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Abstract

Is there reason to believe that our brains have evolved to make ef-
ficient decisions so that the details of the internal process by which
these decisions get made are irrelevant? Or can we understand the
persistence of behavioral anomalies as the consequence of specific
imperfections in the decision-making circuitry that remain despite
evolutionary pressure? I develop a formal model which illustrates
a fundamental limitation of adaptive processes: improvements tend
to come in the form of kludges. A kludge is a marginal adaptation that
compensates for, but does not eliminate fundamental design ineffi-
ciencies. When kludges accumulate the result can be perpetually sub-
optimal behavior. This is true even in a model of evolution in which
arbitrarily large innovations occur infinitely often with probability 1.
This has implications for traditional defenses of both positive and nor-
mative methodology and provides a foundation for behavioral theo-
ries built on the methodology of constrained-optimal design.
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1 Introduction

In July of 2004, Microsoft announced that the release of Vista, the next gen-
eration of the Windows operating system, would be delayed until late 2006.
Jim Allchin famously walked into the office of Bill Gates and proclaimed,
“It’s not going to work.” Development of Windows had become unman-
ageable and Allchin decided that Vista would have to be re-written essen-
tially from scratch.

Mr Allchin’s reforms address a problem dating to Microsoft’s
beginnings. . . . PC users wanted cool and useful features quickly.
they tolerated – or didn’t notice – the bugs riddling the soft-
ware. Problems could always be patched over. With each patch
and enhancement, it became harder to strap new features onto
the software since new code could affect everything else in un-
predictable ways.1

The Alternative Minimum Tax was introduced by the Tax Reform Act
of 1969. It was intended to prevent taxpayers with very high incomes from
exploiting numerous tax exemptions and paying little or no tax at all. Over
time, the shortcomings of the AMT as a solution to the proliferation of ex-
emptions have begun to appear. However, over this same time, the federal
tax and budgeting system has come to depend on the AMT to the point
that many observers think that changing the AMT, without complicated
accompanying adjustments elsewhere, would be worse than leaving it as
is.

Flat fish inhabit the sea floor, but for many this was not the original
habitat. When their ancestors moved to the sea floor, they adapted by
changing their orientation from swimming “upright” to on their sides. Given
their existing bone structure, this was the only way to become “flat”, but
it rendered one eye useless. So, by a further adaptation many of today’s
species of flatfish migrate one eye to the opposite side of their body during
development.2

As beautifully documented the film The March of the Penguins, emperor
penguins spend a nearly 9 month breeding and nurturing cycle which in-
volves walking up to 100 KM away from any food source in order to avoid
predators. The problem for penguins is that they are birds, and hence lay
eggs; but they are flightless birds, so they find it inconvenient to move to

1“Code Red: Battling Google, Microsoft Changes How it Builds Software.” The Wall
Street Journal, Robert Guth, September 2005.

2For a vivid account of the evolution of bony flat fish, see Dawkins (1986).
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areas where the eggs can be easily protected. They adapted not by recti-
fying either of these two basic problems,3 but instead by compensating for
them by an extremely costly and risky behavior.

Each of these examples represents a kludge: an improvement upon a
highly complex system that solves an inefficiency but in a piecemeal fash-
ion and without addressing the deep-rooted underlying problem. There
are three ingredients to a kludge. First the system must be increasing in
complexity so that new problems arise that present challenges to the in-
ternal workings of the system. Second, a kludge addresses the problem by
patching up any mis-coordination between the inherited infrastructure and
the new demands. Third, the kludge itself– because it makes sense only in
the presence of the disease it is there to treat– intensifies the internal ineffi-
ciency, necessitating either further kludges in the future or else eventually
a complete revolution.4

Microsoft Windows is a complex system whose evolution is guided by
a forward-looking dynamic optimizer. It is not surprising therefore that,
after two decades worth of kludges that accompanied the expansion from
DOS to Windows to 32 bit and evenutally 64 bit architecture, revolution
was the final solution. In the case of the US Tax Code, or for that matter any
sufficiently complex body of contracts that govern interactions among di-
verse interests, while the evolution may be influenced by forward-looking
considerations, full dynamic optimization is more tenuous as a model of
the long-run trade-offs.

But the story is very different for flat fish and penguins, and, to come
to the point, for human brains, whether we are considering the evolution
of the brain across generations or the development of the decision-making
apparatus within the life a single individual. Here, progress is adaptive.
An adaptive process is not forward-looking and certainly not governed by
dynamic optimization. An adaptive process inherits its raw material from
the past, occasionally modifies it by chance (mutation or experimentation),
and selects among variants according to success today.

Nevertheless there is the possibility, not completely fanciful, that an
adaptive process can produce complex systems that perform as well to-
day as those that were designed by an optimizer given the same set of raw
materials. Indeed, there is a tradition in economics that accepts the dis-

3Incidentally, it has happened in evolutionary history that oviparous (egg-laying)
species have adapted to vivipary (giving birth to live offspring.) Some species of sharks
are important examples. Vivipary enables a long internal gestation so that the developing
offspring is protected and nourished within the body of the mother.

