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Abstract

We study which preferences are stable using the “indirect evolutionary ap-
proach.” Individuals are randomly matched to play a two-person game. In-
dividual (subjective) preferences determine their behavior, and may differ
from the actual (objective) payoffs that determine fitness. Matched individ-
uals may observe the opponents’ preferences perfectly, not at all, or with
some in-between probability. When preferences are observable, a stable out-
come must be efficient. When they are not observable, a stable outcome
must be a Nash equilibrium and all strict equilibria are stable. We show
that, for pure strategy outcomes, these conclusions are robust to allowing
almost perfect, and almost no, observability, with the notable exception that
inefficient strict equilibria may fail to be stable with any arbitrarily small
degree of observability (despite being stable with no observability).



1 Introduction

We study endogenous preferences using the “indirect evolutionary approach”
according to which preferences induce behavior, behavior determines “suc-
cess,” and success regulates the evolution of preferences.1 In the dynamic
story that underlies our reduced-form analysis, a population of individuals
is randomly matched to play a two-person game. Individual subjective pref-
erences may differ from the objective payoffs, (i.e., fitness), and in general
the population has heterogenous preferences. Matched individuals play a
Bayesian-Nash equilibrium determined by the individuals’ preferences and
their information about opponents’ preferences. This behavior then deter-
mines the aggregate outcome of the game which in turn determines the rela-
tive fitness of the preferences in the population. Finally, the composition of
the population evolves as those preferences that have yielded higher fitness
will increase at the expense of those that have yielded lower fitness.

In common with much of the evolutionary literature we propose a static
solution concept to tractably capture the stable points of such a dynamic
process. We use this concept primarily to investigate the stability of the
resulting aggregate outcomes for any given (objective) game, but the model
also sheds some light on the shape of stable preferences. We refer to the pair
consisting of a distribution of preferences in the population and an aggregate
outcome as a configuration.

To clarify the model we elaborate briefly on two features: the informa-
tional issues underlying how behavior is determined, and what constitutes
a stable configuration. As noted we assume equilibrium play in a match,
which depends on the information a player has about her opponents. Our
stability concept accommodates a range of alternatives regarding the play-
ers’ information in a match. We begin by studying two extreme cases: First,
where each player observes perfectly her opponents’ preferences; and second,
where she only knows the distribution of preferences in the population. Next
we consider intermediate cases, where each player observes the opponent’s
preferences with some intermediate probability (but not whether she her-
self was observed), primarily as a robustness check. In each case we assume
that play corresponds to a Bayesian-Nash equilibrium of the game given the
distribution of preferences and the players’ information.

1Some of the early proponents of this idea are Becker (1976), Frank (1987), Hirshleifer
(1977), and Rubin and Paul (1979). The formal model of the “indirect evolutionary
approach” that we follow was pioneered by Güth and Yaari (1992) and Güth (1995).
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For a typical distribution of preferences there will be multiple modes of
behavior that form a Bayesian-Nash equilibrium within the population. Our
stability criterion identifies when a distribution of preferences and a partic-
ular equilibrium will together form a stable configuration. The stability of
a configuration hinges on how it responds to invasion by new preferences.
Generally speaking we wish to say that a configuration is unstable if some
small invasion can move the configuration far away, either because the invad-
ing preference outperforms the incumbents, thereby altering the distribution
of preferences, or because the entrants’ presence necessarily causes a large
change in aggregate behavior.

The two methodological contributions of our study are that we consider
various degrees of observability and we allow for all possible preferences in
the population. Regarding the second aspect early studies of preference evo-
lution, starting with Güth and Yaari (1992), concentrated on observable
preferences and demonstrated the possibility that non-fitness maximizing
preferences and non-Nash outcomes could be evolutionarily stable. A com-
mon theme was that certain non-fitness maximizing preferences can have a
commitment effect when they are observable. However, this literature was
limited in that attention was restricted to a subset of possible preferences in
some special games.

In section 3 we study the case of perfect observability, allowing for all
possible preferences. A key aspect of the model with observable preferences
is that individuals can condition their behavior on the specific match, effec-
tively correlating their behavior with the opponents’. This enables entrants
to coordinate on efficient play, thereby destabilizing Nash equilibria of the
objective game, so that preferences distinct from the objective payoffs can be
stable and induce play that is not a Nash equilibrium of the objective game.
Indeed, we show in Proposition 2 that efficiency is a necessary condition for
stability.2 Proposition 1 provides a companion sufficiency result: Efficient
strict equilibria are stable. By the first proposition, those previous results on
preference evolution that imposed restrictions on the possible preferences in
the population, can be valid without such restrictions only if they selected
efficient equilibria. Moreover, it identifies efficiency as the driving force be-
hind the selection of behavior (rather than altruism, spite, or other features

2The logic is reminiscent of the “secret-handshake” result of Robson (1990) and related
studies of evolutionary stability in games with communication: A population of entrants
with preferences that enable cooperation among themselves and maintaining the previous
equilibrium with the existing population destabilizes any inefficient outcome.
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of preferences).
Our section 4 studies the case where players do not observe their op-

ponents’ preferences, and know only the distribution of preferences in the
population. In this case an entrant’s play is necessarily independent of a
particular opponents’ play and hence, as stated in Proposition 5, any non-
Nash equilibrium outcome can be destabilized by an entering population
with preferences that induce the (objective) best-reply. It is also straight-
forward to show that any strict Nash equilibrium outcome is stable.3 Thus
being Nash equilibrium is necessary, and strict equilibrium sufficient, for an
outcome to be stable when there is no observability.

In section 5 we develop our second contribution. As suggested by Samuel-
son (2001) it is important to investigate the robustness of these polar cases.
Indeed, our model can accommodate varying assumptions on observability
and we use this to investigate the robustness of the preceding results, for the
case of pure-strategy outcomes.4 Our Proposition 7 shows that in this sense
our first necessary result is robust: Efficiency is a necessary condition for
pure-strategy outcomes to be stable when observability is almost perfect.5

The necessity result with no observability is similarly robust: Even when
there is a small degree of observability a pure-strategy outcome is stable
only if it is a Nash equilibrium (Proposition 8).6

Regarding the sufficiency conditions, efficient strict equilibrium outcomes
remain stable with any degree of observability. The most interesting con-
clusion however is that the sufficiency result of the unobservable preferences

3On the other hand some Nash outcomes will be unstable, and our concept is therefore
a refinement of Nash equilibrium. These results are consistent with those in Ely and
Yilankaya (2001) and Ok and Vega-Redondo (2001) who also studied general preference
evolution with no observability.

4While Ok and Vega-Redondo (2001) do not directly allow for different assumptions
on observability, some aspects of those differences can be seen through variations in their
matching technology. They use this to argue that preference evolution has no effect on
outcomes when preferences are not observed, and show by example that there might be
such an effect with observability. Their Remark 4 (see also pp. 244-5) provides a more
detailed discussion of these issues and our papers.

5This is in the same spirit as Sethi and Somanathan (2001), who showed in subsequent
work that reciprocal (non-fitness) preferences evolve with perfect and almost-perfect ob-
servability in a class of games.

6Güth (1995) also considers the case of partial observability. His model differs in many
ways so a detailed comparison would not be insightful; one important difference is that he
models almost perfect observability by having the preferences be common knowledge with
probability p close to 1, whereas in our model they are only common p belief.
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case is not robust. We provide a coordination game example, where the
outcome of a strict Nash equilibrium is not stable for any strictly positive
probability of observing preferences. The unstable strict Nash equilibrium is
payoff dominated, suggesting that the efficiency force for observable prefer-
ences has implications for any degree of observability; only when preferences
are completely unobservable does this force disappear.

The last modelling issue to discuss is that of existence. As is typical in
studies that adopt a static solution concept to capture a dynamic process,
existence will not be guaranteed in general. In our case, existence problems
also arise as a result of a tension between efficiency, which is necessary for
stability in the almost observable case, and Nash equilibrium which is nec-
essary in the almost unobservable case. If in a game without an efficient
Nash equilibrium the regions where these conditions are necessary overlap
then there does not exist a stable outcome. In those cases where existence
fails, analysis of a fully dynamic model would be a useful direction for fu-
ture research.7 Our results identifying stable configurations when they exist
should therefore be viewed as a first step in a more general theory of the
joint evolution of preferences and behavior.

