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Abstract

We characterize incentive compatible mechanisms in quasi-linear environments
where the envelope theorem and revenue equivalence fail due to non-convex and
non-differentiable valuations. Despite these obstacles, we obtain a characterization
based on the familiar Mirrlees representation of the indirect utility and a mono-
tonicity condition on the allocation rule. These conditions pin down the range of
possible payoffs as a function solely of the allocation rule, thus providing a rev-
enue inequality. We use our characterization in two economic applications where
standard techniques based on revenue equivalence fail. We find a budget-balanced
efficient mechanism in a public goods setting, and we characterize the optimal sell-
ing mechanism when the buyer has loss-averse preferences à la Kőszegi and Rabin
(2006).
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1 Introduction

Revenue equivalence states that, under certain conditions, two (dominant strategy1)
incentive compatible mechanisms with the same allocation rule generate utilities for
the agent and payments to the planner that differ at most by a constant. The revenue
equivalence principle is very useful in simplifying mechanism design problems in a
variety of settings, as first shown by Myerson (1981). A large literature studies the
breadth of conditions under which revenue equivalence holds.2

In this paper, we characterize incentive compatibility in the absence of linearity, con-
vexity and differentiability assumptions on the valuation function with respect to types.
Without these assumptions, revenue equivalence as traditionally formulated may fail
but the range of potential payoffs can still be determined. Moreover, our characteriza-
tion can be employed analogously to the traditional one in various applications such as
efficient, budget-balancing, and revenue-maximizing mechanism design.

The following simple example illustrates these ideas.

Example 1. The allocation set is X = [0, 1]. The agent has a quasi-linear utility function
u = v(x, θ)− ρ defined over alternatives x ∈ X and monetary payments ρ ∈ R. Types
are private information and lie in Θ = [0, 1]. The agent’s valuation function v : X ×
Θ→ R is given by

v(x, θ) =

{
θx, if x ≤ θ;
2θ2 − θx, if x > θ.

Think of x as the quantity traded of some good. Our agent has positive marginal utility
for the first θ units, and negative marginal utility for additional amounts. Note that
for each x, the function θ 7→ v(x, θ) is neither convex nor fully differentiable on Θ. In
particular, its partial derivative with respect to θ fails to exist whenever θ = x.

The efficient allocation rule X∗ : Θ → X selects X∗(θ) = θ. Clearly X∗ is imple-
mentable, indeed by a constant payment rule p ≡ 0. In this case, the direct mechanism
(X, p) generates zero revenue and an indirect utility function for the agent given by

U(θ) = v(X∗(θ), θ)− p(θ) = θ2.

However, revenue equivalence fails. For example, consider the alternative payment
rule p′ defined by p′(θ) = θ2/2, all θ ∈ Θ. To see that the mechanism (X∗, p′) is

1We study single-agent, dominant strategy incentive compatible mechanisms. This is for expositional
clarity. It is straightforward to generalize our results to many agents and to Bayesian incentive compati-
bility.

2Berger, Müller, and Naeemi (2010) build on the envelope theorem of Milgrom and Segal (2002) to
establish revenue equivalence when the type space is a convex subset of a multi-dimensional Euclidean
space and valuations are convex or differentiable in types. See also Krishna and Maenner (2001), Jehiel,
Moldovanu, and Stacchetti (1996, 1999), Williams (1999), Heydenreich, Müller, Uetz, and Vohra (2009) and
Chung and Olszewski (2007). Holmström (1979) and Carbajal (2010) develop an alternative method to
revenue equivalence for efficient allocation rules.
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incentive compatible, fix a type θ ∈ Θ. Reporting θ̂ ∈ Θ generates payoffs equal to

v(X∗(θ̂), θ) − p′(θ̂) =

{
θθ̂ − θ̂2/2, if θ̂ ≤ θ;
2θ2 − θθ̂ − θ̂2/2, if θ̂ > θ.