4See wikipedia for the history, usage, and pronunciation of the word kludge.
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tinction between adaptation and optimization, but rationalizes a positive
methodology based on unfettered optimization by an appeal to this un-
written proposition.5

In this paper I present a model intended to suggest that this hope was
a longshot at best. I analyze a simple single-person decision problem. An
organism is a procedure for solving this problem. I parameterize a fam-
ily of such algorithms which includes the optimal algorithm in addition to
algorithms that perform less well. An adaptive process alters the organ-
ism over time, favoring improvements. I show conditions under which no
matter how long the adaptive process proceeds, an engineer, at any point
in time, working only with the raw materials that presently make up the
organism, could eliminate a persistent structural inefficiency and produce
a significant improvement. In the model, kludges arise naturally and are
the typical adaptations that improve the organism. A kludge always im-
proves the organism at the margin, but also increases both its complexity
and its internal complementarity and as a by-product makes it harder and
harder for adaptation to undo these inefficiencies in the future.

In the model, a resource is available at a randomly determined location.
The organism evolves a procedure for collecting and processing informa-
tion about the location. Two trade-offs govern the design of the optimal
organism. First, a fixed number of computational steps must be allocated
between estimation of the location and exploitation of the resource. More
precise estimates come at the expense of reduced intensity of exploitation.
Second, the organism must evolve the optimal protocol for processing the
information. The pitfall is that the organism may adapt an inefficient proto-
col which requires too many processing steps to achieve a given precision.
The cost is reduced intensity. However, once this inefficient protocol is in
place, future evolution (modeled as expansion of computational power)
continues to ”invest” in it making it increasingly difficult to re-optimize.

The problem in the model is not due to “local optima.” The model
admits arbitrarily large mutations with positive probability, so they occur
infinitely often. Given enough time, the process would escape any non-
global static optimum. Indeed I present a benchmark model (see Propo-
sition 1) in which there is an artificial upper bound on the complexity of
the organism. In this model the optimally adapted organism eventually
appears with probability 1. Also, the effect is not due to altered evolution-
ary incentives that come from strategic interactions with other agents. The
model analyzes the performance of a single agent solving an isolated deci-

5The classic defense is Friedman (1966).
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sion problem.
Structurally inefficient decision-makers present a problem not just for

positive methodology, but normative as well. Much of welfare economics
is founded on revealed preference and agent sovereignty. These principles
presume that the choices we observe reveal what benefits the agent. But
when the adaptive process creates a wedge between observed behavior and
the underlying objective the agent is designed to satisfy, there is a corre-
sponding wedge between revealed preference and true preference. Put dif-
ferently, if we grant that there is some underlying objective that guides the
adaptive process, then at best we can view the organism as an agent whose
efforts at achieving that objective are the result of a second-best solution
designed by nature, the principal. We can no better infer that underlying
objective from the choice behavior of the organism than we can identify
the distorted choices made by an incentivized agent with the principal’s
first-best solution.

1.1 Organism Design

Indeed, this principal-agent metaphor is the basis of an increasingly pop-
ular methodology for behavioral economics. For example, Robson (2001)
studies the biological rationale for hedonic utility. His model shows that
utility can be understood as an optimal compensation scheme for an agent
who has private information about the fitness consequences of various con-
sumption bundles. Implicit is the interpretation that natural selection can
be equivalently regarded as a fitness-maximizing principal with a freedom
to design the agent’s preferences limited only by asymmetric information.
The bottom-line of such a model is an agent whose revealed-preference ex-
actly coincides with nature’s first-best.

By contrast, interesting non-standard preferences can be generated by a
similar model in which metaphorical nature is assumed to face additional
constraints. For example, Samuelson and Swinkels (2006) consider a de-
sign problem in which the agent necessarily makes errors in information
processing and nature’s incentive scheme must trade off the value of in-
corporating the agent’s private information about the local envirornment
against the risks of granting too much leeway to imperfectly formed beliefs.
Constrained to use the blunt instrument of utility to provide incentives to
the agent, nature’s optimal design necessarily induces behavioral biases,
including self-control problems, menu-dependence, and present-bias. In
Rayo and Becker (2007) nature is constrained to use outcome-contingent
rewards to motivate the agent and there are limits to the granularity of this
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“happiness” instrument. The resulting optimal incentive scheme is equiv-
alent to reference-dependent preference. In dynamic decision problems,
certain behavioral responses can substitute for expanded memory and in
Baliga and Ely (2007), nature’s design economizes on memory capacity by
utilizing this trade-off. The result is observationally equivalent to a sunk-
cost bias.

In each of these models, the conclusions are driven by the particular
constraint imposed on nature’s representative, the principal. It follows that
the same evolutionary argument can turn each one of these conclusions on
its head. Nature is appropriately modeled as an optimizing principal only
if natural selection can be assumed to operate long enough to reach an op-
timum. But then there should also have been ample time for nature to relax
these constraints. In the language of incentives, because there is no intrin-
sic conflict of interest between principal and agent, in the long run nature
simply “sells the firm” to the organism. Whatever residual effect of the
constraints persists should have negligible costs.6 Equivalently, observable
behavior should be arbitrarily close to the first-best, and hence free from
(costly) behavioral anomolies.