2 The Model

2.1 The environment

We study a symmetric two-player normal-form game G with a finite action
set A = {a1, a2, ..., an}, and a payoff function π : A× A → R. We interpret,
as is standard in the evolutionary game theory literature, the payoffs as
representing “success” or “fitness”. Let ∆ represent the set of mixed actions
in G; the payoff function π extends naturally to ∆ × ∆. If ai ∈ A, then we
identify ai with the element of ∆ which assigns probability one to ai, and we
adopt this convention for all probability distributions throughout the paper.
We are interested in what outcomes in G are stable, where an outcome is a
probability distribution on A× A.

We imagine a large population randomly and repeatedly matched to play

7A recent paper, von Widekind (2004), restores existence via a different extension. He
extends our model with observability to allow for non-expected utility preferences (we
assume expected utility). This guarantees existence in all 2x2 games and extends our
efficiency result: stability is equivalent to efficiency in these games.
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G, or more accurately, to play a game that has the same action set as G. In
standard evolutionary models each player is assumed to play a particular ac-
tion in G. Instead, we allow each player to have (von Neumann-Morgenstern)
preferences over outcomes in G which may be different than π. In other
words, we allow “subjective” preferences to diverge from “objective” fitness.
Let Θ ≡ [0, 1]n

2
be the set of all possible (modulus affine transformations)

utility functions on A × A. We will often refer to θ ∈ Θ as a “preference
type” or “type”. We write θ(σ, σ′) for the expected utility of type θ when
she plays σ and her opponent plays σ′. The environment will be described by
a probability distribution on Θ, representing the distribution of preferences
in the population. We will restrict attention to distributions that have finite
supports, reflecting the assumption that the population is large but finite.
Let P(Θ) be the set of all possible finite support probability distributions on
Θ. Finally, let C(µ) denote the support of µ ∈ P(Θ).

To complete the description of the strategic interaction between players,
we need to specify what they know about each other’s preferences when they
are matched. We focus on the complete information scenario, where players
observe their opponents’ preferences, and the unobservable preferences case.
We also allow for intermediate information structures where players observe
their opponents’ preferences with probability p ∈ (0, 1).8

2.2 The solution concept

We present a reduced-form stability concept intended to capture the essen-
tial features of the following three components of the evolutionary process:
mutation, which introduces preferences into the population, optimization, by
which agents adapt their behavior given the preferences represented in the
population, and natural selection, by which the preference composition is
updated as successful preferences replicate. We model mutation by consid-
ering exogenous changes in the distribution of preferences resulting from the
entry of new types in small proportions. Given a preference distribution µ,
it is assumed that the population learns to play a Bayesian-Nash equilib-
rium of the incomplete information game defined by µ and the information

8Thus the “type” of a player in the usual sense in these games of incomplete information
designates both their preference type, θ, and their private information (whether they
observed an opponent and what they observed). In the extreme cases where p ∈ {0, 1}
only the preference type matters for the game, and hence we refer to this as the players’
type.
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structure.9 Finally, natural selection is modeled by a static stability concept.
The concept identifies populations of preferences that cannot be invaded by
mutants who—in the resulting equilibrium—have larger fitness payoffs than
the incumbents.

Equilibrium play in a match Suppose that the distribution of prefer-
ences in the population is given by µ. The interaction can be analyzed via
the following two-player Bayesian game, Γp(µ). The preferences of the two
players are drawn independently from µ, and each player with independent
probability p observes the preferences of the other. With the complementary
probability 1− p, the player observes the uninformative signal ∅.

A strategy for preference θ is a rule bθ : C(µ)∪ ∅ → ∆ specifying a mixed
action conditional on each possible observation. We assume that aggregate
play in the population corresponds to a symmetric Bayesian-Nash equilibrium
of this game. That is, we assume that each individual, upon being selected
to play, has correct beliefs about the distribution of her opponents’ play and
chooses a mixed action that is a best-reply to this belief according to her
own preferences.

When type θ is matched with type θ′ and plays a mixed action σ, the
expected utility for θ is

p θ(σ, bθ′(θ)) + (1− p) θ(σ, bθ′(∅)).

This payoff is the average over two possibilities. With probability p, the
opponent observes the preferences of type θ and thus plays bθ′(θ), and with
probability 1− p, the opponent observes ∅ and plays bθ′(∅).

An equilibrium b is thus characterized by two properties. First, type θ
chooses an optimal action conditional on observing that the opponent’s type
is θ′:

bθ(θ
′) ∈ arg max

σ∈∆
[pθ(σ, bθ′(θ)) + (1− p)θ(σ, bθ′(∅))] , (1)

for each θ′ ∈ C(µ). Second, type θ chooses an optimal action conditional on

9While it is not a part of our formal model, the justification for our concept is based
on the view that equilibrium play arises from a process (e.g., of learning) which operates
much faster than the evolutionary process we model. Whenever the distribution of prefer-
ences changes, we assume that the learning process always reaches equilibrium play before
subsequent evolution proceeds.
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observing nothing informative:

bθ(∅) ∈ arg max
σ∈∆

∑
θ′∈C(µ)

[pθ(σ, bθ′(θ)) + (1− p)θ(σ, bθ′(∅))] µ(θ′), (2)

where µ(θ′) is the population share of θ′.
For the observable preferences case, i.e., p = 1, we ignore (2), and the

conditions reduce to the requirement that in each (θ, θ′) match, play forms a
Nash equilibrium of the complete information game with payoff functions θ
and θ′. For the unobservable preferences case, i.e., p = 0, we ignore (1). Let
Bp(µ) denote the set of all Bayesian-Nash equilibria of the game Γp(µ).

Fitness, preference evolution and stability. Given a population distri-
bution µ and an equilibrium b ∈ Bp(µ), the average fitness of type θ ∈ C(µ)
is denoted Πθ(µ|b) and is given by equation (3).

Πθ(µ | b) =
∑

θ′∈C(µ)

[p2π(bθ(θ
′), bθ′(θ)) + p(1− p)π(bθ(θ

′), bθ′(∅))+ (3)

p(1− p)π(bθ(∅), bθ′(θ)) + (1− p)2π(bθ(∅), bθ′(∅))]µ(θ′).

This fitness, which depends on the equilibrium played, is the measure of
evolutionary success for types. Consequently, evolution depends both on the
distribution of preferences and the equilibrium played given this distribution.
Hence our stability definition applies to configurations, (µ, b), where b ∈
Bp(µ). Every configuration induces a distribution over actions, called the
outcome, denoted by x (µ, b). When there is no chance of confusion, we may
drop the arguments of x (µ, b) for expositional purposes.

A configuration is stable if it satisfies two conditions. First, it must be
balanced : All types present must receive the same fitness. If the configuration
were not balanced, then some types have higher fitness than others and
natural selection would alter the configuration as the former types multiply
and the latter types recede.

Definition 1 A configuration (µ, b) is balanced if Πθ(µ | b) = Πθ′(µ | b) for
all θ, θ′ in C (µ).

Second, a stable configuration must resist entry by mutants. There are
two ways in which a mutation can destabilize the configuration. First, the
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mutant type could achieve a higher fitness than the incumbent types. Selec-
tion would then favor the mutant and the distribution of preferences would
diverge from the original configuration. Second, the behavior of the mutant
could unravel the original equilibrium behavior causing the distribution of
actions to diverge.10 Our stability definition identifies configurations that are
immune to either type of change.

To precisely formulate a definition along these lines we must make some
assumption about which post-entry equilibria are relevant. If all equilibria
are considered, then stability is too hard to satisfy: Whenever the origi-
nal population admits multiple equilibria, any entry could destabilize it by
triggering a switch to another equilibrium. Instead we define the subset of
equilibria that are focal relative to the original configuration and assume that
any focal equilibrium can arise after an entry. To motivate our definition,
consider the observable case and imagine that a mutation has taken place
resulting in the entry of a new preference. Prior to the entry, incumbent
types have played against one another long enough to learn an equilibrium
b ∈ B1(µ). We assume that entry by a small group of new types will not undo
this. On the other hand, the incumbents had no previous experience being
matched against the new type, so any outcome in such matches (consistent
with equilibrium) is a plausible result of the ensuing adaptation process.

To develop the formal definition, we shall introduce some notation. If
the original distribution of preferences is µ and the mutant preference is θ̃,
we define Nε(µ, θ̃) to be the set of all preference distributions resulting from
entry by no more than ε mutants. Formally,

Nε(µ, θ̃) = {µ′ : µ′ = (1− ε′)µ + ε′θ̃, ε′ < ε}.

