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Abstract

Is there reason to believe that our brains have evolved to make effi-
cient decisions so that the details of the internal process are irrelevant?
I develop a model which illustrates a limitation of adaptive processes:
improvements tend to come in the form of kludges. A kludge is a
marginal adaptation that compensates for, but does not eliminate fun-
damental design inefficiencies. When kludges accumulate the result
can be perpetually sub-optimal behavior even in a model of evolu-
tion in which arbitrarily large innovations occur infinitely often with
probability 1.
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1 Introduction

In July of 2004, Microsoft announced that the release of Vista, the next gen-
eration of the Windows operating system, would be delayed until late 2006.
Jim Allchin famously walked into the office of Bill Gates and proclaimed,
“It’s not going to work.” Development of Windows had become unman-
ageable and Allchin decided that Vista would have to be re-written essen-
tially from scratch.

Mr Allchin’s reforms address a problem dating to Microsoft’s
beginnings. . . . PC users wanted cool and useful features quickly.
they tolerated – or didn’t notice – the bugs riddling the soft-
ware. Problems could always be patched over. With each patch
and enhancement, it became harder to strap new features onto
the software since new code could affect everything else in un-
predictable ways.1

The Alternative Minimum Tax was introduced by the Tax Reform Act
of 1969. It was intended to prevent taxpayers with very high incomes from
exploiting numerous tax exemptions and paying little or no tax at all. Over
time, the shortcomings of the AMT as a solution to the proliferation of ex-
emptions have begun to appear. However, over this same time, the federal
tax and budgeting system has come to depend on the AMT to the point
that many observers think that changing the AMT, without complicated
accompanying adjustments elsewhere, would be worse than leaving it as
is.

Flat fish inhabit the sea floor, but for many this was not the original
habitat. When their ancestors moved to the sea floor, they adapted by
changing their orientation from swimming “upright” to on their sides. Given
their existing bone structure, this was the only way to become “flat”, but
it rendered one eye useless. So, by a further adaptation many of today’s
species of flatfish migrate one eye to the opposite side of their body during
development.2

As beautifully documented in the film The March of the Penguins, em-
peror penguins spend a nearly 9 month breeding and nurturing cycle which
involves walking up to 100 KM away from any food source in order to
avoid predators. The problem for penguins is that they are birds, and hence
lay eggs; but they are flightless birds, so they find it inconvenient to move

1“Code Red: Battling Google, Microsoft Changes How it Builds Software.” The Wall
Street Journal, Robert Guth, September 2005.

2For a vivid account of the evolution of bony flat fish, see Dawkins (1986).
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to areas where the eggs can be easily protected. They adapted not by recti-
fying either of these two basic problems,3 but instead by compensating for
them by an extremely costly and risky behavior.

Each of these examples represents a kludge: an improvement upon a
highly complex system that solves an inefficiency but in a piecemeal fash-
ion and without addressing the deep-rooted underlying problem. There
are three ingredients to a kludge. First the system must be increasing in
complexity so that new problems arise that present challenges to the in-
ternal workings of the system. Second, a kludge addresses the problem by
patching up any mis-coordination between the inherited infrastructure and
the new demands. Third, the kludge itself– because it makes sense only in
the presence of the disease it is there to treat– intensifies the internal ineffi-
ciency, necessitating either further kludges in the future or else eventually
a complete revolution.4

Microsoft Windows is a complex system whose evolution is guided by
a forward-looking dynamic optimizer. It is not surprising therefore that,
after two decades worth of kludges that accompanied the expansion from
DOS to Windows to 32 bit and eventually 64 bit architecture, revolution
was the final solution. In the case of the US Tax Code, or for that matter any
sufficiently complex body of contracts that govern interactions among di-
verse interests, while the evolution may be influenced by forward-looking
considerations, full dynamic optimization is more tenuous as a model of
the long-run trade-offs.

But the story is very different for flat fish and penguins, and, to come
to the point, for human brains, whether we are considering the evolution
of the brain across generations or the development of the decision-making
apparatus within the life a single individual. Here, progress is adaptive.
An adaptive process is not forward-looking and certainly not governed by
dynamic optimization. An adaptive process inherits its raw material from
the past, occasionally modifies it by chance (mutation or experimentation),
and selects among variants according to success today.

Nevertheless there is the possibility, not completely fanciful, that an
adaptive process can produce complex systems that perform as well to-
day as those that were designed by an optimizer given the same set of raw
materials. Indeed, there is a tradition in economics that accepts the dis-

3Incidentally, it has happened in evolutionary history that oviparous (egg-laying)
species have adapted to vivipary (giving birth to live offspring.) Some species of sharks
are important examples. Vivipary enables a long internal gestation so that the developing
offspring is protected and nourished within the body of the mother.

4See wikipedia for the history, usage, and pronunciation of the word kludge.
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tinction between adaptation and optimization, but rationalizes a positive
methodology based on unfettered optimization by an appeal to this un-
written proposition.5

In this paper I present a model which probes that common story. I an-
alyze a simple single-person decision problem. An organism is a procedure
for solving this problem. I parametrize a family of such algorithms which
includes the optimal algorithm in addition to algorithms that perform less
well. An adaptive process alters the organism over time, favoring improve-
ments. I show conditions under which no matter how long the adaptive
process proceeds, an engineer, at any point in time, working only with the
raw materials that presently make up the organism, could eliminate a per-
sistent structural inefficiency and produce a significant improvement. In
the model, kludges arise naturally and are the typical adaptations that im-
prove the organism. A kludge always improves the organism at the mar-
gin, but also increases both its complexity and its internal complementarity
and as a by-product makes it harder and harder for adaptation to undo
these inefficiencies in the future.