The above expression is maximized when θ̂ = θ. In this mechanism, type θ = 0 obtains
zero utility, just as in (X∗, p), and yet (X∗, p′) generates strictly positive revenues and
an indirect utility function U′ given by U′(θ) = θ2/2. �

We shall see that despite the failure of revenue equivalence, the full set of incentive
compatible payment rules can be characterized by versions of standard conditions. Ap-
plied to Example 1, we can show that U is an indirect utility function arising from an
incentive compatible mechanism with the allocation rule X∗ if, and only if,

U(θ) = U(0) +
∫ θ

0
s(θ̃) dθ̃, for all θ ∈ Θ, (1)

for some function θ 7→ s(θ) such that

s is an integrable selection from the correspondence S(θ) = [θ, 3θ] (2)

satisfying, for all θ, θ̂ ∈ Θ,

v(X∗(θ), θ)− v(X∗(θ), θ̂) ≥
∫ θ

θ̂
s(θ̃) dθ̃ ≥ v(X∗(θ̂), θ)− v(X∗(θ̂), θ̂). (3)

Equation 1 is the familiar Mirrlees representation of incentive compatible payoffs.
Equation 2 generalizes the standard envelope theorem derivation of the integrand θ 7→
s(θ). In models with differentiable valuations, s(θ) would be given by the partial
derivative of v(X∗(θ), θ̃) with respect to its second argument evaluated at θ̃ = θ. This
requirement is modified to allow s(θ) to range between the right and left subderiva-
tives3 of v(X∗(θ), θ̃) at θ̃ = θ, which in this case are θ and 3θ, respectively. Finally, as
is always the case, some form of monotonicity of the allocation rule is necessary for
incentive compatibility. Here Equation 3, the integral monotonicity condition, turns out to
be necessary and, together with the previous two conditions, sufficient.4

Our main result, Theorem 1, extends this characterization to a general mechanism
design setting with utilities that are quasi-linear in money, a convex, possibly multi-
dimensional type space, and a measurable space of outcomes. In place of differentiabil-
ity, convexity, or absolute continuity, we assume that the valuation function satisfies
a uniform Lipschitz condition with respect to types. This condition, along with an

3Mathematical concepts and results are presented in Section 2.2.
4This condition is also studied in Berger, Müller, and Naeemi (2010) who characterize incentive com-

patibility in settings where revenue equivalence holds.
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additional technical restriction, allows us to employ integrable selections of the sub-
derivative correspondence (cf. Equation 2) in place of the usual envelope derivation. In
multi-dimensional settings, a closed-path integrability condition appears in our char-
acterization of incentive compatible mechanisms, in addition to the three conditions
mentioned above.

In Section 5 we apply our characterization result to two settings: an efficient public
good provision problem, and the design of an optimal selling mechanism when buyers
are loss-averse. It is well understood that when revenue equivalence holds, the efficient
allocation rule is implementable if and only if it is implementable via a Vickrey-Clarke-
Groves (VCG) payment rule. We consider a location model for a public good where
revenue equivalence fails and show that, in this case, efficient allocations can be im-
plemented with a budget-balanced payment rule, and yet no VCG mechanism has a
balanced budget. In the buyer-seller model, the buyer has loss-averse preferences à la
Kőszegi and Rabin (2006) which, due to a kink on the valuation at the reference point,
fails standard requirements of differentiability or convexity. Nonetheless, our charac-
terization result applies and allows us to expand Myerson’s (1981) techniques to this
situation, thus reformulating the seller’s problem in terms of virtual valuations. In
the optimal selling mechanism, a range of intermediate types purchase their reference
quantity so that the flexibility of pricing rules afforded by our characterization plays an
important role. Compared to the case without loss aversion, some of these intermedi-
ate types have their quantities distorted downward to exploit the loss aversion of even
higher types, whose incentive constraints are thereby slackened and their payments
correspondingly increased. Similarly, the loss aversion of lower intermediate types is
exploited by making them pay a premium to increase their quantity from zero to their
reference points.