Beginning with a configuration (µ, b), and following an entry by θ̃ leading to
µ̃ ∈ Nε(µ, θ̃), an equilibrium b̃ ∈ Bp(µ̃) is focal if incumbents’ behavior is
unchanged, i.e., b̃θ(θ

′) = bθ(θ
′) (whenever p > 0) and b̃θ(∅) = bθ(∅) (whenever

p < 1) for all θ, θ′ ∈ C(µ). Notice that a focal equilibrium does not restrict
the behavior of entrants, nor does it restrict the behavior of incumbents when

10The second can happen without the first: consider a Prisoners’ Dilemma game and
p = 0. Suppose the incumbents have preferences which make defect a weakly, but not
strictly, dominant action, and suppose they are cooperating. When a mutant enters and
plays defect, the incumbents will also switch to defect. Although the mutants earn no
higher payoff than the incumbent, the outcome switches from all cooperate to all defect.
The cooperative outcome is therefore not stable.
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they observe that they have been matched with entrants. Let Bp(µ̃|b) denote
the set of all focal equilibria relative to b if the distribution is µ̃.

We assume that any focal equilibrium can potentially arise following a
mutation and thus our definition of stability requires that in all of them,
entrants earn no higher fitness than any incumbent. However, not all post-
entry populations will have focal equilibria. In that case, the adaptation
process would lead to some other equilibrium in Bp(µ̃). If all these equilibria
involve play that is “far” from the original configuration then clearly the
configuration is not stable. Our definition requires that there exist some
nearby post-entry equilibria and that in all nearby equilibria the entrants do
not outperform incumbents.11

To present our formal definition of stability, we first define the set of
“nearby” equilibria.

Definition 2 Given a configuration (µ, b), a parameter δ, and a post-entry

population µ̃ ∈ Nε(µ, θ̃), let Bδ
p(µ̃|b) =

{
b̃ ∈ Bp(µ̃) : |x(b̃, µ̃)− x(b, µ)| < δ

}
.

Definition 3 A configuration (µ, b) is stable if it is balanced and if for every
δ > 0 there exists ε > 0 such that for every θ̃ ∈ Θ and µ̃ ∈ Nε(µ, θ̃),

1. Πθ(µ̃ | b̃) ≥ Πθ̃(µ̃ | b̃) for all b̃ ∈ Bp(µ̃|b) and θ ∈ C(µ).

2. If Bp(µ̃|b) = ∅, then Bδ
p(µ̃) 6= ∅ and Πθ(µ̃ | b̃) ≥ Πθ̃(µ̃ | b̃) for all

b̃ ∈ Bδ
p(µ̃) and θ ∈ C(µ).

An outcome x is stable if there exists a stable configuration with that
outcome, i.e., there exists a stable (µ, b) with x = x(µ, b). A preference dis-
tribution µ is stable if (µ, b) is stable for some b.

Finally, as mentioned in the introduction either definition of stability is
demanding, and hence like many static evolutionary concepts may fail to
exist in some cases.

11If there are no focal equilibria, but there are “nearby” equilibria there are several
alternative ways to proceed. First, rather than require only the existence of some nearby
equilibrium, we could insist that all post-entry equilibria are close to the original. Second,
rather than requiring that the incumbents outperform the entrants in all nearby equilibria,
we could require only that this be true in at least one nearby equilibrium. We chose our
version largely for consistency with the spirit behind the rest of the definition, but we
emphasize that all of our results would hold under any of these versions.
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3 Observable Preferences

When preferences are observable, any pair of incumbents are playing a com-
plete information game given their preferences, isolated from the rest of the
population. Our stability definition requires the incumbents to do as well
as any mutant (in small proportions) in all post-entry focal equilibria, i.e.,
those equilibria in which any pair of incumbents continue to play as they
were playing prior to the entry of the mutant. Note that the set of focal
post-entry equilibria is non-empty by definition in the observable preferences
case.

We call a symmetric strategy profile efficient if its fitness is highest among
all symmetric strategy profiles.

Definition 4 (σ∗, σ∗) is efficient if π(σ∗, σ∗) ≥ π(σ, σ) for all σ ∈ ∆.

When (σ∗, σ∗) is efficient, we refer to σ∗ as the efficient strategy and
π(σ∗, σ∗) as the efficient fitness. Our first result specifies a sufficient condition
for stability: If a pure-strategy profile (a∗, a∗) is efficient as well as a strict
Nash equilibrium of G, then it is stable.12 The reason is straightforward:
Consider a population consisting of types for which a∗ is a strictly dominant
strategy, and consider any entrant type. If the entrants’ play against the
incumbents puts zero weight on a∗, they will be driven out, since (a∗, a∗) is
a strict Nash equilibrium. If they play a∗ on the other hand, their expected
fitness can never exceed that of the incumbents, since a∗ is efficient. The
proof adds to these observations by finding a uniform barrier ε that would
work for all possible mutants with population shares less than ε, even those
with actions arbitrarily close to a∗ against the incumbents.

Proposition 1 If (a∗, a∗) is both efficient and a strict Nash equilibrium of
G, then it is stable.

We now turn our attention to necessary conditions for stability. We will
show that if an outcome is stable, then all incumbent types in the stable
distribution receive the same fitness in each of their interactions, including
those with their own types. (Stability only implies that they do as well on
average.) Therefore, the average fitness of every type in a stable distribution

12All proofs are in the Appendix.
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must equal the payoff of some symmetric strategy profile in G. Moreover,
this average fitness must be efficient.

Efficiency is a necessary condition for stability. The idea behind this re-
sult is simple, and best demonstrated with monomorphic populations, where
its “secret handshake” flavor is clear.13 Suppose the incumbent’s fitness is
less than the efficient payoff. We can always find a mutant that would do
better than the incumbent in the post-entry population. Consider, for ex-
ample, a coordination game. The outcomes of the “bad equilibria” are not
stable, because a mutant whose preferences coincide with the fitness function
can invade by playing, as part of a post-entry equilibrium, the bad action
against the incumbent and the good one against itself. Consider next a Pris-
oners’ Dilemma game. The defection outcome is not stable. Any population
where defection is played can be invaded by a mutant who has “coordina-
tion” preferences, where defection (respectively, cooperation) is the unique
best response to itself. There is a post-entry equilibrium in which the mutant
and the incumbent both defect whenever they are matched, and the mutant
cooperates against itself. Our necessity result shows that these arguments
can be generalized. We use entry by an indifferent type in the proof of this
result; we discuss this further in section 6.

Proposition 2 If an outcome x∗ is stable with configuration (µ∗, b∗), then

Πθ(µ
∗ | b∗) = π(b∗θ(θ

′), b∗θ′(θ)) = π(σ∗, σ∗),

for all θ, θ′ ∈ C(µ∗), where (σ∗, σ∗) is efficient.

By combining Proposition 1 and Proposition 2, we obtain a unique pre-
diction in terms of stability for a class of games which includes much-studied
coordination games: If the only efficient profile is a strict Nash equilibrium,
then its outcome is the only stable one.

3.1 2× 2 Games

In this subsection we focus on 2× 2 games, which attracted considerable at-
tention from the evolutionary game theory literature. We are able to give a
characterization of both stable outcomes and the stable distributions of pref-
erences for this class of games. In Proposition 2 we showed that efficiency

13In a monomorphic population all individuals have the same preferences; in a polymor-
phic population preferences may differ.
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was necessary for stability. It turns out that efficiency of a pure strategy is
sufficient for the corresponding outcome to be stable in 2× 2 games. More-
over, games with a mixed efficient strategy do not have stable outcomes
with the exception of a non-generic class of Hawk-Dove games. Hence, exis-
tence of an efficient pure strategy is both necessary and sufficient for a stable
outcome to exist in generic 2 × 2 games. We then characterize the stable
distributions of preferences. Types that make cooperation a stable outcome
in Prisoners’ Dilemma games are particularly interesting. They all belong to
an equivalence class that has a “secret handshake” flavor: They cooperate in
equilibrium only if their opponent is cooperating with probability one.

In order to simplify our exposition in this subsection, we now introduce
some notation while making a basic observation about 2×2 games. Consider
any 2 × 2 (normal) game form with the strategy set {A, B}. In terms of
equilibrium behavior, all possible preference relations belong to one and only
one of the following equivalence classes: AA, ABα, BAα, BB, and θo, where
α ∈ [0, 1], and

AA :
A B

A 1 1
B 0 0

, ABα :
A B

A 1− α 0
B 0 α

, BAα :
A B

A 0 α
B 1− α 0

,

BB :
A B

A 0 0
B 1 1

, θo :
A B

A 0 0
B 0 0

.