Illustrative Example The following stylized example illustrates the main
ideas. An organism of complexity k has k genes each of which can have
value −1 or +1. Thus, its genetic code π is a k-length sequence such as
π = {−1,+1,+1, . . . ,−1}. The fitness of the organism is given by the func-
tion V(π) which exhibits complementarity. A simple example would be
V(π) = V(κ) where κ is the number of +1 genes. If V(0) = k, V(1) = 2k,
and V(κ) is U-shaped then, holding k fixed, there are two local optima: a
negatively aligned organism (all genes are −1) and a positively aligned organ-
ism (all genes are +1.) Refer to Figure 1.

In each period the organism is, with probability 0 < (1− q) < 1 subject
to random mutation. When a mutation occurs, each gene has an indepen-
dent probability µ > 0 of changing signs. If the new version of the organ-
ism is an improvement (higher V) then it replaces the existing organism.
Otherwise the existing organism survives to the next period. In this model,
when k is constant over time, with probability 1 a negatively aligned organ-
ism will eventually be replaced and never return. It is enough that k̄ genes
change sign where V(k̄) > k = V(0). But now suppose that k is increasing
over time. In particular, suppose that a second form of mutation can occur.
With complementary probability q, the complexity increases by 1 and the
new gene is determined at random.

5The classic defense is Friedman (1966).
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(a) Drastic mutation for fixed k. (b) Increased complexity increases the size
of a drastic mutation

Figure 1: Kludges in the illustrative example.

If the organism is initially negatively aligned, and the complementarity
in V is strong, an increase in complexity survives only when the new gene is
similarly aligned. An increase in complexity thus produces an incremental
improvement but potentially reduces the probability of the drastic changes
needed to overhaul the structure of the organism from negative to positive
alignment. If so, then the negatively aligned organism is kludged.

In fact, if a drastic mutation always requires some minimum fraction
of genes to switch, then as k grows over time, drastic mutation probabili-
ties shrink exponentially fast. This means that the total probability that a
drastic mutation ever occurs is strictly less than 1. Essentially, while at any
point in time the probability of jumping between local optima is positive,
the distance between the local optima is growing fast enough that the total
probability remains bounded away from 1. In particular there is a pos-
itive probability that the kludges perpetually accumulate and ultimately
prevent the efficient re-alignment from taking place.

The key features in this story are the complementarity in the fitness
function V and the rate of increased complexity relative to mutations. This
paper builds a model of a decision-making algorithm and its evolutionary
process which give rise to these features. In the model, an organism evolves
a procedure for processing and encoding data. When the procedure is
poorly adapted to the environment, improvements can still come from in-
creased complexity: the organism analyzes additional data but encodes it
using the inefficient protocol. Because aggregating the data requires a com-
mon encoding, increased complexity increases the dependence on the pro-
tocol. Useful aggregation requires, at a minimum, that at least half of the
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data are encoded consistently with the protocol. Finally, unlike in the sim-
ple example, complexity grows at an endogenous rate in the model. As the
marginal value of additional data decreases, complexity growth becomes
very slow. Indeed the organism waits for roughly k2 periods before in-
creasing complexity from k to k + 1. Nevertheless this is fast enough that
with positive probability the kludged protocol survives forever.6

1.1 Kludges In The Brain

Neuroscience views evolution as having progressively built higher func-
tioning systems on top of more primitive systems, each time leaving the
latter essentially intact.7 The resulting patchwork often bears all of the hall-
marks of a kludge. The brain itself is built of neurons, which as evidenced
by their presence in jellyfish and snails are evolutionarily ancient build-
ing blocks of neurocircuitry. Unfortunately they don’t scale well: they are
energy-inefficient, noisy, and slow; hardly the tools one would have chosen
to build a complex, conscious brain.

But the most glaring clashes come in the interaction between conscious
decision-making and the more primitive systems that provide the data guid-
ing our decisions. For example, the brain’s system of passive, context-
driven memory is a poor match for a conscious decision-making center
which needs arbitrary access to memories. Hence, unlike a computer which
recalls memories by their addresses, when we need to find lost keys we “re-
trace our steps.” This is an attempt to manipulate the passive memory sys-
tem, conjuring up the requisite context in hopes of shaking the lost memory
out. “Blindsight” reveals the inefficient integration between primitive vi-
sual centers in the brain and more evolutionarily recent visual modules in
the cortex. Blind subjects asked to locate an object held before them are,
naturally, unable to make any guess with confidence. But when asked to
reach for the object, some subjects can consistently locate it and grab it.

1.2 Organism Design

Structurally inefficient decision-makers present a problem not just for pos-
itive methodology, but normative as well. Much of welfare economics is
founded on revealed preference and agent sovereignty. These principles

6Sandholm and Pauzner (1998) make a similar point in a coordination game with a grow-
ing population. There, even very slow population growth precludes escape from inefficient
equilibria.

7Linden (2007) and Marcus (2008) are excellent popular accounts.
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presume that the choices we observe reveal what benefits the agent. But
when the adaptive process creates a wedge between observed behavior and
the underlying objective the agent is designed to satisfy, there is a corre-
sponding wedge between revealed preference and true preference. Put dif-
ferently, if we grant that there is some underlying objective that guides the
adaptive process, then at best we can view the organism as an agent whose
efforts at achieving that objective are the result of a second-best solution
designed by nature, the principal. We can no better infer that underlying
objective from the choice behavior of the organism than we can identify
the distorted choices made by an incentivized agent with the principal’s
first-best solution.

Indeed, this principal-agent metaphor is the basis of an increasingly
popular methodology for behavioral economics. For example, Robson (2001)
studies the biological rationale for hedonic utility. His model shows that
utility can be understood as an optimal compensation scheme for an agent
who has private information about the fitness consequences of various con-
sumption bundles. Implicit is the interpretation that natural selection can
be equivalently regarded as a fitness-maximizing principal with a freedom
to design the agent’s preferences limited only by asymmetric information.
The bottom-line of such a model is an agent whose revealed preference ex-
actly coincides with nature’s first-best.

