*, so if {o;} solves (B), Theorem 5.2 tells us thgfo,}
convergesta®*. Lemma 6.1 then implies thatifis large, we can find a Bayesian strategy
¢ that is close tar; and that aggregates #d°; by Lemma 6.5, the solution to (B) from
o converges tar*. That {o;} must converge ta* then follows from the continuity of
solutions to (B) in their initial conditions.

Proof of Theorem 6.4. Since Lyapunov stability is covered by Theorem 6.2, we need only
consider convergence of nearby trajectoriest@ndx*. For alle > 0 and any € X and
x € A, defineNs (o) ={pe X: |p—o| <e}andN.(x) ={y € A: |y — x| < &} to be the
¢ neighborhoods of andx, respectively.

Suppose that* = B(x*) is asymptotically stable. Then there existssan 0O such that
solutions to (B) withog € N, (c*) converge tar*. Now suppose thdtx,} is a solution to
(AB) with xg € N.(x*). By Lemma 6.1, there existsa € N, (c*) satisfying Eog = xo;
therefore, the solutiofs,} converges te*. Sincex; = E4; by Theorem 5.2, and sindé
is continuous by Lemma 2.1,

lim x; = lim E& = E(Lllim a,) — Eo* =x*.
t—>o0 t—00 t—>00
Hence, all solutions to (AB) starting iN. (x*) converge toc*.

Now suppose that* is asymptotically stable and let* = B(x*). We can choose an
& > 0 such that all solutions to (AB) starting i¥. (x*) converge toc*. Now suppose that
oo € N.(c*); we will show that{c,}, the solution to (B) starting frorag, must converge
to o*. First, observe that

|Eoo — x*| = |Eog — E(B(x™))| = |E(060 — 6*)| < Eloo — o*| = |loo — o *|| < &,

S0 Eog € N¢(x*). Theorem 5.2 implies thgtEo;} is the solution to (AB) starting from
Eop; hence, lim_, o0 Eo; = x*.
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Fix n > 0. It is enough to show that there existsTasuch that|o; — o*|| < n for
all r >T. Let K be the Lipschitz coefficient off (o) = B(E(s)) — o, and lets =
n=K(n/2)K+1, Since lim_, o Eo, = x*, there is ar; such that Eo; — x*| < § whenever
t > 11. Lettp =log(2n/n), and choos& = t1 + 12.

Fixt > T.Then, since — 12 > T — 12 = 11, Lemma 6.1 implies that there is5g such
that E6g = x* and

HU,_TZ — 80” =|Eot_r, — x| <38.

Let{o,} be the solution to (Byvith initial conditiongo. Since no two points X are further
than distance apart, Lemma 6.5 implies that

60, —0*]| =& 260 — o <ne
Moreover, it follows from Theorem 3.1 (ii) that

Jov ~ 60| < v, ~ o] €.
Therefore,

lor — o ™[I < o7 = 62, || + |67, — |

<
<Jlo—c, ~ do]}eX + e

< 5ekm2 4 pe ™2
n.n
==-+4+_-=n. O
> T3 "
We conclude this section by characterizing global asymptotic stability. The proof of this
result is analogous to that of Theorem 6.4.

Theorem 6.6 (Global asymptotic stability)The distribution x* € A* is globally asymptot-
ically stable under (AB) if and only if the Bayesian strategy o * = B(x*) € X™* is globally
asymptotically stable under (B).

Remark 6.7. While we have stated our stability results for isolated equilibtias A*
ando* = B(x*) € X*, one can extend these results to allow for closed connected sets of
equilibriaX* c A* andB(X™*) C X*.

7. Best response dynamics and fictitious play

Under common preferences, the close connections between the best response dynamic
and fictitious play are well known. In fictdus play, players always choose a best re-
sponse to their beliefs, which are given by the time average of past play. In the continuous
time formulation, if we letc; denote current behavior, thepn= (1/¢) [é ¢ ds represents
beliefs. The requirement that current behavior be a best response to beliefs is stated as
¢; € BR" (a;). By differentiating the definition of, and substituting, we obtain the law of
motion for beliefs under fictitious play:
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1 1 \ 1
(FP a4, = ;C, 3 / csds = ;(BR” (a;) — a,).
0

Therefore, after a reparameterization of time, the evolution of beliefs under (FP) is identical
to the evolution of behavior under the best response dynamic (BR).