The present paper provides a defense of this methodology against such
arguments. On the one hand, the model yields arbitrarily large innova-
tions in the design of the organism. It follows that each “component” of
the organism is optimally designed taking as given the existence of, and
interactions with, other components. That is, the organism is optimal sub-
ject to certain design constraints. And on the other hand, these constraints
needl not be eliminated despite the fact that arbirarily large innovations oc-
cur infinitely often. Indeed, their presence can have non-vanishing shadow
costs even in the long run.

2 The Model

An organism is designed to solve a fixed decision problem, instances of
which are presented to the organism repeatedly over time. The decision
problem has the following interpretation. A resource is available at a cer-
tain location. The location is realized independently in each period. Signals

6Of course there are physical constraints which could not be eliminated no matter how
long nature is left to act. But the appropriate comparison here is between the outcome of
the evolutionary process as modeled by a designer subject to physical and non-physical
constraints and the design that is optimal subject only to the physical constraints. The
argument here is that all residual internal design inefficiencies should, in the long run, have
negligible bottom-line consequences.
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which reveal the location of the resource are available to the organism. The
problem for the organism is to input these signals, interpret them, and then
choose a location in attempt to exploit the resource. The fitness of the or-
ganism is determined by the distance between the actual location of the
resource and the location chosen.

The organism is described by an algorithm for inputing and processing
signals. The components of this algorithm adapt over time according to
a general evolutionary process which selects for improvements in overall
fitness. We describe the long run behavior of this evolutionary process.

The Decision Problem A resource is hidden at a location θ ∈ [−1, 1]
which is drawn from the uniform distribution. The organism will choose a
location a and search intensity i. The payoffs are

u(a, i, θ) = i
[
2aθ − a2] . (1)

In the environment there is a collection of signals σ available to the
organism which convey information about the current location of the re-
source. A new location, and a new set of signals are selected independently
across each of an infinite sequence of periods. The problem for the organ-
ism is to evolve an efficient process to input, interpret, and aggregate the
signals in order to optimally exploit the resource.

In each period, there is an unlimited number of signals that the organ-
ism could potentially use to locate the resource, but the organism is limited
by the number of signals it can collect. Formally, σ = σ1, σ2, . . . is an infinite
sequence from {−1, +1}∞ and the organism is able to collect a finite sam-
ple of size k. The parameter k is referred to as the precision of the organsim.
Over time, increasing precision is one of the ways in which the organism
will evolve.

The organsim must also learn how different signals σj correlate differ-
ently with the location of the resource. This correlation structure is fixed
over time and represents the environment to which the organism must adapt.
At any point in time, the organism’s current scheme for translating a sam-
ple σ1, . . . , σk into a choice of location is characterized by another finite se-
quence π = π0, π1, . . . , πk ∈ {−1, +1}k. When the organism observes the
sample σ1, . . . , σk it applies the following formula

a(σ1, . . . , σk|π) =
π0

k + 2

k

∑
j=1

πjσj. (2)
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to select a location a(σ1, . . . , σk) to search. To interpret this, note that the
sign of π0πj expresses whether the organism acts as though signal σj is pos-
itively or negatively correlated with the location θ. The sequence π0, . . . , πk
can be viewed as the genetic code of the organism. Over time, the organ-
sim will evolve by increasing the length and tuning the configuration of
this genetic code.

The specific functional form and the special role played by the parame-
ter π0 will be explained next.

The Environment Now I describe the probability distributions from which
the location θ and the signals σ are drawn independently in each period.
One aspect of the environment is fixed throughout. An infinite sequence
λ = λ1, λ2, . . . ∈ {−1, +1}∞ is determined at the beginning of time accord-
ing to an i.i.d. process with Prob(λj = 1) = l > 1/2. We will refer to λ as
the environment.

The environment determines the correlation between signals and the
location of the resource. Specifically, each signal σj is chosen independently
according to the distribution

Prob(σj = λj) =
θ + 1

2
. (3)

To understand this structure, first consider a signal j for which λj = 1. In
this case, observing σj = 1 indicates that the resource is likely to be located
further to the right, whereas σj = −1 indicates that the resource is likely
to be located further to the left. However, when λj = −1, these inferences
are reversed. For this reason, if λj = −1, then we say that the jth signal is
inverted.

The optimal estimator It is instructive to begin by considering the first-
best algorithm for estimating the location of the resource, given prior knowl-
edge of the structure of the environment. Suppose that λ is known. It fol-
lows from standard properties of binomial sampling that the posterior ex-
pected value of θ conditional on observing the sample of signals σ1, . . . , σk
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is given by7

θ̄k := E(θ|σ1, . . . , σk) =
1

k + 2

k

∑
j=1

λjσj. (4)

Therefore, given the structure of payoffs (see Equation 1), the organism
should hunt for the resource at location

a∗(σ1, . . . , σk) =
1

k + 2

k

∑
j=1

λjσj. (5)

Alignment Now, returning to the organism, we can see that there are two
types of organisms which implement this optimal strategy. Compare Equa-
tion 2 and Equation 5. A positively-aligned organism is one with π0 = +1
and πj = λj for j = 1, . . . , k. A negatively-aligned organism is one with
π0 = −1 and πj = −λj for j = 1, . . . , k. Both types of organism select
the conditional expected fitness maximizing location a∗(σ1, . . . , σk) given a
sample size of k. Any other organism of equal precision chooses an inferior
location.