By contrast, interesting non-standard preferences can be generated by a
similar model in which metaphorical nature is assumed to face additional
constraints. For example, Samuelson and Swinkels (2006) consider a de-
sign problem in which the agent necessarily makes errors in information
processing and nature’s incentive scheme must trade off the value of in-
corporating the agent’s private information about the local environment
against the risks of granting too much leeway to imperfectly formed beliefs.
Constrained to use the blunt instrument of utility to provide incentives to
the agent, nature’s optimal design necessarily induces behavioral biases,
including self-control problems, menu-dependence, and present-bias. In
Rayo and Becker (2007) nature is constrained to use outcome-contingent
rewards to motivate the agent and there are limits to the granularity of this
“happiness” instrument. The resulting optimal incentive scheme is equiv-
alent to reference-dependent preference. In dynamic decision problems,
certain behavioral responses can substitute for expanded memory and in
Baliga and Ely (2009), nature’s design economizes on memory capacity by
utilizing this trade-off. The result is observationally equivalent to a sunk-
cost bias.

In each of these models, the conclusions are driven by the particular
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constraint imposed on nature’s representative, the principal. It follows that
the same evolutionary argument can turn each one of these conclusions on
its head. Nature is appropriately modeled as an optimizing principal only
if natural selection can be assumed to operate long enough to reach an op-
timum. But then there should also have been ample time for nature to relax
these constraints. In the language of incentives, because there is no intrin-
sic conflict of interest between principal and agent, in the long run nature
simply “sells the firm” to the organism. Whatever residual effect of the
constraints persists should have negligible costs.8 Equivalently, observable
behavior should be arbitrarily close to the first-best, and hence free from
(costly) behavioral anomalies.

The present paper provides a defense of this methodology against such
arguments. On the one hand, the model yields arbitrarily large innova-
tions in the design of the organism. It follows that each “component” of
the organism is optimally designed taking as given the existence of, and
interactions with, other components. That is, the organism is optimal sub-
ject to certain design constraints. And on the other hand, these constraints
need not be eliminated despite the fact that arbitrarily large innovations oc-
cur infinitely often. Indeed, their presence can have non-vanishing shadow
costs even in the long run.

2 The Model

An organism is designed to solve a fixed decision problem, instances of
which are presented to the organism repeatedly over time. The decision
problem has the following interpretation. A resource is available at a cer-
tain location. The location is realized independently in each period. Signals
which reveal the location of the resource are available to the organism. The
problem for the organism is to input these signals, interpret them, and then
choose a location in attempt to extract the resource. At any given point in
time, the organism is subject to a complexity constraint which imposes a
technological trade-off between these activities. The optimal design of the
organism at a given level of complexity will balance this trade-off. Over
time, the organism will evolve by increasing complexity and the design of

8Of course there are physical constraints which could not be eliminated no matter how
long nature is left to act. But the appropriate comparison here is between the outcome of
the evolutionary process as modeled by a designer subject to physical and non-physical
constraints and the design that is optimal subject only to the physical constraints. The
argument here is that all residual internal design inefficiencies should, in the long run, have
negligible bottom-line consequences.
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the organism will adjust to the relaxed constraint. We describe the long run
behavior of this evolutionary process.

The Decision Problem A resource is hidden at a location θ ∈ [−1, 1]
which is drawn from the uniform distribution. The organism will choose a
location a and search intensity i. The payoffs are

u(a, i, θ) = i
[
2aθ − a2] . (1)

These payoffs model the following trade-offs. First, for any given search
intensity, the organism would like to choose a location a as close as possible
to θ. Likewise, for any given a, the payoffs are increasing in search intensity.
The complexity constraint (to be described in the next section) will imply
a technological trade-off between these to be balanced against the trade-off
in payoffs captured by Equation 1. Beyond capturing these trade-offs, the
precise functional form is for computational convenience only. We refer to
the expression 2aθ − a2 as the payoff per-unit of intensity, or average payoff.

In the environment there is a collection of signals σ available to the
organism which convey information about the current location of the re-
source. The structure of correlation betwen σ and θ is given by a fixed joint
distribution to be specified later. New realizations of both are drawn from
this distribution in each of an infinite sequence of periods, independently
over time.

Formally, σ = σ1, σ2, . . . ∈ {−1,+1}∞ is an infinite sequence of signals
from {−1,+1} and the organism is able to collect a finite sample of size k.
The parameter k is referred to as the precision of the organism.

The organism has a strategy which selects a location to search as a func-
tion of the sample σ1, . . . , σk. At any point in time, this strategy is char-
acterized by another finite sequence π = π0, π1, . . . , πk ∈ {−1,+1}k+1 in
accordance with the following rule. When the organism observes the sam-
ple σ1, . . . , σk it applies this formula

a(σ1, . . . , σk|π) =
π0

k + 2

k

∑
j=1

πjσj. (2)

to select a location to search. To interpret this, note that the sign of π0πj
expresses whether the organism acts as though signal σj is positively or
negatively correlated with the location θ. The organism then obtains con-
ditionally expected payoff

i
[
2a(σ1, . . . , σk|π) · E(θ|σ1, . . . , σk)− a(σ1, . . . , σk|π)2] (3)
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The sequence π0, . . . , πk can be viewed as the part of the genetic code
of the organism that represents the organism’s current “model” of the true
correlation structure in the environment. Throughout the paper I will refer
to π as the genetic code, noting that this is a slight misuse of terminology
because both i and π determine the behavior of the organism and both will
be subject to mutation.

We have assumed that the organism uses an algorithm from a particular
class, namely those parametrized by Equation 2. When the parameters of
the environment are defined next, we will show that the optimal algorithm
is always a member this class.