Ellison and Fudenberg (2000) study fictitious play in a population with diverse pref-
erences. As in the standard case, players choose a best response to the time average
a; = (1/1) [é ¢ ds of past behavior. Since players are matched with opponents drawn from
the population as a whole, the object that is averaged to determine betiefs i5(B(a;)),
the distribution of behavior at time This yields the law of motion

1
(PFB a4 = ;(E(B(at)) - at),

which is a reparameterization of our aggregate best response dynamic (AB).

Observe that the state variable ungepulation fictitious play is the averageéstribu-
tion of past behaviorg, € A. If one keeps track of this, one can always compute the best
responseB(a;) € X as well as the best response distributid(B(a;)) € A. The latter ob-
ject determines the direction in which the time averagevolves. In contrast, the Bayesian
best response dynamic must specify how behavior in every subpopulation evolves, so the
relevant state variable is not the distribution of behavjor A, but the Bayesian strategy
o; € X. Thus, while the dynamics (PFP) and (ABeanearly identical, the evolution of
Bayesian strategies under population fictitiplesy and under the Bayesian best response
dynamic are quite different.

As an illustration, suppose that (PFP) and (AB) are currently at astatex;. Under
population fictitious play, the cumé Bayesian strategy must a;), the best response
to beliefsa,; in particular, it is always pure. Under the best response dynamic, the current
Bayesian strategy, must be one thatggregatesto «;: in other wordsg, € E~Y(a;) =
{0 € ¥: E(0) =a;}. Infact, B(a,) is an element o ~1(a,) only if g, is an equilibrium
distribution ands; = B(a;) is the corresponding Bayesian equilibrium.

On the other hand, if the solution to (AB) from = x; converges to some equilib-
rium distributionx*, then one can show that under bgibpulation fictitious play and the
Bayesian best response dynamic, the Bayesian stratezpnverges to the Bayesian equi-
librium o* = B(x*). Indeed, by proving that equilibrium and stability analyses for the
Bayesian best response dynamic (B) can be performed directly in terms of the aggregate
dynamic (AB), we have demonstrated tha¢ ttlose connections between fictitious play
and the best response dynamic from the common preference case persist when preferences
are diverse.

Ellison and Fudenberg (2000) use their modgdapulation fictitious phy to investigate
the evolutionary stability of purified equilitai(Harsanyi, 1973), obtaining stability and
instability results for 2< 2 and 3x 3 games. By building on the results in this paper and
recent studies of perturbed best respodgeamics, one can investigate the stability of
purified equilibria in games with arbitrary numbers of strategies. This question is pursued
in a companion paper, Sandholm (2003).
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Appendix A
A.1. Basic properties of dynamical systemson A and X

We begin this appendix by establishing the existence, uniqueness, and forward invari-
ance of solution trajectories of the aggregate best response dynamic (AB). In fact, we will
establish this result for a more general class of dynamics on the simplex.

Letg: A — R" be a vector field on the simplex that satisfies

(LC) g s Lipschitz continuous or.
(FI1) >, gi(x)=0forallx € A.
(FI12) Forallx € A, g;(x) > 0whenever; =0.

Condition (LC) is the usual Lipschitz conditiaised to prove the existence of unique solu-
tion trajectories to the differential equatiénr= g(x). Condition (FI1) says that ; x; =0,
implying the invariance of the affine spade= {x e R": 3", x; = 1}. Condition (FI2) says
that whenever the componentequals zero, its rate of changeis non-negative.

Theorem Al Let g: A — R" satisfy (LC), (FI1), and (FI2), and let g be a Lipschitz
continuousextension of g from A to A. Then solutionsto x = g(x) fromeach xg € A exist,
are unique, are Lipschitz continuousin xg, and remain in A at all positive times.