Computation and Complexity We view the organism as an algorithm for
locating and exploiting the resource. The organism is limited by the num-
ber of computational steps in can perform in this process. This number
x will be called the complexity of the organism. Each use of the following
operations requires a single step: collecting an additional signal σj, multi-
plying by −1 (henceforth referred to as a pre-processing step), and increasing
the search intensity. Therefore, an organism of complexity x which uses l
steps to calculate its location will exploit the resource at that location with
an intensity equal to x − l. As the organism evolves, it will improve by
increasing x and adjusting the allocation of these computational steps..

While positive and negatively aligned organisms of the same preci-
sion select the same location a∗(σ1, . . . , σk), they typically require a different
number of steps to do it and therefore they will differ in the intensity i with
which they are able to exploit the resource. This means that, for a given

7Write θ̂ = (θ + 1)/2. Then θ̂ is distributed uniformly on [0, 1] and observation of
{λjσj}k

j=1 is a binomial sampling process from {−1, 1} with unknown probability θ̂ that

λjσj = 1. It is a standard result that in this case the posterior distribution of θ̂ is a Beta dis-
tribution with parameters (ζ1, ζ2) where ζ1 is one plus the number of j for which λjσj = 1
and ζ2 is one plus the number of j for which λjσj = −1. The expectation of the Beta distri-

bution is ζ1
ζ1+ζ2

. This yields Equation 4 after some algebra.
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total complexity x, only one of these two types of organism will achieve
the maximum fitness. The gene π0 adds flexibility to the design of the or-
ganism potentially allowing it to economize on computational complexity.

The diagrams in Figure 1 illustrate the optimal organism for a fixed
complexity x. The “budget” lines capture the tradeoff between intensity
and precision for positively- (dashed) and negatively- (solid) aligned or-
ganisms respectively. Adding the jth unit of precision requires a sacrifice
of one or two units of intensity, depending on the alignment and the value
of λj. This yields the following budget equations

x = i + k

(
3
2
− 1

k

k

∑
j=1

λj

2

)
for positive alignment and

x = i + k

(
3
2

+
1
k

k

∑
j=1

λj

2

)
for negative alignment. The “indifference curve” is the set of pairs (i, k)
which achieve the same fitness.

Figure 1(a) shows a case in which the optimal organism is negatively
aligned. As the organism increases in complexity, the budget lines shift
up, potentially switching the alignment of the optimal organism. This is
illustrated in Figure 1(b). Indeed, the optimal alignment depends on the
sign of the moving average

L(k) :=
1
k

k

∑
j=1

λj > 0.

If it is positive, then the fraction of inverted signals up to k is greater than
1/2, and the optimal organism will be positively aligned. The negatively
aligned organism is optimal in the alternative case.

Recall that we have assumed that l > 1/2. This implies that for suf-
ficiently complex organisms, positive alignment is optimal. A convenient
way to visualize this is to consider k sufficiently large so that L(k) ≈ 2l − 1
and the two budget lines are approximately

x ≈ i + k (2− l)

for positive alignment and

x ≈ i + k (1 + l)

for negative alignment. This is illustrated in Figure 2.
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(a) Low x. Negative alignment (solid line)
is optimal.

(b) Higher x. Budget lines shift upward and
now positive alignment is optimal.

Figure 1: Optimal organism for a fixed level of complexity x.

Kludge Note that for sufficiently complex organisms, positive alignment
yields a greater budget. Once this is the case, any negatively aligned organ-
ism is attempting to implement the optimal decision rule via an inefficient
protocol. For this reason and reasons developed further below, we refer to
such an organism as a kludge.

Definition 1. Suppose that the fraction of inverted signals up to k exceeds 1/2,
i.e.

1
k

k

∑
j=1

λj > 0.

Then we say that an optimal negatively aligned organism with precision k is a
kludge.

We can quantify the inefficiency of a kludge of complexity x. A switch
to positive alignment would produce an organism of the same precision
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Figure 2: Optimal alignment for large k.

but strictly higher intensity. Indeed the intensity and therefore the fitness
can be increased by a number which (on average) increases linearly in k.