Computation and Complexity The organism is subject to a complexity
constraint. We model this by assuming that the organism has a fixed ca-
pacity x of “energy” or computational capacity with which to implement its
strategy. The complexity cost includes the computational cost of process-
ing signals plus the costs of search intensity. We model computational costs
by assuming that each arithmetic operation (adding, multiplying by −1) in
the formula Equation 2 has unit cost.9 Thus, the strategy a(σ1, . . . , σk|π)
requires

κ(π) = k +
k

∑
j=0

1{πj=−1}

computational steps to implement,10 and an organism of complexity x would
then have a search intensity equal to the residual

i = x− κ(π). (4)

The optimal design maximizes Equation 3 subject to this complexity “bud-
get” constraint.

The Environment Recall that π describes the organism’s model of the
correlation between σ and θ. Now I describe the true correlation structure.
The environment is described by a parameter λ which specifies for each j
whether σj is positively or negatively correlated with θ. Formally, λ is an

9 As will become clear below these computational costs are best thought of as repre-
senting the costs of transforming the data into a common format for aggregation and not
literally the costs of doing arithmetic.

10or convenience we exclude the cost of dividing by k + 2 as this cost will be common to
all algorithms in this class.
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infinite sequence λ = λ1, λ2, . . . ∈ {−1,+1}∞ that is determined at the be-
ginning of time according to an i.i.d. process with Prob(λj = 1) = l > 1/2.
Recall that in each period, θ is drawn from the uniform distribution. Next,
conditional on the realized location θ, each signal σj is chosen indepen-
dently with

Prob(σj = λj) = θ̂. (5)

where θ̂ = (θ + 1)/2 is just θ ∈ [−1,+1] normalized to a probability. To
understand this structure, first consider a signal j for which λj = 1. In
this case, observing σj = 1 indicates that the resource is likely to be located
further to the right, whereas σj = −1 indicates that the resource is likely
to be located further to the left. However, when λj = −1, these inferences
are reversed. For this reason, if λj = −1, then we say that the jth signal is
inverted.

3 The Optimal Organism

The first step in the analysis is to solve the “engineering benchmark” prob-
lem of maximizing payoffs for any fixed level of complexity under the as-
sumption that λ is known. This will be our point of comparison when we
later analyze the evolutionary outcome when the organism must adapt to
λ over time by natural selection.

Let us first ignore complexity costs and begin by characterizing the first-
best algorithm for a given precision k. Inspection of the objective function
in Equation 1 reveals that for any given sample of size k, the first-best strat-
egy computes the conditional expectation E(θ|σ1, . . . , σk) and selects loca-
tion

a∗k (σ1, . . . , σk) := E(θ|σ1, . . . , σk).

An explicit formula for the conditional expectation follows from standard
properties of binomial sampling.11

θ̄k := E(θ|σ1, . . . , σk) =
1

k + 2

k

∑
j=1

λjσj. (6)

11Write θ̂ = (θ + 1)/2. Then θ̂ is distributed uniformly on [0, 1] and observation of
{λjσj}k

j=1 is a binomial sampling process from {−1, 1} with unknown probability θ̂ that

λjσj = 1. It is a standard result that in this case the posterior distribution of θ̂ is a Beta dis-
tribution with parameters (ζ1, ζ2) where ζ1 is one plus the number of j for which λjσj = 1
and ζ2 is one plus the number of j for which λjσj = −1. The expectation of the Beta distri-

bution is ζ1
ζ1+ζ2

. This yields Equation 6 after some algebra.
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Therefore the optimal average payoff is given by the random variable

2a∗k θ̄k − (a∗k )
2 = θ̄2

k

whose expectation with respect to σ is

Eσ

(
θ̄2

k
)
= var(θ̄k) (7)

since the unconditional expectation of θ is equal to zero and therefore by
the law of total probability so is Eσ

(
θ̄k
)
.

Thus, the variance of the estimator θ̄k will play an important role in the
analysis. For future reference, in the appendix it is shown that this variance
increases monotonically in the precision12

var
(
θ̄k−1

)
< var

(
θ̄k
)
< var (θ) = 1/3 (8)

for all k and moreover that the incremental variance is asymptotically on
the order of 1/k2:

var(θ̄k)− var(θ̄k−1) =
1− var(θ̄k−1)

(k + 2)2 (9)

Note for future reference that the covariance between λjσj and λj′σj′ is pos-
itive.

cov(λjσj, λj′σj′) > 0 (10)

Minimizing Computational Costs We have shown that the first-best de-
sign for a given k achieves average payoff var(θ̄k). Using this result, after
incorporating complexity costs, we obtain the following formulation of the
optimal design for a fixed level of complexity x.

max
π

i · var θ̄k

subject to a(·|π) = θ̄k

x = i + κ(π)

A solution to this problem necessarily economizes the complexity constraint
by choosing the genetic code π to minimize the computational costs of im-
plementing the estimator θ̄k. This cost-minimization problem is the central
idea of the model.

12 Intuitively, higher precision means a better estimate implying that the estimate is more
sensitive to the variation in the state.
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Compare the class of algorithms in Equation 2 and the optimal estima-
tor in Equation 6. It is easy to see that there are two types of organism that
achieve the optimum. A positively-aligned organism is one with π0 = +1
and πj = λj for j = 1, . . . , k. A negatively-aligned organism is one with
π0 = −1 and πj = −λj for j = 1, . . . , k. In both cases, the resulting strategy
a(σ1, . . . , σk|π) is identically equal to θ̄k.