Letix|g=/>; xiz denote the Euclidean norm &¥. The proof of Theorem A.1 relies
on this geometrically obvious observation that we state without proof.

Observation A.2. Let C be a compact, convex subset of R, and define the closest point
functionc:R" — C by
c(x) =argminjx — z|g.
zeC

Then [c(x) — c(y)|g < |x — y|g for all x, y € R". Hence, by the equivalence of norms on
R", thereexistsa k > O suchthat |c(x) — c(y)| < k|x — y| for all x, y € R".

Proof of Theorem A.1. Defineg: A — R” by g(x) = g(c(x)). Then condition (LC) and
Observation A.2 imply thag is Lipschitz. Therefore, standard results (e.g., Hirsch and
Smale, 1974, Chapter 8) show that solutions te g (x) exist, are unique, and are Lipschitz
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continuous in their initial conditions. The forward invarianceotinderx = g(x) follows
from Theorem 5.7 of Smirnov (2002).

Now consider any Lipschitz continuous extensjoaf g to A, and fix an initial condi-
tion xg € A. Since the solutioffx; }; >0 to & = g(x) starting fromxo does not leave, and
sinceg andg are identical omd, this solution is also a solution to= g(x). But sinceg
is Lipschitz, this is the only solution td= g(x) from xg. We therefore conclude that is
forward invariant undeg. SinceA is closed, forward invariance implies that the solution
is well defined at all times € [0, co) (See, e.g., Hale, 1969, pp. 17-18%1

We now prove an analogue of Theorem A.1 for dynamicsonet f: ¥ — ¥ satisfy

(LC")  fis L Lipschitz continuous orx .

(FI1) Y, filo)(w)=0forallo € ¥ andx € IT.

(FI2) Forallo € X andr € I, f;(c)(xr) > 0 wheneveb; () = 0.
(UB) Forallece Xandr eIl,|f(o)(m)| < M.

The first three conditions are analogues of¢haditions considered previously. Condition
(FI1') ensures that solutions stay in the affine spate {oc € ¥: () € Aforallw €
IT}, while condition (FI2) ensures that whenever no one in subpopulatiomses strat-
egyi, the growth rate of strategyin this subpopulation is non-gative. Finally, condition
(UB) places a uniform bound ofi(o)(sr), which is needed becaug&o) is infinite di-
mensional.

Existence, unigueness, continuity in init@nditions, and forward invariance of for
L1 solutions tas = f (o) are established in Theorem A.3. This result implies parts (i), (ii),
and (iii) of Theorem 3.1.

Theorem A3. Let f: X — R" satisfy (LC'), (FIT), (FI2), and (UB), and let f be a
Lipschitz continuous extension of f from X' to X'. Then solutionsto ¢ = f (o) from each
oo € X exist, are unique, are Lipschitz continuousin og, and remain in X' at all positive
times.

In addition to these properties, we would also like to establish that sohs®lution
{0} has continuous sample paths: in other words, that for eaclil, the behaviob, ()
of the subpopulation with preferen@echanges continuously over time. While not every
L solution has this property, we can prove that there is always one that doe§sCall
modification of {o;} if u(w :s:(w) =5,(r)) =1 forallr.

Theorem A 4. Let {o;} bean L solutionto & = f (o), where 7 : £ — X is L* continu-
ous and pointwise bounded. Then there exists a modification {6} of {o;} with continuous
sample paths: i.e., such that (7 : 6; () is continuous irr) = 1.

While of interest in its own right (in partidar, because it implies Theorem 4.1(iv)),
Theorem A.4 is also useful for proving Theorem A.3.

To prove these two results, we introduce the notion oflanintegral of a trajec-
tory throughf; for a complete treatment, see Lang (1997, Chapter 10);lf is an
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L' continuous trajectory through, then itsL! integral over the intervala, b], denoted

fab o; dr, is the L limit of the integrals of any sequence of step functi¢m8} satisfying
limy,— 00 SUR g lof* — o1l = 0. If {07} is an L1 solution toé = f (o), then by defin-

ition we have that, = og + fé‘ f(cr,)dt. Moreover, ift: IT — [0, u] is a random time
and f is pointwise bounded, then a step function approximation can be used to show that
ou=07+ [y f(01)Ly>ry 0.