All players with preferences belonging to the same equivalence class will
have the same set of equilibria in any game (defined by the set of players
and their payoff functions, in addition to the game form), and hence are
referred to as a type. AA represents all preference relations where A strictly
dominates B, and any player whose preferences belong to AA will play A
in any equilibrium of any game. Similarly, a player whose preference are
in ABα, in any equilibrium of any game, will play A (respectively, B) if her
opponent is playing A (respectively, B) and mix between A and B only if her
opponent plays A with probability α. For example, in any game involving an
ABα player and an AA player, the unique equilibrium is (A, A). Similarly,
when an ABα is matched with an ABβ, where α,β ∈ (0, 1), there are three
equilibria: (A, A), (B, B), and the mixed one in which ABα (respectively,
ABβ) plays A with probability β (respectively, α).
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We next present a result that, together with Proposition 2, characterizes
stable outcomes in 2 × 2 games. Without loss of generality assume a ≥ d
and let G be

A B
A a, a b, c
B c, b d, d

.

Proposition 3
a) If (A, A) is efficient, then it is stable.
b) If (A, A) is not efficient, then the efficient (σ∗, σ∗) is stable iff b = c > a

(otherwise there is no stable outcome).

We next turn our attention to stable distributions, i.e., to the preferences
that are selected by the evolutionary forces. In the Prisoners’ Dilemma game,
where A (cooperate) is efficient, (A, A) is stable with a monomorphic popu-
lation of AB1, a type that is indifferent between A and B when the opponent
plays A, and strictly prefers B when the opponent plays B. This type has
a secret handshake flavor, and moreover, it is immune to “sucker punches”:
It never cooperates unless its opponent is cooperating with probability one.
Therefore, no type can enter and obtain a strictly higher average fitness than
AB1 in any post-entry equilibrium. It turns out that this stable distribution
is unique. We illustrate this with monomorphic populations, and also discuss
why it is not unreasonable to consider the cooperation outcome to be sta-
ble with AB1 even though for this type cooperation is a weakly dominated
strategy.

It is clear why AA, a type that always cooperates, cannot be stable:
BB enters and in the unique equilibrium it defects while the incumbent is
cooperating. Can a cooperating ABα type be stable? These types have
the secret handshake flavor: In equilibrium, they defect when the opponent
defects and cooperate when the opponent cooperates. The problem arises
from the mixed strategy equilibrium against the mutant ABβ, where β > α.
In this equilibrium ABα cooperates with probability β and ABβ cooperates
with probability α, i.e., ABα is cooperating more than ABβ, and hence ob-
taining lower fitness. Heuristically, selection leads cooperating ABα types to
be replaced with ABβ types, with β > α, who are also cooperating among
themselves.14 The limit of these types is AB1, and cooperation occurs with

14If these types are not cooperating among themselves, then they will be replaced by
types who will. As we argued before, efficiency is a necessary condition for stability.
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probability one in the limit of the mixed-strategy equilibria that enable the
mutants to destabilize incumbent populations. Moreover, AB1 itself does
not have the problem of cooperating more than its opponent in equilibrium.
Against any type, it cooperates with positive probability only if its opponent
is cooperating with probability one. Hence, a monomorphic population of
AB1 is the unique stable distribution. Note that AB1 does not represent
generic preference relations for a normal form game. Furthermore, stability
requires AB1 to play (A, A) when matched with itself, which is a non-perfect
equilibrium, since A is weakly dominated for AB1. However, as our discus-
sion above illustrates, both the preferences and the equilibrium played given
these preferences are endogenous and arise from evolutionary selection.

We also show that in coordination games any type for which (A, A) is an
equilibrium when matched against itself can be found in a stable distribution.
In Hawk-Dove games where the efficient strategy is mixed, a monomorphic
population of ABα∗ is the unique stable distribution, where α∗ is the weight
that the efficient strategy puts on A. This is curious, since the fitness function
of these games is given by BAα∗ . However, BAα∗ cannot be in any stable
distribution, because a type for which “Hawk” is a dominant strategy (AA)
can enter and obtain a strictly higher average fitness than BAα∗ , since BAα∗

plays “Dove” in the unique equilibrium when it is matched with AA.

Proposition 4 For any generic 2× 2 game G, µ∗ is a stable distribution iff
its support is a subset of M(G), where M(G) is defined below.

1. For games in which (A, A) is efficient, i.e., a > π(σ, σ) ∀σ 6= a :

(a) If a > c and a > b, then M(G) = {AA, ABα, BA1, θo}, α ∈ [0, 1].

(b) If a > c and b > a, then M(G) = {AA, ABα}, where α < a−d
b−d

.

(c) If c > a, then M(G) = {AB1}.

2. For games in which (A, A) is not efficient, if b = c > a, then M(G) =
{ABα∗}, where σ∗ is efficient and α∗ = σ∗(A).

4 Unobservable Preferences

Given the symmetric nature of the interaction in the population, only out-
comes of symmetric strategy profiles of the fitness game G are relevant in the

14



unobservable preferences case: The outcome induced by any strategy profile
in Γ0(µ) will be (σ, σ), for some σ ∈ ∆. The first part of our result with un-
observable preferences revives the “stable only if Nash” folk theorem: Nash
behavior (relative to the objective fitness function) is a necessary condition
for stability. The reason is intuitive. Consider a monomorphic population
and suppose that the incumbent type is taking an action σ ∈ ∆, where (σ, σ)
is not a Nash equilibrium of G. This means that there exists a pure action
ai ∈ A that is a strictly better response, in terms of fitness, to σ than σ
itself. Therefore, a mutant type for which ai is strictly dominant can obtain
a strictly higher fitness than the incumbent type in all focal post-entry equi-
libria as long as its population share is small enough. Moreover ai is a strictly
better response to actions that are “close enough” to σ as well. We conclude
that (σ, σ) is not stable. If the population is polymorphic the argument is
extended by noting that then some type in the population does worse than
the entrant, and hence the configuration is not stable.

While Nash equilibrium is necessary for stability not all Nash equilib-
ria are stable. The mutations introduced in the evolutionary process induce
trembles and hence it is easy to show by example that they will refine the set
of equilibria. This is why the second part of our result, presenting sufficient
conditions for stability, must focus on a refinement of Nash. While the pre-
cise refinement would depend on the fine details of the stability notion, the
arguments used suggest that the necessity of Nash equilibrium for stability,
and similarly the sufficiency of strict equilibrium discussed next, are robust.15

The argument that every strict Nash equilibrium outcome is stable is also
intuitive. Fix a strict Nash equilibrium (a∗, a∗), and consider an incumbent
type for which a∗ is strictly dominant. The incumbent will play a∗ in any
equilibrium given any distribution of preferences, so every post-entry equilib-
rium is focal. Since (a∗, a∗) is a strict Nash equilibrium, there does not exist
any mutant that can obtain a strictly higher fitness than the incumbent in
any post-entry equilibrium, as long as its population share is small enough.
Therefore, (a∗, a∗) is stable.

Proposition 5
a) (σ, σ) is stable only if it is a Nash equilibrium of G.

15In an earlier version of this paper (Dekel, Ely, and Yilankaya (2004)) we used a slightly
different notion of stability under which an outcome was stable if and only if it was induced
by a neutrally stable strategy (NSS). Here we focus on results that we believe would be
robust to other variants of stability.
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b) If (ai, ai) is a strict Nash equilibrium of G, then it is stable.

This result illustrates the close relation between evolution of preferences
and the standard evolutionary models when preferences are unobservable.
The basic intuition for this is straightforward: If others cannot observe one’s
preferences, and hence condition their behavior on that, there is no advan-
tage in having preferences that differ from the fitness function, which is the
determinant of evolutionary success.

5 Imperfectly Observable Preferences

In this section we consider an intermediate case where preferences are im-
perfectly observable. In particular, we assume that each player observes
her opponent’s preferences with probability p ∈ (0, 1) independent of what
her opponent observes. Given the distribution of preferences in the popu-
lation, the interaction can be analyzed as a symmetric two-player Bayesian
game. We assume that the aggregate play in the population corresponds to
a Bayesian-Nash equilibrium of this game.

Our main objective in this section is to study whether stability results in
the observable (respectively, unobservable) preferences case continue to hold
for high (respectively, low) values of probability of observability. In other
words, are the results of previous sections “continuous” in p?

Our first result is, actually, independent of the probability of observabil-
ity: Efficiency and strict Nash jointly imply stability.

Proposition 6 If (a∗, a∗) is both efficient and a strict Nash equilibrium of
G, then it is stable for all p ∈ (0, 1).

Note that the same result also holds when preferences are observable
(Proposition 1) or unobservable (Proposition 5).