On the other hand, these two design protocols typically differ in their
computational costs. The budget constraint for a positively aligned organ-
ism reduces to

x = i +
k

∑
j=1

(
3− λj

2

)
whereas a negatively aligned organism yields the following budget con-
straint

x = i +
k

∑
j=1

(
3 + λj

2

)
. (11)

Thus, the gene π0 adds flexibility to the design of the organism potentially
allowing it to economize on computation.13

The diagrams in Figure 2 illustrate the optimal design for a fixed com-
plexity x. The budget lines capture the tradeoff between intensity and pre-
cision for positively- (dashed) and negatively- (solid) aligned organisms
respectively. Adding the jth unit of precision requires one or two addi-
tional computational steps, depending on the alignment and the value of
λj. The “indifference curve” is the set of pairs (i, k) which achieve the same
expected total payoff i var(θ̄k).

Figure 2(a) shows a case in which the optimal organism is negatively
aligned. As the organism increases in complexity, the budget lines shift
up, potentially switching the alignment of the optimal organism. This is
illustrated in Figure 2(b). Indeed, the optimal alignment depends on the
sign of the moving average

L(k) :=
1
k

k

∑
j=1

λj.

13Up to now we have assumed that the optimal design must implement θ̄k and searched
for the algorithm that minimizes computational costs. We can see from the budget equa-
tions that the optimum indeed must implement θ̄k. If instead π0πj 6= λj then the jth signal
is biasing the estimate and also consuming computational steps. A better design would
reduce precision by one and increase intensity.
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(a) Low x. Negative alignment (solid line)
is optimal.

(b) Higher x. Budget lines shift upward and
now positive alignment is optimal.

Figure 2: Optimal organism for a fixed level of complexity x.

If it is positive, then the fraction of inverted signals up to k is less than
1/2, and the optimal organism will be positively aligned. The negatively
aligned organism is optimal in the alternative case.

Recall that we have assumed that l > 1/2. This implies that for suffi-
ciently complex organisms, positive alignment is optimal.14 A convenient
way to visualize this is to consider k sufficiently large so that L(k) ≈ 2l − 1
and the two budget lines are approximately

x ≈ i + k (2− l)

for positive alignment and

x ≈ i + k (1 + l)

for negative alignment. This is illustrated in Figure 3.

14What is important is that a particular structure is eventually optimal forever, not that
it is necessarily positive alignment. The model could easily be extended to allow the even-
tually preferred alignment to be randomly determined. This would capture the point that
the flexibility of the organism is beneficial ex ante because the preferred alignment cannot
be predicted in advance.
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Figure 3: Optimal alignment for large k.

4 Kludge

To this point we have been analyzing the design of the organism from the
perspective of an engineer who knows λ. The focus now turns to a model
of the adaptive process whereby the genetic code π is instead shaped over
time by the force of natural selection.

First, note that for sufficiently complex organisms, positive alignment
yields a greater budget. Once this is the case, any negatively aligned organ-
ism is attempting to implement the optimal decision rule via an inefficient
protocol. For this reason and reasons developed further below, we refer to
such an organism as a kludge.

Definition 1. Suppose that the fraction of inverted signals up to k is less than
1/2, i.e.

1
k

k

∑
j=1

λj > 0.

Then we say that an optimal negatively aligned organism with precision k is a
kludge.
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We can quantify the inefficiency of a kludge of complexity x. A switch
to positive alignment would produce an organism of the same precision
but strictly higher intensity. Indeed the intensity and therefore the payoff
can be increased by a number which (on average) increases linearly in k.

However, this measure may be hard to interpret as it depends on a car-
dinal interpretation of payoffs. As an alternative, let us define the follow-
ing ordinal concept of inefficiency of an organism. Say that the organism
is asymptotically structurally inefficient if there is a specific gene (here π0)
such that at some point in time, and forever thereafter, there exists an im-
provement which involves altering this gene, and yet no such change ever
occurs.15

5 The Adaptive Process

The final ingredient in the model is a description of the process by which
the organism evolves. I adopt a simple model of mutation and natural
selection designed to capture the effects of a general class of adaptive pro-
cesses. The specific assumptions are chosen mostly for expositional and
analytical convenience.

The organism O is parametrized by the pair O = (x, π). We consider
adaptation of a single organism over time. Let Ot denote the organism
existing at time t. Each period t, the organism Ot = (x, π) is evaluated
according to its overall payoff given by

V(Ot) = Eθ,σ (x− κ(π))
[
2θa(σ1, . . . , σk|π)− a(σ1, . . . , σk|π)2] .

In each period, with positive probability, a variation occurs which re-
sults in a new version O′ of the organism. We apply the following simplis-
tic model of natural selection. If the variant O′ is more fit, i.e. V(O′) >
V(Ot), then the variant replaces the existing version and survives to date

15A virtue of this definition is that it excludes “marginal inefficiencies” where at any point
in time some inefficiencies are present, but every inefficiency, once it appears, is eventually
eliminated. For example, we may imagine that the most recently developed features of the
organism might begin in an inefficient state, but eventually as the organism matures, these
features are improved to their optimal state and align optimally with the rest of the organ-
ism. By contrast, asymptotic structural inefficiency identifies persistent mis-alignments.
It would be desirable to sharpen the definition even further by considering dynamic effi-
ciency issues. Without going into the details of such a definition, I note that the kludges
in this paper represent static as well as dynamic inefficiencies. In addition to outperform-
ing a kludge at each point in time, positively aligned organisms also grow in intensity and
precision faster than kludges.
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t + 1, that is Ot+1 = O′. If not, then the existing version survives, i.e.
Ot+1 = Ot.16

Two types of variations can occur which we call expansion and mutation.
First, with probability q, the organism undergoes expansion. This involves
either increasing complexity x or increasing the length of the genetic code
π, by one unit. Assume that the organism always expands on the dimen-
sion which results in a higher payoff and that the “gene” πk+1 at the added
locus k + 1 is set optimally given the existing π.17

To illustrate and to preview formal arguments to come, suppose at time
t, the organism is a kludge with complexity x and precision k. Let Vx,k
denote the overall payoff of such an organism. If expansion occurs and
Vx+1,k > Vx,k+1 then the organism will increase complexity by one unit,
otherwise it will increase precision (by increasing π.)