Proof of Theorem A.3. Define f:5 > ¥ by f(o) = f(c(o)), wherec(o)(r) =
c(o(m)). Thenforallo, p € X,
| f @)= Fo)| =] f(c@) = f(c)]
<K|e@) = o)
=K- E|C(O’(TL’)) — c(,o(rr))|
<K - Eklo(m) — p()|
= Kk |

’

whereK andk are the Lipschitz constants fgrandc, respectively. Hencq,? is L Lip-
schitz onX'. Therefore, standard results imphgat there exist unique solutionsdo= f (o)
from each initial conditiorrg € X, and that solutions are Lipschitz continuousin

Letog € X, let{o;} be theL! solution tos = f(a) from op, and suppose that, ¢ X
for someu. Then for some strategythe setA; = {r € IT: [0,(7)]; < O} has positive
measure undgr. By Theorem A.4, we can suppose tli@t} has continuous sample paths.
Hence, the random time(z) = max{t < u: [o,(7)]; > 0} is well defined and is strictly
less thany whenrw € A;.

Observe that ifs € £ haso; () < 0, thenc;(o)(r) = 0, and hencef; (o) (r) =
fi(c(0))(r) > 0 by condition (FI2). We therefore have the following® integral inequal-
ity:

[ou]i = [o:]; +/ﬁ'(01)1{z>r}dt 2 [oz ;.
0

Observe thaio, (7)]; = 0 whenn € A;. Hence, for almost every € A;, [0, ()]; > 0,
contradicting the definition of\;. Therefore, the trajectoris;} cannot leaveX, which is
thus forward invariant under = £ (o).

Forward invariance of under any Lipschitz continuous extensionjofo ¥ is proved
in the same fashion as the analogous part of Theorem Adl.

We now prove Theorem A.4. To do so, we introduce B8enorm onX:

lollp2=
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If the trajectory{o;} is L? continuous, then itd.? integral,g%b oy dt, is defined as the
L? limit of the integrals of any sequence of step functiga8} satisfying the condition
limy,— 00 SUR g lof — 02l 2 = 0. TheL? integral satisfies this standard inequality:

b
</||at||der.
L2

Since i is a finite measure, thé&! and L? norms define the same topology on
any set of functions satisfying the uniforbbundedness condition (UB). In particular,
LYlim,_; 0, = L?lim,_,; o, whenever either limit exists. It follows that {&,} is point-
wise bounded andi continuous, itd.* andZ? integrals are the samfaf’ oy dt = gﬁab oy dt.

The proof of Theorem A.4 relies on Lemma A.5, which is a direct implication of the
Kolmogorov continuity theorem (Karatzas and Shreve, 1991, Theorem 2.2.8).

b

%O’; dr

a

Lemma A.5. Suppose that {o;} is L2 Lipschitz continuous (i.e., that there is a constant
K < oo suchthat |lo; — o522 < K|t — s| for all s and ¢). Then there exists a modification
{6,} of {o;} suchthat w(x: &,(sr) is continuous irr) = 1.

Proof of Theorem A.4. By definition, the trajectoryo, } satisfies the ! integral equation
13
oy =00+ / f(oy) ds.
0

Since the fynctionf is L1 continuous and pointwise bounded by some constanthe
trajectory{ f(o,)} is as well. Hence[ f(c,) du = ¢ f(o,) du, and so

t
%f(gu)du
<Mt —s.

That is,{o;} is L? Lipschitz. The result therefore follows from Lemma A.50

t

f

L2 %

f (ou) du

L2 L2

t
loy — oyl 2 = H / f (o) du

A.2. Other proofs

Proof of Proposition 2.2. Condition (C1), which requires thd be single valued, obvi-
ously holds, so we focus on the Lipschitz continuity condition (C2). In this proof, we use
the Euclidean nornx|g = />, xi2 onR", Since this norm is equivalent to the summation
norm, our proof implies the result for the latter norm as well.