We next present a “discontinuity” result, showing the importance of effi-
ciency even for arbitrarily low levels of observability. We know from Propo-
sition 5 that strict Nash equilibrium outcomes are stable when preferences
are unobservable. The following coordination game demonstrates that this is
not true in the case of imperfectly observable preferences, even for arbitrarily
small values of p. In this example, (B, B) is not stable for any p > 0, de-
spite being a strict (and risk-dominant (Harsanyi and Selten (1988))) Nash
equilibrium.
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Example 1 Consider the following game:

A B
A 6, 6 0, 5
B 5, 0 2, 2

If entrants observed one another perfectly, it is clear they could invade the
B-playing incumbent population, obtaining 6 when matched against them-
selves, and 2 otherwise. With almost no observability, if entrants play A
(only) upon observing another entrant, the observing entrant almost surely
obtains 0. However, the observed entrant obtains 5, so on average the en-
trants obtain 2.5, which is better than incumbents. The insight here is that
an entering population with coordination preferences can do better on average
than the inefficient incumbents: Entrants who observe that their opponents
are also entrants do worse than incumbents, but as they are observed just as
often as they observe, this behavior on average is beneficial.

Formally, suppose that (B, B) is stable with distribution µ∗. Notice that
every incumbent must be a preference relation for which B is a best response
to itself. Consider an entrant type with “coordination” preferences ABα,
where α ∈ (0, p], i.e., preferences where A is a best response to any mixed
strategy in which A is chosen with probability more than α. There is a focal
post-entry equilibrium in which the entrant plays A if it observes itself and
plays B otherwise, and the incumbents continue to play B regardless of what
they observe. To see this, note that all of the incumbents’ opponents are
always playing B, so it is a best response for the incumbents to play B.
When the entrant observes an incumbent, the opponent is playing B. When
the entrant does not observe anything, it is matched with an incumbent (that
always plays B) with very high probability, since the share of the entrant in
the population is only ε. In either case it is optimal for the entrant to play
B. When an entrant observes another entrant who plays A with probability
p, A is a best response, since p is greater than α. For the focal post-entry
equilibrium just specified, incumbents’ and the entrant’s fitnesses are given
by, respectively,

Πθ(· | ·) = 2, ∀θ ∈ C(µ∗),

and
ΠABα(· | ·) = (1− ε)2 + ε[6p2 + 5p(1− p) + 2(1− p)2].

It is straightforward to check that ΠABα(· | ·) > 2 for all p > 0. Therefore,
(B, B) is not stable for any p > 0.
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On the other hand, a version of the “stable only if efficient” result of
the observable-preferences case (Proposition 2) does hold for a high enough
probability of observability. Specifically, the outcome of a symmetric pure-
strategy profile is not stable for p high enough, if that strategy is not efficient.

Proposition 7 If (ai, ai) is not efficient, then there exists a p ∈ (0, 1) such
that it is not stable for any p ∈ (p, 1).

The selection issue between the risk-dominant and the payoff-dominant
equilibria in coordination games has been studied extensively using evolu-
tionary models.16 The risk-dominant equilibrium is selected in the models of
Ellison (1993), Kandori, Mailath, and Rob (1993), Young (1993); the payoff-
dominant equilibrium is favored in Ely (2002), Robson and Vega-Redondo
(1996), and in studies of cheap talk, e.g., Bhaskar (1998), Kim and Sobel
(1995), and Matsui (1991); in Binmore and Samuelson (1997) either can be
selected.

We next summarize all our results so far in this section for the special
case of coordination games. Our model of evolution of preferences provides
support for selecting the efficient equilibrium in coordination games in the
following sense:

Corollary 1 Consider (strict) coordination games. The outcome of the risk-
dominant equilibrium is not stable for large enough p, unless the equilibrium
is also payoff-dominant. There exist games in which the outcome of the risk-
dominant equilibrium is not stable for any p > 0. In contrast, the outcome
of the payoff-dominant equilibrium is stable for all p ∈ [0, 1].

As our last result, we show that a version of the “stable only if Nash”
result (Proposition 5a) of the unobservable-preferences case holds for low
enough probability of observability. That is, the outcome of a pure-strategy
profile that is not a Nash equilibrium will not be stable for low enough p.

Proposition 8 If (ai, ai) is not a Nash equilibrium of G, then there exists a
p ∈ (0, 1) such that it is not stable for any p ∈ (0, p).

16Among the non-evolutionary models, Harsanyi and Selten (1988) selects the payoff-
dominant, whereas Carlsson and van Damme (1993) selects the risk-dominant equilibrium.
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It is important to note the distinction between Proposition 2 and Proposi-
tion 5a that concern the polar cases, and the “robustness-confirming ”Propo-
sition 7 and Proposition 8 that consider the nearby models. The former hold
for all outcomes, but we only show that the necessary conditions are pre-
served for pure outcomes. We do not know whether it is possible to obtain
stronger results that are robust to various modeling choices we have made.
This issue is especially relevant for the Prisoners’ Dilemma (PD) game. We
showed that the cooperation outcome was stable when p = 1. Perfect ob-
servability is crucial for this result: Cooperation is not stable for any p < 1.17

This result and Proposition 7 suggest that there is no stable outcome in the
PD when p is close to 1. However, as we mentioned above, such a conclusion
does not immediately follow.18

6 Discussion

We study a model of preference evolution for general preferences and allowing
(a form of) partial observability. When preferences are (almost) fully observ-
able, this evolution is a force towards efficient outcomes, as in the literature
on evolution with secret-handshakes and with cheap-talk. When preferences
are unobservable the “folk” result is that preference evolution does not select
among strict Nash equilibria, and this result is confirmed here. However,
we show that this conclusion is not robust, as the force towards efficiency
can destabilize inefficient equilibria when even a small degree of observabil-
ity is possible. On the positive side efficient strict equilibria are stable when
preferences are observable to any degree.

There are several modeling issues that deserve further discussion. Par-
tial observability could also be modeled as having noisy signals, with full
observability being the limit as the noise disappears. Sethi and Somanathan
(2001) and Heifetz, Shannon, and Spiegel (2004) looked at such models for

17The proof essentially follows from the discussion preceding Proposition 4 of stable
preferences for PD and the observation in Footnote 10: AB1 cannot belong to a stable
distribution, since it will defect whenever the entrant does, causing a discrete shift in the
outcome. Other cooperating types can be taken advantage of by entrants that “cooperate
a little less than them.”

18It is not difficult to show, however, that there is no stable monomorphic population
when p is large enough. We do not know whether this holds for polymorphic populations
as well, but we suspect that the finding will be sensitive to the exact definition of stability
(see Footnote 11).
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restricted sets of preferences and classes of games. It would be worthwhile
to extend our general analysis to such a specification.

We think allowing for all possible preferences to evolve is natural. But,
by allowing all possible preferences we make it easy to destabilize outcomes.
For example, we used indifferent types as potential entrants to prove that
efficiency is necessary for stability when preferences are observable. It seems
of interest to explore the extent to which restricting attention to various
subclasses of preferences would impact our conclusions.19

Finally, our approach treats the observability of preferences as exogenous
and we analyze the consequences for stability of varying degrees of observ-
ability as a sort of comparative-statics exercise. However, in the long-run,
observability itself is subject to evolutionary forces. A more general model
would incorporate the evolution of observability.

A related question that arises when assuming observable preferences is
why we do not allow evolution of mutants who mimic the observable types
in appearance but not in behavior. Allowing such mutants would not effect
our negative results: The force towards efficiency would remain since the mu-
tants which are sufficient to destabilize the inefficient outcomes we identify
as unstable, and adding mutants would not change this. However, intuition
suggests that this additional level of mutation would prevent non-Nash out-
comes from being stable. The idea is similar to the secret-handshake results
and the discussion in Robson (1990). On the other hand, our results could
be interpreted as a medium-run analysis when this ability to mimic existing
types evolves at a slower rate than the types themselves. For related ideas,
see Wiseman and Yilankaya (2001).

7 Appendix

Proposition 1 If (a∗, a∗) is both efficient and a strict Nash equilibrium of
G, then it is stable.