To trace out the evolution of a kludge, it is useful to define the following
sequence of numbers {xk}∞

k=1. First, set x1 = 1. Next, for k > 1, define
xk to be the smallest x ≥ xk−1 such that Vx,k > Vx+1,k−1. As the organism
expands, it will improve along the relevant margin as illustrated in Figure 4
(beginning from some initial level of precision k̄.)

On the other hand18, with probability (1− q) the organism instead un-
dergoes a mutation which alters the genetic code π. Mutations are modeled
as follows. A subset of the “loci” {0, 1, . . . , k} is selected and the genes πj
at those loci change sign. We will assume that all subsets have positive
probability.19 Apart from this, we can be quite general in terms of the prob-
abilities with which various subsets are selected. One simple model would
be the following case of independent mutations: there is a fixed mutation
probability µ > 0 and each gene πj changes sign with independent proba-
bility µ.

16It is obviously a simplification to use expected fitness as the criterion, but this is an ap-
proximation to an environment in mutations arrive infrequently. In particular, we can think
of each period as representing a length of time sufficiently long that the actual performance
approximates the average.

17These assumptions keep the analysis simple. A general model would set the sign of
πk+1 randomly. However, whenever the sign is mis-aligned, (i.e. πk+1π0 6= λk+1) this
would reduce the payoff of the organism, so there is no loss in ignoring these events. A
process in which the organism can expand on either dimension with positive probability
delivers the same conclusion as this one but with added notational burden.

18It is an innocuous notational simplification that some variation occurs in every period
with probability 1.

19This is used only for the benchmark result in Proposition 1.
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Figure 4: Escape Process.

Returning to Figure 4, the crucial mutation events will be those that
result in a new organism that outperforms a kludge, illustrated by the
diagonal arrows. Recall that a kludge is negatively aligned despite posi-
tive alignment being optimal. At a minimum, therefore, an improvement
would require changing the alignment, i.e. the sign of π0. Note however,
that the kludge has all other genes πj negatively aligned. Thus a changing
only of π0 would result in a complete misalignment of π. This means that
in addition to a change in sign of π0, a mutation must also change the sign
of sufficiently many πj so that the organism makes an accurate estimate of
the location of the resource and benefits from the reduced computational
burden of positive alignment. The size of such a mutation, measured by
the number of genes which would be required to change sign, will deter-
mine the probability that the organism escapes being kludged.

The key to our result is in showing that the size of this mutation is
bounded below by a constant fraction of k. Thus, the probability of escape
will be shrinking as the organism expands in complexity. The independent
mutation model would imply that this probability shrinks exponentially
fast, and this will enable us to show that, with positive probability, an es-
cape never occurs.

While the independent mutation model is useful for building intuition,
it imposes more structure than is needed for the results. Our assump-
tion abstracts the key condition which is the following generalized large-
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deviation property governing the asymptotic probabilities of large muta-
tions.

Assumption 1 (Large Deviation Property). Let ωk be a probability distribution
over subsets of {0, 1, . . . , k}. We say that the family of distributions {ωk}k∈N

satisfies a large-deviation condition if there exists µ ∈ (0, 1) and a function
M : N → (0, 1) such that M(k) is an upper bound for the probability under ωk
of selecting a subset with cardinality larger than µk and

lim sup
k

M(k + 1)
M(k)

< 1.

This is a large-deviation property which asymptotically bounds the prob-
ability of mutations to a large fraction m (greater than µ) of genes from any
given large subset. This probability must shrink to zero at a sufficiently fast
rate. Note that by a standard result from large-deviation theory, the inde-
pendent mutation model is a special case. We now turn to a formal analysis
of the adaptive process.

6 Analysis

First, we consider an instructive benchmark case in which q = 0. In this
case, the complexity of the organism is fixed and cannot increase. Then,
because the mutation probabilities are strictly positive, with probability 1
the organism will be optimally adapted after some finite timespan.

Benchmark with q = 0 Consider an arbitrary organism O of complexity
x. Let O∗ be an optimal organism of the same complexity. There is a lower
bound on the probability of a mutation large enough to transform any such
O intoO∗. In the worst case, a change to the entire genetic structure will be
required and the probability of such a large mutation is strictly positive by
assumption. When q = 0, the organism will never increase in complexity
and so this remains forever a lower bound on the probability of reaching
an optimally adapted organism in a single step. It follows that with proba-
bility 1 the optimal organism will appear eventually. Moreover an optimal
organism can never be replaced if the complexity of the organism cannot
increase.

Proposition 1. When q = 0, with probability 1 the organism is eventually opti-
mally adapted, regardless of the initial complexity.
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The proposition shows that any asymptotic inefficiency that arises when
q > 0 is not due to a simple problem of local optima. The model allows for
arbitrarily large mutations at any point in time. Thus, any improvement, of
any fixed size, if available for sufficiently long, will eventually be realized.
On the other hand, this argument does not apply to improvements which
require larger and larger mutations. Potentially, the organism can gradu-
ally improve at the margin by increasing in complexity, all the while inten-
sifying the complementarity among its components. This would mean that
substantial improvements decline in probability. Whether such improve-
ments will be realized will depend on the rate at which this probability
declines.

The main result of the paper concerns the case of q > 0 and asymptotic
structural inefficiency.

Theorem 1. Suppose µ < 1/2. When q > 0 there is a positive probability that the
organism will be forever kludged and thus asymptotically structurally inefficient.

6.1 Proof of Theorem 1

Recall that we have assumed that l > 1/2. The parameter l determines the
probability that each λj = +1. As discussed above, what matters for the
optimal design of the organism is the sign of the moving average

L(k) =
1
k

k

∑
j=1

λj.