It is enough to show that the Lipschitz inequaljti(x) — B(y)|| < C|x — y|g holds
when|x — y|g is sufficiently small. Fixc, y € A andi # j. The set of payoff matrices that
choose overj atx andj overi aty is

IT;j = {A: (Ax); > (Ax); and(Ay); < (Ay);}
={AZ (A,'—Aj)-x>0>(A,'—Aj)-y}.
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Here, A; andA; denote rows of the matriA.

We can associate with each payoff mattia difference vectad;; = A; — A; e R”. Let
f:R™" — R denote the density function of the measireand letg;; :R" — R be the
density of the measure on the differengthat is induced by. If [—c, c]"*" contains the
support off, andM is an upper bound ofi, then by integrating out irrelevant components
and changing variables, one can show that

gii(d) < (20" "M foralld e R".

Moreover, the support of;; is contained in the cubp-2c, 2c]", and hence in the ball
S c R" centered at the origin with radius= 2c/n.
Let

Dijj={deS.d-x>0>d.y},
and letm represent Lebesgue measureRén Suppose we can show that
m(D;j) < K|x —y|g (3
for somekK independent of, y, i, andj. Then since a change in best response requires a
reversal of preferences for at least one strategy pair, it follows that
|B(x) = B(y)| =2u(m: B(x)(w) # B(y)(m)) (4)
<2)  ATy))
i, j#i
<23 " " Mm(Dy)
i,j#i
<2(n? = n)(2c)" "MK|x — y|E.

To boundm(D;;), we first change coordinates R" via an orthogonal transforma-
tion 7 € R™" so thatx’ = Tx and y’ = Ty satisfy x’ = (x1,0,0,...,0) and y’ =
(¥1:¥2.0,...,0), with x7, y1, y5 > 0. The orthogonal operatdf is the composition of
a sequence of rotations and reflections, and so preserves Euclidean distance, inner prod-
ucts, and Lebesgue measure (see Friedberg et al., 1989, Sections 6.5 and 6.10). Hence,
Dij={deS: Td-Tx>0>Td- Ty}, and so

Dj;={d'eS:d -x'>0>d -y}
={deS:d Tx>0>d -Ty)
={d € S: d' =Td for somed € D;;}.
Thereforem(D;;) = m(Dl(l.),
Whether a vector is an element Dtl’.j only depends on its first two coordinates. For

d' €8, leta(d) € [0, 27) be the amount by which the vecttt, 0) € R2 must be rotated
counterclockwise before it points in the same directiotygsdy). Since alld’ € D;; form

acute angles with’ and obtuse angles wit}i, we see that
Dj; ={d e€5: a(d)€[0.%)U(¥].2r) anda(d) € (a(y") + 5.a(y") + %)}
=[d eS: a@d)e(¥Z.a0)+3F)}
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Hence, sincen(S) < (2r)",

a(y’)

m(Djj) = —Z—=m(S) <a(y) (2", (5)
Therefore, to prove inequality (3) it is enough to show that
a(y) <klx —ylg =klx" = y'|E. (6)

(To see why the equality in expression (5) holds, ¥t,(X>, ..., X,) represent a random
vector drawn from a uniform distribution on the b&ll Then the random angte formed
by the first two components, defined by

(cos@, sin@) = (Xl/\/xf + X3, Xo/\/X2 + X3),

is independent of the remaining components.)

To establish inequality (6), we fix> ¢ > 0 and letZ, = {z € R% |(c, 0) — (z1, 22) | =
e, zo > 0} be the set of vectors iR? with a positive second component that avay from
the vector ¢, 0). The largest possible angle between the vector (1, 0) and a vedgriin

f(e) = maxa(z) = cos*1< min cos(a(z))> = cosl( min 1,0 (1, 22) )
7€”Z¢ 2€Z¢

zeZ: [(1,0)|el(z1, 22) |E
If we let § = ¢ — z1, then the minimization problem becomes
. (L,0)-(c—6,V/e2—82) . c—9§
min = mn ——.
s€l0el  |(c — 8,2 —82) |k 8€l0.6] /2 — 2¢8 + €2

Taking the derivative of this expression with respect tind setting it equal to zero yields
8§ =¢2/c; hence,

)
c )
It follows that6(0) = 0 and tha®’(¢) = 1/+/c? — £2 whenever < c. Therefore, ifc >
1//n ande < 1/+/2n, thend' () < /2n, and so
0(¢) < V2ne.