In Section 4 we derive a revenue inequality in the spirit of the standard revenue equiv-
alence principle. Our Theorem 2 shows that, after normalizing the utility of the “low-
est type”, the difference in equilibrium payoffs generated by two incentive compatible
mechanisms with the same allocation rule is bounded, with bounds depending solely
on the allocation rule. Using our version of the Mirrlees representation of indirect util-
ities, we are able to show that any payment rule used to implement an allocation rule
has a simple representation based on the subderivative correspondence. It follows that
the set of normalized equilibrium payoffs is convex: if two payment rules implement
an allocation rule and generate indirect utility functions U and U′, respectively, then for
every convex combination Uλ of U and U′ there exists a payment function that imple-
ments the allocation rule and generates an indirect utility equal to Uλ.

In Section 6, we relate our approach to previous work and show that, with the in-
clusion of a minor measurability hypothesis on the right and left subderivatives of the
valuation function, our characterization result is obtained whenever the valuation is ei-
ther convex, concave, or differentiable with respect to types. We also show that revenue
equivalence is restored when valuations are convex or differentiable, or whenever the
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allocation set is finite. Section 7 ends this paper with some concluding remarks.

1.1 Related Literature

Integral monotonicity is connected to the variety of monotonicity conditions studied in
the literature since Rochet (1987), who characterized incentive compatibility via cyclic
monotonicity. Saks and Yu (2005), Bikhchandani, Chatterji, Lavi, Mu’alem, Nisan,
and Sen (2006), and Ashlagi, Braverman, Hassidim, and Monderer (2010) investigate
weaker forms of monotonicity in environments with finitely many allocations. For infi-
nite allocation sets, Archer and Kleinberg (2008) extend the insights of Jehiel, Moldovanu,
and Stacchetti (1999) and characterize implementable allocation rules via weak mono-
tonicity (plus a closed-path integrability condition) in environments with multi-dimensional
convex type spaces and valuations that are linear in types. In independent work, Berger,
Müller, and Naeemi (2010) study environments with convex or differentiable valuations
and obtain a characterization of incentive compatibility using integral monotonicity
(which they call path monotonicity).

We recently became aware of independent work by Kos and Messner (2010) and
Rahman (2010) who also characterize incentive compatibility in general settings. Rah-
man (2010) uses linear programming and duality to characterize incentive compatible
allocations in terms of detectable deviations. Kos and Messner (2010) takes a perspec-
tive that is more similar to ours, studying the extremal transfer rules that implement
an allocation. Relative to both of these papers, we impose additional structure (notably
Lipschitz continuity) and in return obtain characterizations which are more immedi-
ately suitable for applications. We demonstrate two such applications in Section 5.

2 Preliminaries

2.1 The design setting

We consider a single-agent mechanism design setting; extensions to multi-agent set-
tings are straightforward. An outcome (x, ρ) is composed of an alternative x that be-
longs to the allocation set X , and a real number ρ representing some quantity of a per-
fectly divisible commodity (money). Our agent has quasi-linear preferences, so that

u(x, θ, ρ) = v(x, θ) − ρ

represents the agent’s utility when x ∈ X is selected and amount ρ ∈ R is paid, given
her privately known type θ. We denote the agent’s type space by Θ and refer to v : X ×
Θ→ R as the valuation function.

The following assumptions are made throughout this paper.

(A1) The pair (X ,M) is a measurable space (M denotes a σ-algebra of subsets of X ).
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(A2) The type space Θ is a convex, bounded subset of Rk (k ≥ 1).

(A3) For every x ∈ X , the function θ 7→ v(x, θ) is Lipschitz continuous on Θ: there is a
positive number `(x) such that |v(x, θ) − v(x, θ̂)| ≤ `(x) ‖θ − θ̂‖, for all θ, θ̂ ∈ Θ.
Moreover, { `(x) | x ∈ X } is bounded above, with ` = sup{ `(x) | x ∈ X } < +∞.