19The indifferent type enables making a general argument with one entrant rather than
using different entrants for different incumbent populations or for different games. For
most cases this argument is not needed, and “coordination types” could be used instead.
For example, a pure strategy outcome that is not efficient can be destabilized with these
types. Any inefficient mixed outcome can be similarly destabilized as long as its support
does not coincide with the support of the efficient strategy, at least when we restrict
attention to monomorphic populations. If the supports are identical, it is possible to find
examples where the indifferent type is actually needed.
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Proof of Proposition 1. Let (a∗, a∗) be efficient and strict Nash equi-
librium of G. Consider a monomorphic population consisting of θ∗ for which
a∗ is strictly dominant. The outcome of the unique equilibrium among in-
cumbents, b∗, is (a∗, a∗). We will show that there exists ε ∈ (0, 1) such that
for all ε′ ∈ (0, ε), θ∗ would obtain (weakly) higher average fitness than any
mutant θ̃ with a population share of ε′, in any post-entry equilibrium, which
will all be focal, since θ∗ will play a∗, which is strictly dominant for θ∗, re-
gardless of the opponent’s type. Note that since the set of focal equilibria
is non-empty (which is always the case when p = 1), the second part of
the stability definition does not apply, so δ is irrelevant and we can select ε
independently from δ.

Suppose that θ̃ plays σ′ ∈ ∆ when matched with θ∗, and σ′′ ∈ ∆ when
matched against itself in b̃ ∈ Bp(µ̃|b∗), where µ̃ = (1 − ε′)θ∗ + ε′θ̃. We will
show that the stability condition is satisfied for all σ′, σ′′ ∈ ∆. The average
fitness of the incumbent and the mutant are

Πθ∗(µ̃ | b̃) = (1− ε′)π(a∗, a∗) + ε′π(a∗, σ′), (4)

and
Πθ̃(µ̃ | b̃) = (1− ε′)π(σ′, a∗) + ε′π(σ′′, σ′′). (5)

If σ′ 6= a∗, then π(a∗, a∗) > π(σ′, a∗), since (a∗, a∗) is a strict Nash equilib-
rium. If σ′ = a∗ on the other hand, π(a∗, σ′) = π(a∗, a∗) ≥ π(σ′′, σ′′) for all
σ′′ ∈ ∆, since (a∗, a∗) is efficient.

It remains to show that there exists a uniform ε that works for all σ′,
including those that are arbitrarily close to a∗. (The potential concern is
that for σ′ close to a∗ the advantage of a∗ gets smaller, leaving room for σ′′

against itself to be better than a∗ against σ′. But as σ′ gets close to a∗, a∗

against σ′ is almost efficient. We now provide a detailed calculation.)
Let σ′ = qa∗ + (1 − q)σ, where σ(a∗) = 0 and q ∈ [0, 1]. Using (4), (5),

and π(a∗, a∗) ≥ π(σ′′, σ′′),

Πθ∗(. | .)− Πθ̃(. | .) = [(1− ε′)π(a∗, a∗) + ε′qπ(a∗, a∗) + ε′(1− q)π(a∗, σ)]

− [(1− ε′)qπ(a∗, a∗) + (1− ε′)(1− q)π(σ, a∗) + ε′π(σ′′, σ′′)]

≥ (1− q)[π(a∗, a∗)− π(σ, a∗)− ε′(2π(a∗, a∗)− π(σ, a∗)− π(a∗, σ))].

Since (a∗, a∗) is a strict Nash equilibrium, there exists k > 0 such that
π(a∗, a∗) − π(σ, a∗) ≥ k > 0 for all σ such that σ(a∗) = 0. On the other
hand, 2π(a∗, a∗)− π(σ, a∗)− π(a∗, σ) ≤ l for some l. Therefore, there exists
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an ε ∈ (0, 1) such that Πθ∗(. | .) − Πθ̃(. | .) = (1− q) (k − ε′l) ≥ 0 for all
ε′ ∈ (0, ε), σ′′ ∈ ∆, q ∈ [0, 1], and σ ∈ ∆ such that σ(a∗) = 0, proving the
stability of (a∗, a∗).

Proposition 2 If an outcome x∗ is stable with configuration (µ∗, b∗),
then

Πθ(µ
∗ | b∗) = π(b∗θ(θ

′), b∗θ′(θ)) = π(σ∗, σ∗),

for all θ, θ′ ∈ C(µ∗), where (σ∗, σ∗) is efficient.
Proof of Proposition 2. Suppose that x∗ is stable with (µ∗, b∗). Let

m(θ) ∈ arg max
θ′∈C(µ∗)

π(b∗θ′(θ), b
∗
θ(θ

′)), i.e., m(θ) is the incumbent which gets the

highest (equilibrium) fitness against θ. Let θo, a type that is indifferent be-
tween all actions against any action of the opponent, be the mutant. Consider
the focal post-entry equilibrium b̃, where (b̃θo(θ), b̃θ(θ

o)) = (b∗m(θ)(θ), b
∗
θ(m(θ)))

for all θ ∈ C(µ∗), and b̃θo(θo) = σ∗, where (σ∗, σ∗) is efficient. In other words,
the mutant’s fitness against an incumbent θ is at least as high as the fitness
that any incumbent obtains against θ. It must be the case that

π(b∗θ′(θ), b
∗
θ(θ

′)) = π(b∗θ′′(θ), b
∗
θ(θ

′′)) ∀θ, θ′, θ′′ ∈ C(µ∗), (6)

i.e., every incumbent type obtains the same fitness against a given incumbent
θ, since if this were not the case, for small enough ε′, θo would obtain a strictly
higher fitness in b̃ than at least one incumbent. Given that, for any θ, every
type (including θ) obtains the same fitness against θ, we can, without loss of
generality, choose m(θ) = θ. The average fitness of any θ ∈ C(µ∗) and θo in
b̃ are, respectively,

Πθ((1−ε′)µ∗+ε′θo | b̃) = (1−ε′)
∑

θ′∈C(µ∗)

π(b∗θ(θ
′), b∗θ′(θ))µ

∗(θ′)+ε′π(b∗θ(θ), b
∗
θ(θ)),

and

Πθo((1− ε′)µ∗ + ε′θo | b̃) = (1− ε′)
∑

θ′∈C(µ∗)

π(b∗θ(θ
′), b∗θ′(θ))µ

∗(θ′) + ε′π(σ∗, σ∗).

Since x∗ is stable and (σ∗, σ∗) is efficient, it follows that

π(b∗θ(θ), b
∗
θ(θ)) = π(σ∗, σ∗) ∀θ ∈ C(µ∗). (7)

Combining (6) and (7), we conclude that every incumbent type must ob-
tain the efficient fitness in each and every one of its interactions within the
incumbent population, hence its average fitness must be efficient as well.
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Proposition 3 a) If (A, A) is efficient, then it is stable.
b) If (A, A) is not efficient, then the efficient (σ∗, σ∗) is stable iff b =

c > a (otherwise there is no stable outcome).
Proof of Proposition 3. a) ((A, A) is efficient) We will consider two

cases:
i) a > c : In this case, which consists of coordination games and games in

which the efficient (pure) strategy (A) strictly dominates the other strategy
(B), Proposition 1 implies that (A, A) is stable.

ii) a ≤ c : In this case, which consists of Prisoners’ Dilemma and Hawk-
Dove games, (A, A) is stable with a monomorphic population of AB1 (the
type for which both A and B are best responses to A, and B is the unique
best response to B) playing (A, A) in equilibrium. Let θ̃ ∈ Θ be an arbitrary
mutant and b̃ be any focal post-entry equilibrium. Suppose that in b̃, AB1

and θ̃ plays σ and σ′ respectively when they are matched, and θ̃ plays σ′′

when matched with itself. We will show that there exists an ε ∈ (0, 1) such
that for all ε′ ∈ (0, ε) and σ, σ′, σ′′ ∈ ∆, the incumbent will obtain (weakly)
higher average fitness than the mutant with a population share of ε′. The
average fitness of the incumbent and the mutant are, respectively,

ΠAB1((1− ε′)AB1 + ε′θ̃ | b̃) = (1− ε′)a + ε′π(σ, σ′),

and
Πθ̃((1− ε′)AB1 + ε′θ̃ | b̃) = (1− ε′)π(σ′, σ) + ε′π(σ′′, σ′′).

In any equilibrium against any type of opponent, AB1 plays A with positive
probability only if the opponent plays A with probability one, i.e., σ(A) >
0 ⇒ σ′ = A.

Consider σ′ = A, in which case AB1 is indifferent between A and B, and
consider all possible σ and σ′′. The average fitness of the incumbent and the
mutant are, respectively,

ΠAB1(. | .) = (1− ε′)a + ε′[qa + (1− q)c],

and
Πθ̃(. | .) = (1− ε′)[qa + (1− q)b] + ε′π(σ′′, σ′′),

where q ∈ [0, 1]. Since c ≥ a, efficiency of (A, A) implies that a ≥ b. So,

a ≥ qa + (1− q)b.
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Also, efficiency of (A, A) implies that

qa + (1− q)c ≥ a ≥ π(σ′′, σ′′).