Because l > 1/2, by the strong law of large numbers, there is probability
one on the set of environments in which there exists some k̄ such that L(k)
is positive for all k > k̄. Throughout the proof, we fix such an environment
λ and integer k̄ and consider the stochastic process of evolution in that
environment.

Let O be a kludge. We wish to bound the probability that the organism
will ever be replaced by one that is not a kludge. Since expansion can only
lead to a kludge of larger complexity or precision, the crucial events will
involve mutations. We say that a beneficial mutation occurs if a mutation
produces an organism O′ which has strictly larger payoff. Let ηx,k be the
probability that a kludge of complexity x and precision k will undergo a
beneficial mutation. Consider the following simplified stochastic process.
Let the states of the process correspond to the levels of complexity and
precision (x, k) of the organism. Refer to Figure 4. At each state (x, k),
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three transitions are possible. First, with probability q, an expansion occurs
and the organism transits to the next state which is (x + 1, k) in the case of
x < xk+1 (the horizontal transitions in the figure) or (x, k + 1) in the case of
x = xk+1 (the vertical transitions.) Second, with probability (1− q)ηx,k, the
organism “escapes” and the process terminates. Finally, with the remaining
probability, the process continues and the state is unchanged at (x, k).

The process begins in state (xk̄, k̄). We refer to this process as the escape
process. It is a simplification of the true evolutionary process because it does
not consider the further evolution that occurs after a beneficial mutation.
We will analyze the probability that escape never occurs and this will be a
lower bound for the probability that the organism remains kludged forever.

Lemma 1. The probability that the organism remains asymptotically structurally
inefficient is bounded below by the probability that the escape process never termi-
nates. This probability is positive if and only if

∞

∑
k=1

xk+1

∑
x=xk

ηx,k < ∞.

Proof. We apply a standard technique from the theory of countable-state
Markov chains20. With each non-terminal state (x, k), we associate a vari-
able Zx,k. We consider the system of equations which expresses each Zx,k
as a linear combination of other variables where the weights are the non-
terminal transition probabilities. This yields the following system.

Zx,k = qZx+1,k + (1− q)(1− ηx,k)Zx,k x ∈ {xk, . . . , xk+1 − 1} (12)
Zx,k = qZx,k+1 + (1− q)(1− ηx,k)Zx,k x = xk+1 (13)

The probability is positive that the system will never reach the terminal
state if and only if the system possesses a bounded, non-zero solution. To
establish this, we set Zxk̄ ,k̄ = 1, rewrite the system as follows

Zx+1,k =

(
1 +

(1− q)ηx,k

q

)
Zx,k x ∈ {xk, . . . , xk+1 − 1} (14)

Zx,k+1 =

(
1 +

(1− q)ηx,k

q

)
Zx,k x = xk+1, (15)

and recursively substitute to obtain

Zx,k =
k−1

∏
l=k̄

xl+1

∏
y=xl

[
1 +

(1− q)
q

ηy,l

]
·

x−1

∏
y=xk

[
1 +

(1− q)
q

ηy,k

]
. (16)

20See (Billingsley, 1995, Theorems 8.4 and 8.5)
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The solution is bounded iff
∞

∏
k=1

xk+1

∏
x=xk

[
1 +

(1− q)
q

ηx,k

]
< ∞ (17)

which is equivalent to21

∞

∑
k=1

xk+1

∑
x=xk

[
(1− q)

q
ηx,k

]
< ∞. (18)

The latter is equivalent to the condition in the statement of the lemma.

We now present two lemmas which establish a bound on the series
identified in Lemma 1.

Lemma 2. There exists a function M(k) such that ηx,k ≤ M(k) for all k and x,
and

lim sup
k

M(k + 1)
M(k)

< 1. (19)

Lemma 3. There exists a function C(k) such that xk+1 ≤ C(k) for all k and

lim
k

C(k + 1)
C(k)

= 1. (20)

Combining lemmas 2 and 3 enables us to conclude the proof of Theo-
rem 1 as they establish the bound

∞

∑
k=1

xk+1

∑
x=xk

ηx,k ≤
∞

∑
k=k̄

C(k)M(k) < ∞

which by Lemma 1 is enough to prove the theorem.
We now turn to the proofs of Lemma 2 and Lemma 3.

Proof of Lemma 2. We will show that for any x, the probability ηx,k is smaller
than the probability that at least k/2 genes are selected for mutation.

Consider a mutation which resulting in the genetic code π with π0 =
+1. Let A be the subset of {π1, . . . , πk} which also undergo mutation, and
assume that A consists of fewer than k/2 elements. We have

πj =

{
λj for πj ∈ A
−λj for πj ∈ {π1, . . . , πk} \ A

21Note that for any sequence of positive numbers Rn, 1 + ∑x
1 Rn ≤ ∏x

1(1 + Rn) ≤
exp(∑x

1 Rn).
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because the organism was negatively aligned prior to the mutation. Let
B be a subset of πj ∈ {π1, . . . , πk} \ A that has the same cardinality as A.
(This is possible because A has fewer than k/2 elements.)

The expected average payoff to the new organism is

Eσ

[
2a(σ|π) · E(θ|σ)− a(σ|π)2]

which, expanding the definitions of a(σ|π) and E(θ|σ) is less than

Eσ

[(
2

k + 2

)2 k

∑
j=1

πjσj

k

∑
j=1

λjσj

]

which we can decompose into three terms

Eσ

{(
2

k + 2

)2 k

∑
j=1

λjσj

[
∑
j∈A

λjσj −∑
j∈B

λjσj − ∑
j/∈A∪B

λjσj

]}
.