(A1) does not impose any burdensome restriction on the allocation set, which could
be finite or infinite. The convexity of the type space in (A2) is a standard assumption
and is satisfied in several economic applications.5 (A3) is used to prove the Lipschitz
continuity of the indirect utility function. It is not possible to dispense with the bound-
edness assumption on the set of Lipschitz constants when X is infinite.6 In addition,
(A3) allows us to work with the right and left subderivatives of the valuation function
with respect to types.

We consider direct mechanisms of the form (X, p), where the function X : Θ→ X is
called the allocation rule and the function p : Θ → R is called the payment rule. X is said
to be implementable if there exists a payment rule p such that truth-telling is an dominant
strategy for the agent; i.e.,

v(X(θ), θ) − p(θ) ≥ v(X(θ̂), θ) − p(θ̂), for all θ, θ̂ ∈ Θ. (4)

In that case the direct mechanism (X, p) is said to be incentive compatible and the function
U : Θ→ R defined by

U(θ) ≡ v(X(θ), θ) − p(θ), all θ ∈ Θ, (5)

is called the indirect utility generated by (X, p). We shall restrict our analysis to measur-
able allocation rules.

2.2 Subderivatives and the integral of a correspondence

We introduce some concepts and results that are later used in our characterization the-
orem. The reader is referred to Aubin and Frankowska (1990), Hildenbrand (1974) and
Rockafellar and Wets (1998) for details.

Fix x ∈ X , θ̂ ∈ Θ, and let δ ∈ Rk, δ 6= 0, be a directional vector for which θ̂ + rδ ∈ Θ
for a sufficiently small scalar r. The right and left subderivatives of the function θ 7→

5At some notational cost, one could instead assume that Θ is polygonally connected. The boundedness
of the type space plays a technical role in some of our results.

6The following well-known example illustrates this point. Let X = N, Θ = [0, 1], and f : N×Θ → R

be defined by

f (n, θ) =

{
1, if 0 ≤ θ ≤ 1− 1

n ;
n(1− θ), if 1− 1

n < θ ≤ 1.

For each n ∈N, θ 7→ f (n, θ) is Lipschitz on Θ with `(n) = n. However, the function g : Θ→ R defined by
g(θ) = supn∈N f (n, θ), all θ ∈ Θ, is clearly discontinuous at θ = 1.
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v(x, θ) evaluated at θ̂ ∈ Θ in the direction δ are defined, respectively, as the following
lower and upper limits:

dv(x, θ̂; δ) ≡ lim inf
r↓0

v(x, θ̂ + rδ)− v(x, θ̂)

r
; (6)

dv(x, θ̂; δ) ≡ lim sup
r↑0

v(x, θ̂ + rδ)− v(x, θ̂)

r
. (7)

By (A3), these subderivatives exist and are finite. Note that dv(x, θ̂; δ) = −dv(x, θ̂;−δ).
If θ 7→ v(x, θ) admits one-sided directional derivatives at θ̂, then one can replace the
upper and lower limits in (6) and (7) with the usual one-sided limits, although the
above notation is maintained.

Given types θ1, θ2 in Θ, denote their vector difference by δ2
1 ≡ θ2 − θ1. The open

line segment connecting θ1 to θ2 is the set L(θ1, θ2) = { θ1 + α δ2
1 | α ∈ (0, 1) }. By (A2),

one has L(θ1, θ2) ⊆ Θ for all θ1, θ2 ∈ Θ. We shall make implicit use of the function
α 7→ θ2

1(α) ≡ θ1 + α δ2
1 mapping (0, 1) onto L(θ1, θ2).