Hence, ΠAB1(.) ≥ Πθ̃(.) irrespective of ε′.
Now consider σ′ 6= A, which implies that σ = B. Considering again all

possible equilibria, the average fitnesses are,

ΠAB1(. | .) = (1− ε′)a + ε′[qc + (1− q)d],

and
Πθ̃(. | .) = (1− ε′)[qb + (1− q)d] + ε′π(σ′′, σ′′),

where q ∈ [0, 1]. We have a ≥ qb + (1− q)d, since a ≥ b and a ≥ d.
For q such that a = qb + (1− q)d, we have

qc + (1− q)d ≥ qb + (1− q)d = a ≥ π(σ′′, σ′′),

and hence, ΠAB1(. | .) ≥ Πθ̃(. | .) irrespective of ε′.
Finally, for q for which a > qb + (1− q)d, we can find ε ∈ (0, 1) such that

ΠAB1(. | .) ≥ Πθ̃(. | .) for all ε′ ∈ (0, ε), proving that (A, A) is stable.
b) ((A, A) is not efficient) Let σ∗ = arg max

σ∈∆
π(σ, σ), i.e.,

α∗ = σ∗(A) =
b + c− 2d

2(b + c− a− d)
∈ (0, 1),

and σ∗(B) = 1−α∗. Note that π(σ∗, σ∗) = d+ (b+c−2d)2

4(b+c−a−d)
. Since π(σ∗, σ∗) > a,

σ∗ is unique, and hence Proposition 2 implies that if an outcome is stable,
then (σ∗, σ∗) must be played in each interaction within the stable distribution.
So the support of any stable distribution must be a subset of {ABα∗ , BAα∗ ,
θo}. We now consider four classes of 2× 2 games in turn:

i) a ≥ c and d ≥ b (Coordination games): (A, A) is always an efficient for
this class of games.

ii) a ≥ c and b ≥ d: If c ≥ b, then (A, A) is efficient. So, let b > c.
Suppose that (σ∗, σ∗) is stable with µ∗. We will show that AB0 can enter and
obtain strictly higher average fitness against incumbents than the incumbents
obtain against themselves in the focal post-entry equilibrium b̃ where AB0

mixes between A and B (playing A with probability α∗) and the incumbents
play B whenever they are matched. We have, for any θ ∈ µ∗,

Πθ((1− ε′)µ∗ + ε′AB0 | b̃) = (1− ε′)π(σ∗, σ∗) + ε′[α∗c + (1− α∗)d],
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and

ΠAB0((1− ε′)µ∗ + ε′AB0 | b̃) = (1− ε′)[α∗b + (1− α∗)d] + ε′π(σ, σ).

It is easy to show that, for b > c

α∗b + (1− α∗)d > π(σ∗, σ∗).

Hence, we do not have stability.
iii) c ≥ a and d ≥ b: Since a ≥ d, we have c ≥ b. If c = b, then (A, A) is

efficient. So, let c > b. Suppose that µ∗ is a stable distribution. Let AB1 be
the mutant, and consider the focal post-entry equilibrium in which when it
is matched with incumbents the mixed strategy equilibrium is played (AB1

playing A with probability α∗, and incumbents playing A). The mutant’s
average fitness from its interactions with the incumbents is α∗a + (1− α∗)c,
which is greater than π(σ∗, σ∗), showing that µ∗ is not a stable distribution,
a contradiction.

iv) c ≥ a and b ≥ d (Hawk-Dove): If b > c (respectively, c > b), then the
argument in case ii) (respectively, iii)) applies, so there is no stable outcome.
We will show that if b = c, then (σ∗, σ∗) is stable with a monomorphic
population of ABα∗ playing σ∗. Note that when b = c, (σ∗, σ∗) is a Nash
equilibrium of G. Let θ̃ be an arbitrary entrant and b̃ be any focal post-entry
equilibrium. Suppose that in b̃, ABα∗ and θ̃ play σ and σ′, respectively,
when they observe each other, and θ̃ plays σ′′ when matched with itself. The
average fitnesses are

ΠABα∗ ((1− ε′)ABα∗ + ε′θ̃ | b̃) = (1− ε′)π(σ∗, σ∗) + ε′π(σ, σ′),

and
Πθ̃((1− ε′)ABα∗ + ε′θ̃ | b̃) = (1− ε′)π(σ′, σ) + ε′π(σ′′, σ′′).

Since the incumbent is ABα∗ , σ′ ∈ {A, B, σ∗}. If σ′ = A (respectively, B),
σ = A (respectively, B). In either case, since π(σ∗, σ∗) > π(σ′, σ) = π(σ, σ′)
and π(σ∗, σ∗) ≥ π(σ′′, σ′′) for all σ′′ ∈ ∆, ΠABα∗ (. | .) > Πθ̃(. | .) for all ε′ < 1

2
.

For σ′ = σ∗, we have

π(σ′, σ) = π(σ∗, σ) = π(σ, σ∗) = π(σ∗, σ∗),

for all σ ∈ ∆, where the second equality follows from the fact that in G
both players obtain the same fitness by definition (since b = c), and the last

25



equality follows from (σ∗, σ∗) being a Nash equilibrium of G. Independent of
ε′,

ΠABα∗ (. | .) = π(σ∗, σ∗) ≥ (1− ε′)π(σ∗, σ∗) + ε′π(σ′′, σ′′) = Πθ̃(. | .).

Therefore, ΠABα∗ (. | .) ≥ Πθ̃(. | .) for all possible θ̃, b̃, and ε′ < 1
2
, proving

the claim.
Proposition 4 For any generic 2× 2 game G, µ∗ is a stable distribution

iff its support is a subset of M(G), where M(G) is defined below.

1. For games in which (A, A) is efficient, i.e., a > π(σ, σ) ∀σ 6= a :

(a) If a > c and a > b, then M(G) = {AA, ABα, BA1, θo},
α ∈ [0, 1].

(b) If a > c and b > a, then M(G) = {AA, ABα}, where α < a−d
b−d

.

(c) If c > a, then M(G) = {AB1}.

2. For games in which (A, A) is not efficient, if b = c > a, then M(G) =
{ABα∗}, where σ∗ is efficient and α∗ = σ∗(A).

Proof of Proposition 4. 1) Proposition 2 implies that (A, A) must be
played in each match within a stable distribution. So M(G) must be a subset
of {AA, ABα, BA1, θo}, α ∈ [0, 1].

a) In this case, fitness of (A, A) is greater than fitness of any other strategy
profile. Therefore, any type for which A is a best response to itself can be in
a stable distribution.

b) If a stable distribution contains BA1 or θo, an AA type can enter. In
matches against the entrant, both of these incumbent types are willing to
play B, thus there is a focal post-entry equilibrium in which they do so. This
gives the entrant b > a in matches against BA1 and θo (and a against other
incumbents, if there are any), thereby a higher average fitness than BA1 and
θo independent of its population share. Suppose that a stable distribution
contains ABα, where α ≥ a−d

b−d
. When AB0 enters, there is a focal post-entry

equilibrium where it obtains αb + (1 − α)d ≥ a when matched with ABα

(playing A with probability α while ABα is playing B), and a when matched
with itself or any incumbent other than ABα, if there are any. Note that ABα

is obtaining αc+(1−α)d < a in matches against the entrant. Therefore, the
entrant’s average fitness is strictly higher than that of ABα, independent of
its population share.
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Next we show that a distribution is stable if its support is a subset of
{AA, ABα}, where α < a−d

b−d
. Any entrant, whenever matched with AA,

obtains a convex combination of a and c, which is (weakly) less than a, while
AA is obtaining (weakly) more than a (since b > a). Therefore, AA obtains
(weakly) higher average fitness than any entrant in every focal post-entry
equilibrium, independent of the entrant’s population share.