Now suppose thatr — y|g < 1/+/2n. Then sincex] = |x'|g = |x|g > 1/4/n, setting
c=xjande =[x — y|g = |x' — /| yields

0(e) = cosl<

a(y) <O(lx = yle) <vV2nlx = ylg,

establishing inequality (6) for all cases in whith— y|g is sufficiently small. Thus, in-
equality (5) implies that

m(Dij) =m(Dj;) < (2r)" - ~2n|x — ylE,
and so inequalities (3) and (4) let us conclude that

| BG) = B[ < 2(n? —n)(20)" "M - @) -V2nlx —ylg. O



50899-8256(04)00132-0/FLA AID:1175 Vol.eee [DTD5] P.24 (1-27)
YGAME:m1 v 1.29 Prn:15/11/2004; 10:34 ygamell?S by:Rima p. 24

24 J.C. Ely, WH. Sandholm/ Games and Economic Behavior eee (eeee) see—eee

Proof of Proposition 2.3. Again, condition (C1) clearly holds, so we need only consider
the Lipschitz continuity condition (C2). Fix, y € A andi # j. LetIT;; C IT represent the
set of preferences that prefer stratédy strategy; at distributionx but preferj toi aty:

I = {rr: mi(x) > 7j(x) andm; (y) < nj(y)}.
Then by definitionu (1T;;) = v(D;;), whereD;; C R" is given by
Dij ={0: Fi(x)+6; > Fj(x) +6; andF;(y) +6; > F;j(y) +6;}
={6: () = Fj(x) >0, —6; > F;(y) — F;(»)}.
Now suppose we could show thatD;;) < K|x — y| for someK that is independent of
x,y,i,andj. Then
|BG) = BO)| = 21wt B) () # B() ()
<2 i)
ij#i
=2 Z U(Dij)
ij#i
< 2(n2 — n)K|x -yl

Each vectol® € R" is associated with a single value &f — 6; e R. Let f:R" - R
denote the density of the measurdet M be the upper bound ofi, and letg;; :R — R
denote the density of the measure for the differetced; thatis induced by. In case (i),
there is a compact s¢t-c, ¢]" that contains the support gf, by integrating out irrelevant
components and changing variables, one can show that

gji(d) < (2c)" M foralld e R.

In case (ii), f (0) = [1; fi(®;) for some marginal densities. Sincef is bounded, there is
also a constan¥ that bounds all of the functiong. Hence, a convolution yields

gji(d)</fj(d—z)ﬁ(—z)dz=Efj(d+9i)gﬂ foralld e R.

Thus, cases (i) and (i) both imply case (iig);; < M for some constan¥/.
The interval of values of; — 6; that lie in the seD;; has length

(Fi(x) = Fj(x)) = (Fi(y) — Fj(») = (Fi(x) = Fi(y)) + (F; (y) — Fj(x))
<2Kflx —yl,
whereKr is the Lipschitz coefficient foF'. Therefore,
v(Dij) < M -2KF|x —yl,
and we conclude that
|Bx)— BO»)| <2(n®—n)-M-2Kp|x —y|. O

The proof of Lemma 6.1 relies on the following observation.
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Lemma A.6. Leta,b e R". If a and b liein the same orthant (i.e, if a; > 0 < b; > 0),
then |a + b| = |a| + |b].