Let B(0, 1) denote the Borel σ-algebra of subsets of (0, 1). Let S : (0, 1) ⇒ R be a
correspondence with closed images. Then S is said to be a measurable correspondence
if for every open set O in R, the inverse image S−1(O) = { α ∈ (0, 1) | S(α) ∩O 6= ∅ }
belongs to B(0, 1). In particular, dom S = { α ∈ (0, 1) | S(α) 6= ∅ } and its complement
are measurable sets. S is said to be integrably bounded if there exists a non-negative
(Lebesgue) integrable function g defined on (0, 1) such that S(α) ⊆ [− g(α), g(α)] for
almost all α in (0, 1). A selection s of the correspondence S is a function α 7→ s(α) such
that s(α) ∈ S(α), a.e. in (0, 1). By the Measurable Selection Theorem, a measurable cor-
respondence S : (0, 1) ⇒ R admits a measurable selection s : (0, 1) → R. If in addition
S is integrably bounded, then it admits (Lebesgue) integrable selections. In such case,
Aumann’s (1965) integral of the correspondence S is the non-empty set{ ∫ 1

0
s(α) dα | s(α) ∈ S(α) a.e. in (0, 1)

}
.

By the Lyapunov’s Convexity Theorem, the integral of a closed-valued, measurable and
integrably bounded correspondence S : (0, 1) ⇒ R is a non-empty closed interval.

3 Characterizing incentive compatible mechanisms

Consider a direct mechanism (X, p). We start with the following observation: if (X, p)
is incentive compatible, then its associated indirect utility is Lipschitz continuous on Θ
and has two-sided directional derivatives a.e. in the line segment connecting any two
types.
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Lemma 1. Assume that (A1) to (A3) are satisfied, and let p : Θ→ R implement the allocation
rule X. The following statements hold:

(a) The indirect utility function U generated by (X, p) is Lipschitz continuous on Θ.

(b) For every pair θ1, θ2 of distinct types in Θ, U admits two-sided directional derivatives in
the direction δ2

1 = θ2 − θ1 a.e. in L(θ1, θ2).

Proof (a) Consider arbitrary types θ1, θ2 in Θ. From Equation 4 and Equation 5 one
sees that

U(θ2)−U(θ1) ≤
{

v(X(θ2), θ2)− p(θ2)
}
−
{

v(X(θ2), θ1)− p(θ2)
}

= v(X(θ2), θ2) − v(X(θ2), θ1) ≤ `(X(θ2)) ‖θ2 − θ1‖ ≤ ` ‖θ2 − θ1‖;

where the last two inequalities follow from (A3). Reversing the roles of θ1 and θ2, one
readily concludes that |U(θ2)−U(θ1)| ≤ `‖θ2 − θ1‖, as desired.

(b) Fix distinct types θ1, θ2 in Θ. Define the function µ on (0, 1) by µ(α) = U(θ2
1(α)),

where θ2
1(α) ≡ θ1 + α δ2

1 ∈ L(θ1, θ2). It is readily seen that µ is Lipschitz continuous.
Indeed, for any 0 < α, α′ < 1, one has:

|µ(α)− µ(α′)| = |U(θ2
1(α))−U(θ2

1(α
′))| ≤ ` ‖θ2

1(α)− θ2
1(α
′)‖ = ` ‖δ2

1‖ |α− α′|,

with the above inequality following from part (a). Thus, µ is Lipschitz and therefore
absolutely continuous and differentiable a.e. in (0, 1). In particular, if µ is differentiable
at α ∈ (0, 1), then we deduce:

Dµ(α) = lim
r→0

µ(α + r)− µ(α)

r
= lim

r→0

U(θ2
1(α) + r δ2

1)−U(θ2
1(α))

r
= DU(θ2

1(α); δ2
1),

with last term above denoting the two-sided directional derivative of U at θ2
1(α) in the

direction δ2
1 . �

Milgrom and Segal (2002) obtained an analogue of Lemma 1-(a) under the alterna-
tive hypothesis of absolute continuity of v(x, ·) on a one-dimensional type space, plus
an integral bound condition on the derivative of v with respect to types. The exten-
sion of the absolute continuity concept to multi-dimensional settings is not straightfor-
ward.7 On the other hand, Lipschitz continuity extends naturally to multi-dimensional
domains and allows us to work with right and left subderivatives.