Any entrant, whenever matched with ABα, α < a−d
b−d

, obtains at most
a. (To see this, note that if the entrant plays A with a probability strictly
higher than α, ABα will play A, against which the entrant can obtain at most
a, since a > c. If the entrant plays A with probability α or less the highest
fitness it can obtain is αb+(1−α)d < a, since α < a−d

b−d
.) Moreover, whenever

the entrant obtains a, so does ABα. Therefore, any ABα, α < a−d
b−d

, obtains
a (weakly) higher average fitness than any entrant in any focal post-entry
equilibrium, if the entrant’s share is small enough. Notice that a uniform
barrier ε can be found, since αb + (1− α)d < a for all α such that ABα is in
the distribution.

c) We showed in the proof of Proposition 3 that AB1 is stable. Suppose
that a stable distribution contains AA, BA1 or θo. AB1 can enter. There is
a focal post-entry equilibrium in which AB1 plays B and AA (BA1 or θo)
plays A whenever they are matched, obtaining c > a in these matches, and
obtaining a against other incumbents (by playing A). Suppose now that a
stable distribution containsABα, where α ∈ [0, 1). Again considerAB1 as the
entrant. There is a focal post-entry equilibrium in which AB1 mixes between
A and B, and ABα plays A, which gives AB1 a fitness of αa + (1− α)c > a.
Hence AB1 is the only stable distribution.

2) Proposition 2 implies that, if an outcome is stable, then (σ∗, σ∗) must
be played in each match within the stable distribution. So M(G) must be a
subset of {ABα∗ , BAα∗ , θo}. We showed in the proof of Proposition 3 that
ABα∗ is stable. Suppose that a stable distribution contains BAα∗ or θo. AA
enters and obtains b > π(σ∗, σ∗) in matches with BAα∗ and θo. Hence ABα∗

is the only stable distribution.
Proposition 5 a) (σ, σ) is stable only if it is a Nash equilibrium of G.
b) If (ai, ai) is a strict Nash equilibrium of G, then it is stable.
Proof of Proposition 5. a) The proof is by contradiction. Suppose

that (σ, σ) is stable with the configuration (µ∗, b∗), but (σ, σ) is not a Nash
equilibrium of G.
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Since (σ, σ) is not a Nash equilibrium, there exists ai ∈ A such that

π(ai, (1− ε′)σ + ε′ai) > π(σ, (1− ε′)σ + ε′ai) (8)

for small enough ε′. Consider the mutant θ̃ for which ai is strictly domi-
nant with a population share of ε′. Let µ̃ denote the post-entry preference
distribution.

First suppose that there exists a focal post-entry equilibrium. In any
focal equilibrium the incumbents’ aggregate play is given by σ, so the average
fitness of θ̃ is given by the left hand side of (8). Similarly, the average fitness
(over all) of incumbents is given by the right hand side of (8). Therefore,
there exists an incumbent whose average fitness is strictly less than that of
θ̃ whenever ε′ is small enough.

Next, suppose that the set of focal equilibria is empty. Note that by the
continuity of π(·) the same inequality holds as long as the aggregate play
is close enough to σ. But this implies that (σ, σ) is destabilized because in
any near enough post-entry equilibrium (i.e., for equilibria in Bδ

p(µ̃) for δ
small enough) the entrant out-performs some incumbent type (for any small
enough ε′).

b) If (ai, ai) is a strict equilibrium, then there exists an ε ∈ (0, 1) such
that

π(ai, (1− ε′)ai + ε′σ) ≥ π(σ, (1− ε′)ai + ε′σ), (9)

for all σ ∈ ∆ and ε′ ∈ (0, ε). Consider a monomorphic population of type θ∗

that is equivalent (modulus an affine transformation) to the fitness function
π, playing the equilibrium b∗, where b∗θ∗(∅) = ai. Consider any mutant θ̃
and any ε′ ∈ (0, ε). It follows from (9) that the set of focal post-entry
equilibria is non-empty, i.e., there exists b̃ ∈ B0((1 − ε′)θ∗ + ε′θ̃) such that
b̃θ∗(∅) = b∗θ∗(∅) = ai. Moreover, for any focal post-entry equilibrium b̃

Πθ∗((1− ε′)θ∗ + ε′θ̃ | b̃) = π(ai, (1− ε′)ai + ε′b̃θ̃(∅))
≥ π(b̃θ̃(∅), (1− ε′)ai + ε′b̃θ̃(∅))
= Πθ̃((1− ε′)θ∗ + ε′θ̃ | b̃),

where the inequality follows from (9). Therefore, (ai, ai) is stable with the
configuration (θ∗, b∗).

Proposition 6 If (a∗, a∗) is both efficient and a strict Nash equilibrium
of G, then it is stable for all p ∈ (0, 1).
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Proof of Proposition 6. Fix p ∈ (0, 1). Let (a∗, a∗) be a strict Nash
equilibrium of G that is efficient. Consider a monomorphic population con-
sisting of θ∗ for which a∗ is strictly dominant. The outcome of the unique
Bayesian-Nash equilibrium is (a∗, a∗). Moreover, after any mutant’s entry, in
all post-entry equilibria the incumbent θ∗ will always play a∗ (regardless of
what is observed), since a∗ is strictly dominant for θ∗. It follows that all post-
entry equilibria will be focal, and so the set of focal equilibria is non-empty.
Since the incumbent is always playing a∗, and (a∗, a∗) is a strict Nash equilib-
rium of G, mutants that do not play a∗ when they are matched with θ∗ (both
when they observe θ∗ and when they do not observe anything) will obtain
strictly less fitness than incumbents if their population share is sufficiently
small. But for mutants that play a∗ whenever they are matched with θ∗, the
incumbent’s average fitness is given by π(a∗, a∗), and since no mutant can
obtain a fitness strictly higher than this when it is matched with itself (since
(a∗, a∗) is efficient), it cannot obtain a strictly higher average fitness either.
Finding a uniform barrier ε for all possible mutants is straightforward, since
(a∗, a∗) is a strict Nash equilibrium. (See, e.g., the proof of Proposition 1.)
We conclude that (a∗, a∗) is stable.

Proposition 7 If (ai, ai) is not efficient, then there exists a p ∈ (0, 1)
such that it is not stable for any p ∈ (p, 1).

Proof of Proposition 7. Suppose that (ai, ai) is stable with µ∗ when
the probability of observability is p. Let θ̃ be the “coordination type” mutant
for which ai is a strict best response to itself and σ∗, the efficient strategy, is
a best response to pσ∗ + (1− p)ai. When the share of the mutant ε′ is small
enough there exists a focal post-entry equilibrium in which incumbents play
ai regardless of what they observe, and θ̃ plays ai if it observes any incumbent
or if it observes nothing, and plays σ∗ if it observes θ̃. In this equilibrium,

Πθ(. | .) = π(ai, ai), ∀θ ∈ C(µ∗),

and

Πθ̃(. | .) = (1−ε′)π(ai, ai)+ε′[p2π(σ∗, σ∗)+p(1−p)π(σ∗, ai)+p(1−p)π(ai, σ
∗)+(1−p)2π(ai, ai)].

Since π(σ∗, σ∗) > π(ai, ai), there exists a p ∈ (0, 1) such that (ai, ai) is
not stable for any p ∈ (p, 1).

Proposition 8 If (ai, ai) is not a Nash equilibrium of G, then there
exists a p ∈ (0, 1) such that it is not stable for any p ∈ (0, p).
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Proof of Proposition 8. Suppose that (ai, ai) is stable with (µ∗, b∗).
If (ai, ai) is not a Nash equilibrium, then there exists aj ∈ A such that
π(aj, ai) > π(ai, ai). Consider the mutant θ̃ for which aj is strictly dominant,
and let µ̃ = (1−ε′)µ∗+ε′θ̃. For any focal post-entry equilibrium b̃ ∈ Bp(µ̃|b∗)

Πθ(µ̃ | b̃) = (1− ε′)π(ai, ai) + ε′[pπ(b̃θ(θ̃), aj) + (1− p)π(ai, aj)], ∀θ ∈ C(µ∗),

and

Πθ̃(µ̃ | b̃) = (1− ε′)[p
∑

θ∈C(µ∗)

π(aj, b̃θ(θ̃))µ
∗(θ) + (1− p)π(aj, ai)] + ε′π(aj, aj).

Let a∗ be such that π(aj, a∗) ≤ π(aj, a) ∀a ∈ A. Since π(aj, ai) > π(ai, ai),
there exists a p ∈ (0, 1) such that for all p ∈ (0, p)

pπ(aj, a∗) + (1− p)π(aj, ai) > π(ai, ai), (10)

so that, for small enough ε′, Πθ̃(µ̃ | b̃) > Πθ(µ̃ | b̃) for all b̃ ∈ Bp(µ̃|b∗)
and for all θ ∈ C(µ∗). This shows that (ai, ai) is destabilized when there
exists a focal equilibrium. The continuity of π(.) and (10) ensure that there
exists θ ∈ C(µ∗) such that the same conclusion holds for all b̃ ∈ Bp(µ̃) with
outcomes close enough to (ai, ai). Therefore even in cases where there is no
focal equilibrium, (ai, ai) is again destabilized.
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