However, this measure may be hard to interpret as it depends on a car-
dinal interpretation of payoffs. As an alternative, let us define the follow-
ing ordinal concept of inefficiency of an organism. Say that the organism
is asymptotically structurally inefficient if there is a given component of the
organism (here, a subset of tokens) such that at point in time, and forever
thereafter, this component should be altered as a part of some improvement
to the organism, but nevertheless the component remains fixed forever.8

8A virtue of this definition is that it excludes “marginal inefficiencies” where at any point
in time some inefficiencies are present, but every inefficiency, once it appears, is eventually
eliminated. For example, we may imagine that the most recently developed features of the
organism might begin in an inefficient state, but eventually as the organism matures, these
features are improved to their optimal state and align optimally with the rest of the organ-
ism. By contrast, asymptotic structural inefficiency identifies persistent mis-alignments.
It would be desirable to sharpen the definition even further by considering dynamic effi-
ciency issues. Without going into the details of such a definition, I note that the kludges
in this paper represent static as well as dynamic inefficiencies. In addition to outperform-
ing a kludge at each point in time, positively aligned organisms also grow in intensity and
precision faster than kludges.

11



The Adaptive Process The final ingredient in the model is a description
of the process by which the organism evolves. I adopt a simple model of
mutation and natural selection designed to capture the effects of a general
class of adaptive processes. The specific assumptions are chosen mostly for
expositional and analytical convenience.

Each period t, the organism Ot is evaluated according to its overall fit-
ness. The realized payoff of the organism in a period when the resource is
located at θ and the signal is σ is given by

i
[
2θa(σ1, . . . , σk|π)− a(σ1, . . . , σk|π)2] .

The overal fitness V(O) of the organism O is defined as the expected value
of this payoff with respect to the distributions of θ and σ.

With positive probability, a variation occurs which results in a new ver-
sion O′ of the organism. If the variant O′ is more fit, i.e. V(O′) > V(Ot),
then the variant replaces the existing version and survives to date t + 1,
that is Ot+1 = O′. If not, then the existing version survives, i.e. Ot+1 = Ot.

Two types of variations can occur. First, with probability q, the organ-
ism increases in complexity. It keeps the analysis simple to assume that
when complexity increases it it increases by two, and the two additional
computational steps are allocated optimally taking as given the existing
allocation. On the other hand, with probability (1− q) the organism does
not increase complexity, but undergoes a mutation in which some (possibly
empty) subset of existing computational steps are re-allocated.

We model mutations as follows. The genetic code of the organism is
represented by a sequence of symbols {−, 1, ∗}. The initial string of length
x − i consists of symbols in {−, 1} and represents π. The remaining sym-
bols, numbering i, are all ∗. An example is illustrated in Figure 3.

1 − 1 − 1 1 − 1 . . . 1 ∗ ∗ . . . ∗

Figure 3: An encoding of an organism.

When a mutation occurs, a subset of the − and ∗ symbols is selected
at random. Each of the symbols in the selected set is then randomly re-
assigned. When a symobl is re-assigned it may mutate into a different
symbol and it may change position in the sequence, subject to the following
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restrictions. A new 1 symbol (which represents an increase in precision) is
added at the end of the π substring, and a new ∗ symbol (representing an
increase in intensity) is added at the end of the sequence. A new − symbol
(representing a new signal pre-processing step) can be placed in front of
any 1 symbol which does not already have a − in front of it.

It remains to specify the probabilities with which various sets of sym-
bols are selected and re-assigned. One simple and natural model would
be as follows. There is a fixed mutation probability µ > 0 and each gene
is subject to mutation with independent probability µ. When a gene mu-
tates, it is assigned a new symbol and location within the sequence with
each possible combination being equally likely. This independent mutation
model is useful for building intuition but imposes more structure than is
needed for the results. All that is necessary is the following assumption on
the asymptotic probabilities with which large subsets are selected.

Definition 2. Let Mn be a probability distribution over subsets of {1, . . . , n}. We
say that the family of distributions {Mn}n∈N satisfies a large-deviation condi-
tion if there exists µ ∈ (0, 1) and a function δ : (µ, 1]× N → (0, 1) such that
if T is any subset of {1, . . . , n}, and m ≥ µ, then the probability under Mn of
selecting a mutation set which includes more than a fraction m of elements from T
is no greater than δm(|T|) and

lim sup
N

δm(N + 1)
δm(N)

≤ β(m) < 1.

This is a large-deviation property which limits the probability of select-
ing a large fraction m (greater than µ) of genes from any given large subset.
This probability must shrink to zero at a rate which is asymptotically faster
than some β(m) < 1. Note that by a standard result from large-deviation
theory, the independent mutation model is a special case. Also note that it
places no restrictions at all on how the selected set is re-assigned. 9

9So for example it accomodates a model in which the selected set is re-assigned to maxi-
mize fitness given the fixed structure of the remainder. This would represent an optimizing
(but not too patient) designer to whom ideas about how to improve the organism arrive
randomly. Ideas which involve coordinated changes of larger and larger components of the
organism have smaller and smaller probability. And in this context, if we think of the or-
ganism as a theory of the environment, the model can be interpreted to say something about
the evolution of scientific theories.
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3 Analysis

First, we consider an instructive benchmark case in which q = 0. In this
case, the complexity of the organism is fixed and cannot increase. Then,
because the mutation probabilities are strictly positive, with probability 1
the organism will be optimally adapted after some finite timespan.