Note that because the sequence {λjσj} is i.i.d. conditional on θ, by de Finetti’s
theorem it is an exchangeable sequence and therefore,

Eσ

{
k

∑
j=1

λjσj

[
∑
j∈A

λjσj −∑
j∈B

λjσj

]}
= 0.

And recalling that for any j, j′, the covariance of λjσj and λj′σj′ is positive
(Equation 10), the remaining term

Eσ

[
−

k

∑
j=1

λjσj · ∑
j/∈A∪B

λjσj

]

is negative. Thus, the expected average payoff of the new organism is neg-
ative. The total expected payoff is therefore lower than that of the original
organism. This shows that a mutation is beneficial only if it affects more
than k/2 genes. By the large deviation property, the probability of such a
mutation is bounded by M(k) where

lim sup
k

M(k + 1)
M(k)

< 1.
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Proof of Lemma 3. Recall that xk is defined to be the smallest x ≥ xk−1 such
that Vx,k > Vx+1,k−1. Because a kludge is negatively aligned and nega-
tive alignment achieves the optimal average payoff var θ̄k we can apply the
budget formula in Equation 11, to express xk as follows.[

xk − 1−
k

∑
j=1

3 + λj

2

]
var θ̄k =

[
xk −

k−1

∑
j=1

3 + λj

2

]
var θ̄k−1

up to an integer. Rearranging, we can obtain the bound

xk ≤
3 var θ̄k

var θ̄k − var θ̄k−1
+ 2k

From Equation 8 and Equation 9 the first term is bounded by a constant
χ multiplied by (k + 2)2 so that

xk ≤ C(k) := (k + 2)2χ + 2k

with

lim
C(k + 1)

C(k)
= lim

(k + 3)2χ + 2(k + 1)
(k + 2)2χ + 2k

= lim
(k + 3)2

(k + 2)2 = 1.

7 Extensions

The model is purposefully simple. However a number of natural and in-
structive extensions are possible. Here I will sketch two.

First, the model of natural selection does not have any serious compe-
tition across organisms. And indeed in its simple form here, competition
could eliminate the inefficiency as long as we are assured that at least one
individual in the population begins positively aligned. This will be true
with large probability in a large population. However, it is easy to en-
rich the decision problem so that with probability 1 any individual will be
kludged and hence so will all individuals in the population. What follows
is a sketch of such an extension.

Suppose that now there are two ways in which an organism can prof-
itably increase in complexity. First, it may improve its procedure for solving
a given resource extraction problem as in the present model. Second now,
the organism may evolve the ability to extract a new kind of resource in ad-
dition to the old. Each problem that the organism is currently equipped to
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solve has its own apparatus identical in structure to the one modeled here,
however independently evolving. And the organism always benefits from
increasing in complexity in this way. Then the result from this paper that
an individual problem will be kludged with positive probability implies
that every member of the population, even the most fit, will be kludged in
the way it solves a positive, and bounded, fraction of problems.

The second extension uses competition not as a robustness test, but to
draw new conclusions from the model. Suppose that organisms compete
for resources within a niche. There is a hierarchy of niches ordered by the
complexity necessary to exploit each niche. At the beginning, simple organ-
isms inhabit the simplest niche and evolve to adapt to that niche. Soon, effi-
cient simple organisms emerge and grow the saturation point. This creates
an incentive for organisms to increase in complexity in order to move into
the unoccupied more complex niche. This process continues. The result
of this process would be that some “species” stop increasing in complexity
while others are perpetually driven to increasing complexity. Those that
stop, the simplest organisms, will eventually become efficiently adapted to
their niche as in Proposition 1. By contrast, the leading edge organisms will
be better described by Theorem 1, potentially remaining kludged forever.

A Appendix

Here we prove the statistical result given in Equation 9 and Equation 8.
Define τj = λjσj. Note that the Eτj = 0 and so by Equation 6, Eθ̄k = 0

and hence var(θ̄k) = Eσ

(
θ̄2

k

)
. We calculate

E
(
τj|τ1, . . . , τj−1

)
= Prob(τj = 1|τ1, . . . , τj−1)− Prob(τj = −1|τ1, . . . , τj−1)

and by Equation 5 and the law of total probability,

= E
( θ + 1

2
|τ1, . . . , τj−1

)
− E

(1− θ

2
|τ1, . . . , τj−1

)
=

θ̄k−1 + 1
2

− 1− θ̄k−1

2
= θ̄k−1. (21)

From Equation 6,

θ̄k =

(
k + 1
k + 2

)
θ̄k−1 +

τk

k + 2
,
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so

var(θ̄k) = E

[(
k + 1
k + 2

)2

θ̄2
k−1 + 2

(
τk

k + 2

)(
k + 1
k + 2

)
θ̄k−1 +

1
(k + 2)2

]

= Eτ1,...,τj−1 E

[(
k + 1
k + 2

)2

θ̄2
k−1 + 2

(
τk(k + 1)
(k + 2)2

)
θ̄k−1 +

1
(k + 2)2 |τ1, . . . , τj−1

]

Applying Equation 21

= Eτ1,...,τj−1

[
1

(k + 2)2 +
2(k + 1) + (k + 1)2

(k + 2)2 θ̄2
k−1

]
and we have

var(θ̄k)− var(θ̄k−1) = E
[

1
(k + 2)2 −

(
1− 2(k + 1) + (k + 1)2

(k + 2)2

)
θ̄2

k−1

]
= E

[
1

(k + 2)2 −
1

(k + 2)2 θ̄2
k−1

]
=

1− var(θ̄k−1)

(k + 2)2 .

establishing Equation 9.
Now to show Equation 8, note that the sequence of random variables θ̄k

converges in distribution to the random variable θ and therefore var(θ̄k)→
var(θ). Equation 9 implies that the former is monotonically increasing
hence var(θ̄k) < var(θ) for all k.
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