Proof of Lemma6.1. Letx = Eo, letd =y — x, and letC = {k: dy < 0}. Forallk € C,
defines® e R" by
di if j =k,
k=10 if j eC—{k},
—(dj/ Yigcdd if j¢C.
Notice that}_ ; 5% = 0 for eachk and that, . 8* = d. Moreover, since eachf lies in

the same orthant &®", Lemma A.6 implies thatd ", . 8| = >, 1651
For eachk € C, let n*¥ = x + 8. We want to show that* € A. To begin, observe that
Y n’; =YX+ 5’; = 1. To check thatr/; > 0 for all j, first note that ifj = k, then

Nk =xk+di =y >0.1f j e C—{k}, thenn’]‘. =x; > 0. Finally, if j € C, then sincely is
negativest = x; — (d;/ Y ;cc didi > x; > 0.
For eachk € C, definery : IT — R by

ri(m) =max{r: o () +rs* € A},
and define* : IT — A by

)=o) + ()8t
Fix 7 € IT; we want to show thatf () = 0. Suppose to the contrary tha(r) > 0.
Then sincezt () € 4, 3, 2k (7) < 1, and sozk () € int(4); hence ¥ () + &8t =

o () + (ri(w) +€)8% € A for all small enough > 0, contradicting the definition of, (7).

Next, we show thatr, > 1. To see this, suppose to the contrary that < 1. Then

Nt =xk +di < xi + Erg8F = Ezf =0, contradicting thay* € A. Therefore, if we let

tr = 1/Ery, thens, € (0, 1].
Now definep: X — A by

p(r) =0 () + Y teri(m)st.
keC

To see thap (i) € A for all = € IT, observe that

D opjm =) oim+Y Y (s =1+ Ztm(n)(Zéﬁ) =1
j j I

Jj keC keC

and thatp; () < o () only if j € C, in which case
p;(m) = 0j () + 1 (1)8] > 0() + 1 (1)8) = 2} (m) =0,

sinceaj < 0. Moreover,

Ep=Eo +E(Ztkrk8k) =x+) uEn=x+) f=x+d=y.
keC keC keC

Finally, applying Lemma A.6 twice, we find that



50899-8256 (04)00132-0/FLA AID:1175 Vol.eee [DTD5] P.26 (1-27)
YGAME:m1 v 1.29 Prn:15/11/2004; 10:34 ygamell?S by:Rima p. 26

26 J.C. Ely, WH. Sandholm/ Games and Economic Behavior eee (eeee) see—eee
lp—ol = Ztkrkak =E|> unst|= E(Z|tkrk5k|)
keC keC keC
=Y |8 Emr) =) |8 =D ot =ldI=ly—x]. O
keC keC keC

Proof of Lemma 6.3. Let og € A, and suppose thdb;} leavesA in finite time. Since
{o,} C ¥ is continuous and since is open,r = min{t: o, ¢ A} exists, angp = o, lies on
the boundary ofd. To reach a contradiction, it is enough to show tfea} cannot reach
in finite time.

The separation theorem for convex sedsifller, 1985, Proposition 39.4) implies that
there is a continuous linear functiorat = — R such thatF (o) < F(p)=rforallo € A.
Therefore, to prove the lemma it is enough to show thagi€ A and F (o, + 6;) < r for
all ¢, then F(o;) < r for all z. SinceF is continuous and linear,/{o;)/df = F(6;) <
r — F (o) (for details, see the proof of Lemma 5.3). Thigg;) will increase most quickly
if we maximize & (o;)/dt by letting dF' (o;)/dt = r — F(o;) at all timest (which we can
accomplish by setting; = p — o). In this caseF (o;) =€ ' F(0p) + (1 — e ")r, which is
less tharr for all finiter. O

Proof of Lemma 6.5. Let {o;} be the solution t@B) from somesg € X' with Eog=x™* €
A*,and letc* = B(x*). Since Theorem 5.2 implies thig o} solves (AB), it follows from
Proposition 5.1 thaEo, = x* for all 7. Hence,B(E (o)) = B(x*) = o* for all ¢. Since the
solution to (B) fromog is unique, it is enough to verify that, = e 7og + (1 — e )o*
satisfies Eq. (B). And indeed,

. . Ot+e — Ot
6, = Lt im [ 22—
e—0 &

ot
= Llim (— (e7F) — ™) (0p — 0*))
e—=0 \¢&

) e*(l“l’&) —e!
— (00— ™) lim (7>
e—0 &

d
= (0g — a*)ae_’
= (0" —oo)e”’
=c* -0y
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