Benchmark with q = 0 Consider an arbitrary organism O of complexity
x. Let O∗ be an optimal organism of the same complexity. There is a lower
bound on the probability of a mutation large enough to transform any such
O into O∗. In the worst case, a change to the entire genetic structure will be
required and the probability of such a large mutation is strictly positive by
assumption. When q = 0, the organism will never increase in complexity
and so this remains forever a lower bound on the probability of reaching
an optimally adapted organism in a single step. It follows that with proba-
bility 1 the optimal organism will appear eventually. Moreover an optimal
organism can never be replaced if the complexity of the organism cannot
increase.

Proposition 1. When q = 0, with probability 1 the organism is eventually opti-
mally adapted, regardless of the initial complexity.

The proposition shows that any asymptotic inefficiency that arises when
q > 0 is not due to a simple problem of local optima. The model allows for
arbitrarily large mutations at any point in time. Thus, any improvement, of
any fixed size, if available for sufficiently long, will eventually be realized.
On the other hand, this argument does not apply to improvements which
require larger and larger mutations. Potentially, the organism can gradu-
ally improve at the margin by increasing in complexity, all the while inten-
sifying the complementarity among its components. This would mean that
substantial improvements decline in probability. Whether such improve-
ments will be realized will depend on the rate at which this probability
declines.

The main result of the paper concerns the case of q > 0 and asymptotic
structural inefficiency.

Theorem 1. Suppose µ < 1/6. When q > 0 there is a positive probability that the
organism will be forever kludged and thus asymptotically structurally inefficient.
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3.1 Proof of Theorem 1

Recall that we have assumed that l > 1/2. The parameter l determines the
probability that each λj = +1. As discussed above, what matters for the
optimal design of the organism is the sign of the moving average

L(k) =
1
k

k

∑
j=1

λj > 0.

Because l > 1/2, by the strong law of large numbers, there is probability
one on the set of environments in which there exists some k̄ such that L(k)
is positive for all k > k̄. Throughout the proof, we fix such an environment
λ and integer k̄ and consider the stochastic process of evolution in that
environment.

Definition 3. Let O be a kludge. We say that a drastic mutation occurs if a
mutation produces an organism O′ with the same complexity but strictly larger
fitness.

Let ηx be the probability that an kludge of complexity x will undergo a
drastic mutation. Consider the following simplified stochastic process. Let
the states of the process correspond to the levels of overall complexity x of
the organism. At each state, three transitions are possible. With probability
q, the value of x increases by two. With probability (1 − q)ηx, the process
terminates. Finally, with the remaining probability, the process continues
and the value of x is unchaged. Figure 4 illustrates. The process begins in
state x̄, defined as the smallest level of complexity such that the optimal
organism has precision k̄. We refer to this as the stochastic exit process.

Lemma 1. The probability that a negatively aligned organism with precision k̄
remains asymptotically structurally inefficient is bounded below by the probability
that the stochastic exit process never terminates. This probability is positive if and
only if

∑
x

ηx < ∞.

Proof. A standard tool from the theory of countable-state Markov chains10

indicates an analysis of the following system of equations in unknowns

10See (Billingsley, 1995, Theorems 8.4 and 8.5)
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Stop

Figure 4: Stochastic Termination Process.

Z0, Z2, . . ..

Z0 = qZ2 + (1− q)(1− ηx̄)Z0

Z2 = qZ4 + (1− q)(1− ηx̄+2)Z2

...
Zx = qZx+2 + (1− q)(1− ηx̄+x)Zx

...

If the system can be solved by a bounded sequence Zx, then the probability
is strictly positive that the process will never terminate.

We can set Z0 = 1 and then solve the system recursively, first writing

Zx+2 =
(

1− (1− q)(1− ηx̄+x)
q

)
Zx

16



for each x, or

Zx+2 =
(

1− (1− q)ηx̄+x

q

)
Zx

then recursively substituting to obtain

Zx+2 =
x

∏
n=2

[
1− (1− q)ηx̄+n

q

]
.

We wish to show that lim Zx < ∞ which is equivalent to the convergence
of the following series.11

∞

∑
n=x̄+2

(1− q)ηn

q
.

which is convergent iff ∑ ηn < ∞.

Lemma 2. There exists a function M(k) such that the probability that any kludge
with precision k has a drastic mutation is bounded above by M(k) and

lim sup
k

M(k + 1)
M(k)

< 1. (6)

Lemma 3. There exists a function C(k) such that there are at most C(k) values
of x such that a kludge of complexity x can have precision k, and

lim
k

C(k + 1)
C(k)

= 1. (7)

Combining lemmas 2 and 3 enables us to conclude the proof of Theo-
rem 1 as they establish the bound

∞

∑
x=x̄

ηx ≤
∞

∑
k=k̄

C(k)M(k) < ∞

which by Lemma 1 is enough to prove the theorem.
We now turn to the proofs of Lemma 2 and Lemma 3. Each makes use

of the following statistical lemma, whose proof is in Appendix A.

11Note that for any sequence of positive numbers Rn, 1 + ∑x
1 Rn ≤ ∏x

1(1 + Rn) ≤
exp(∑x

1 Rn).

17



Lemma 4. For any level of precision k,

var(θ̄k)− var(θ̄k−1) =
1− var(θ̄k−1)

(k + 2)2

and
var(θ)− var(θ̄k) <

1
k + 3

Proof of Lemma 2. (Preliminary. The proof covers the case of l = 1.)
Let O∗ be a kludge with precision k∗ and intensity i∗. The precision and

intensity satisfy the “first-order condition”

i∗ ·
[
var θ̄k∗+1 − var θ̄k∗

]
< 2 var θ̄k∗ .

Applying Lemma 4 and rearranging,

i∗ < 2
[

var θ̄k∗

1− var θ̄k∗

]
(k∗ + 3)2 .

Let us define α by the following equation. It gives the maximum amount
by which intensity can be reduced and still produce a drastic muation.

(i∗ − αk∗) var θ = i∗ var θ̄k∗

αk∗ var θ < 2
[

var θ̄k∗

1− var θ̄k∗

]
(k∗ + 3)2 (var θ − var θ̄k∗

)
Applying lemma 4,

α <
2

1− var θ

k∗ + 3
k∗

. (8)

Figure 5 illustrates the situation. The kludge O∗ achieves the maximum
fitness among all points on the budget-line for negative alignment. The
horizontal axis is now the effective fitness of an organism. A necessary
condition for an organism to achieve a higher fitness than O∗ is for the
(effective fitness, intensity) pair to lie above the budget line. It is convenient
to normalize the axes by dividing by k∗, yielding Figure 5.

By definition of a kludge, a drastic mutation requires that π0 change
sign. This change by itself however cannot improve because all of the in-
puts will be misaligned and the organism will be choosing the negative of

18



Figure 5: The optimal kludge O∗. The axes have been rescaled. The asymp-
tote represents the minimum intensity of any organism which achieves at
least the fitness of O∗.

the optimal location. So a drastic mutation requires accompanying changes
elsewhere. To identify the necessary changes it is useful to consider a mea-
sure of the effective precision of an organism, defined as follows.

k̃(O) = π0

k

∑
j=1

πjλj

Notice that the change in sign of π0, by itself, reduces the effective precision
to −k∗.

The fitness of any organism with effective precision k̃ is no greater than
that of a kludge with precision equal to k̃and with the same intensity. To
see this, note first that for any even number z the estimator

1
k̃ + z + 2

k̃

∑
j=1

λjσj
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is strictly worse than the optimal estimator from a sample of size k̃ (see
Equation 4). And when z = 2, we can show that the above estimator
is strictly better than the estimate produced by an organism of precision
k̃ + 2 and effective precision k̃. The difference between the two estimators
is that the latter incorporates two additional inputs, one of which is mis-
aligned. When the signals from these two inputs have the same sign, the
two estimators produce identical estimates. When the signals from these
two inputs have opposite signs, the displayed estimator produces the op-
timal estimate while the latter does not. Now by induction, we can show
that the displayed estimator is strictly better for any even number z.

It follows that a necessary condition for a drastic mutation is that the re-
sulting organism have an (intensity/effective-precision) pair that is above
the budget line in Figure 5.

We search for paths to improvement which combine the three types of
mutations that can increase effective precision.12

1. Change a ∗ to a 1.

2. Change a − to a 1.

3. Change a − to a ∗.

Refer to Figure 6 below. We first show that mutations involving only
changes of type 1 will not improve upon O∗. Each change of type 1 reduces
intensity by one unit and increases effective precision by one unit. Muta-
tions of type 1 move along the solid line with slope -1. It improves upon
O∗ only if it moves past the intersection point with the dashed budget line.

Noting that the slope of the solid line is -1 and the slope of the budget
line is -2, the vertical coordinate of their intersection is i∗

k∗ − 4. When k∗ >
14, this is below the horizontal asymptote and hence no organism with such
a low intensity could achieve a fitness higher than that of O∗. It follows
that when k∗ > 14, no mutation consisting only of changes of type 1 can
improve.

Next we can rule out paths that involve mutations of type 3. Any im-
provement must move from the solid line to the right of the budget line.
Each type 3 step moves two units to the right and one unit upward. By

12Here I am using the fact that l = 1 When l = 1, there is no gain to adding addtional −
symbols once π0 switches from −1 to 1.
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Figure 6: Paths to improvement. After the change in alignment, the (nor-
malized) effective precision is -1. The downward sloping, horizontal, and
upward sloping paths represent the three types of mutations.

comparison, each type 2 step moves three steps to the right. Because of the
relative slopes of the two lines, type 2 steps close the gap more quickly.

Thus, in trying to find an improvement we can confine to paths that
involve only mutations of type 1 and 2. Among these paths, we calculate
the minimum number of type 2 steps required for an improvement. Any
improvement must reach the budget line before falling below the horizon-
tal asymptote of the indifference curve. Thus, the horizontal distance is
bounded below by the minimum among points above the asymptote of the
distance between the solid line (which is where the initial type 1 steps land)
and the budget line. Because of the relative slopes of these lines, this min-
imum is obtained at the asymptote where the horizontal distance, denoted
∆ in the figure, is equal to 4−α

2 . (Moving a distance 4− α upward from the
intersection point puts this much distance between the two lines because
of their relative slopes.) Applying Equation 8, ∆ is at least

1
2

[
4−

(
2

1− var θ

)(
k∗ + 3

k∗

)]
= 2−

(
1

1− var θ

)(
k∗ + 3

k∗

)
which, multiplied by k∗ gives the total increase in effective precision result-
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ing from the horizontal type 2 steps. Recalling that var θ = 1/3 and each
type 2 step increases effective precision by 3, the total number of type 2
steps required is

k∗

3

[
2− 3

2

(
k∗ + 3

k∗

)]
.

Using this result, for all k > 14 we can bound M(k) by the probability
that a large fraction of the pre-processor tokens are selected for mutation.
We apply the large-deviation property (recall Definition 2.) Pick m to satisfy

µ < m < 1/6.

Then since the number of− symbols is k∗ , the probability that a fraction
m of these are selected for mutation is no greater than δm(k). Set M(k) =
δm(k) where δm(k) is given by the large-deviation property. We have shown
that the probability of a drastic mutation is bounded by M(k) and since
µ < m, the large deviation property implies

lim sup
N

M(k + 1)
M(k)

≤ β(m) < 1,

concluding the proof of the lemma.

Proof of Lemma 3. Suppose that an organism has intensity i and precision k.
Then if the organism is a kludge the following inequality must be satisfied.

i
[
var(θ̄k)− var(θ̄k−1)

]
> var(θ̄k−1).

The left-hand side is the marginal increment to fitness from an increase
in precision, while the right-hand side is the marginal increment to fitness
from instead increasing intensity. 13 As complexity increases, a kludge with
precision k will use the additional computational steps to increase intensity
until it reaches the smallest level i which satisfies the corresponding in-
equality. It follows that the organism will increase its the level of precision
from k − 1 to k as soon as

i =
(

1 + 1λj=−1

) var(θ̄k−1)
var(θ̄k)− var(θ̄k−1)

(up to an integer,) and thus will spend at most

C(k) ≤ 2 var(θ̄k)
var(θ̄k+1)− var(θ̄k)

− var(θ̄k−1)
var(θ̄k)− var(θ̄k−1)

13In fact, when λj = −1, two tokens are required to increase precision, so in that case the
left-hand side must exceed twice the right-hand side.
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steps of the stochastic exit process with precision k.
Applying Lemma 4, we have

C(k) ≤ C(k) :=
2 var(θ̄k)

1− var(θ̄k)
(k + 3)2

<
2 var(θ)

1− var(θ)
(k + 3)2

so that

lim
C(k + 1)

C(k)
= lim

(k + 4)2

(k + 3)2 = 1.

A Proof of Lemma 4

Define τj = λjσj. Note that the Eτj = 0 and so by Equation 4, Eθ̄k = 0 and
hence var(θ̄k) = Eσ

(
θ̄2

k

)
. We calculate

E
(
τj|τ1, . . . , τj−1

)
= Prob(τj = 1|τ1, . . . , τj−1)− Prob(τj = −1|τ1, . . . , τj−1)

and by Equation 3 and the law of total probability,

= E
( θ + 1

2
|τ1, . . . , τj−1

)
− E

(1− θ

2
|τ1, . . . , τj−1

)
=

θ̄k−1 + 1
2

− 1− θ̄k−1

2
= θ̄k−1. (9)

From Equation 4,

θ̄k =
(

k + 1
k + 2

)
θ̄k−1 +

τj

k + 2
,

so

var(θ̄k) = E

[(
k + 1
k + 2

)2

θ̄2
k−1 + 2

(
τj

k + 2

)(
k + 1
k + 2

)
θ̄k−1 +

1
(k + 2)2

]

= Eτ1,...,τj−1 E

[(
k + 1
k + 2

)2

θ̄2
k−1 + 2

(
τj(k + 1)
(k + 2)2

)
θ̄k−1 +

1
(k + 2)2 |τ1, . . . , τj−1

]
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Applying Equation 9

= Eτ1,...,τj−1

[
1

(k + 2)2 +
2(k + 1) + (k + 1)2

(k + 2)2 θ̄2
k−1

]
and we have

var(θ̄k)− var(θ̄k−1) = E
[

1
(k + 2)2 −

(
1− 2(k + 1) + (k + 1)2

(k + 2)2

)
θ̄2

k−1

]
= E

[
1

(k + 2)2 −
1

(k + 2)2 θ̄2
k−1

]
=

1− var(θ̄k−1)
(k + 2)2

establishing the first part of the lemma. To show the second part, note that

var(θ)− var(θ̄k) =
∞

∑
j=k

var(θ̄j+1)− var(θ̄j)

=
∞

∑
j=k

1− var(θ̄j)
(j + 3)2

<
∞

∑
j=k+3

(
1
j

)2

<
1

k + 3
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