We mention that, in multi-dimensional settings, Lemma 1-(b) does not imply that U
is fully differentiable a.e. in the line connecting θ1 and θ2. In fact, there may be many
(piecewise) smooth paths between θ1 and θ2 for which U is nowhere fully differentiable

7For instance, it is possible to construct a convex function on a plane that fails to be absolutely continu-
ous; see Friedman (1940) for details.
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in such paths.8 What Lemma 1-(b) states is that the indirect utility generated by an
incentive compatible mechanism admits two-sided directional derivatives in the direc-
tion δ2

1 a.e. in L(θ1, θ2). We use this fact to derive a relationship between the right and
left subderivatives of the valuation function at equilibrium points. Define the right and
left subderivative functions between θ1 and θ2, respectively, by

s(θ2
1(α)) ≡ dv(X(θ2

1(α)), θ2
1(α); δ2

1), all α ∈ (0, 1), (8)

and
s(θ2

1(α)) ≡ dv(X(θ2
1(α)), θ2

1(α); δ2
1), all α ∈ (0, 1). (9)

The following technical assumption is required in our characterization of incentive
compatible mechanisms.

(M) Given an allocation rule X : Θ→ X , for every pair of distinct types θ1, θ2 ∈ Θ, the right
and left subderivative functions α 7→ s(θ2

1(α)) and α 7→ s(θ2
1(α)) between θ1 and θ2 are

B(0, 1)-measurable.

Our assumption (M), which is stated in terms of the valuation function and the
allocation rule, may be easily verified in some circumstances (cf. Example 1, where for
types θ ∈ Θ = [0, 1], dv(X∗(θ), θ) = θ and dv(X∗(θ), θ) = 3θ). In Section 6 we show
that (M) is satisfied in settings commonly employed in economic applications.

Using Equation 8 and Equation 9, we construct the subderivative correspondence S
(
θ2

1(·)
)

: (0, 1) ⇒
R between θ1 and θ2 as follows:

S
(
θ2

1(α)
)
≡
{

r ∈ R | s(θ2
1(α)) ≤ r ≤ s(θ2

1(α))
}

, α ∈ (0, 1). (10)

S
(
θ2

1(α)
)

is empty-valued if s(θ2
1(α)) > s(θ2

1(α)). Whenever the opposite inequality
holds, S

(
θ2

1(α)
)

contains all the real numbers between the right and left subderiva-
tive of v with respect to types in the direction δ2

1 , evaluated at (X(θ2
1(α)), θ2

1(α)).
9 The

subderivative correspondence between θ1 and θ2 is said to be regular if it is non empty-
valued a.e. in (0, 1), closed-valued, measurable and integrably bounded.

Lemma 2. Assume that (A1) to (A3) and (M) are satisfied. If X is implementable, then for all
θ1, θ2 ∈ Θ, θ1 6= θ2, the subderivative correspondence S

(
θ2

1(·)
)

between θ1 and θ2 is regular.

Proof Suppose that p : Θ → R implements X. Fix arbitrary types θ1, θ2 ∈ Θ, θ1 6= θ2.
For every θ2

1(α) ∈ L(θ1, θ2), for any scalar r sufficiently small, the indirect utility U

8See Krishna and Maenner (2001) for an example.
9Observe S

(
θ1

2(α)
)
= − S

(
θ2

1(1− α)
)
, all α ∈ (0, 1).
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generated by (X, p) satisfies

U(θ2
1(α) + r δ2

1) − U(θ2
1(α)) ≥ v(X(θ2

1(α)), θ2
1(α) + r δ2

1) − p(θ2
1(α))

− v(X(θ2
1(α)), θ2

1(α)) + p(θ2
1(α))

= v(X(θ2
1(α)), θ2

1(α) + r δ2
1) − v(X(θ2

1(α)), θ2
1(α)).

If r > 0 then it follows from the above expression that

v(X(θ2
1(α)), θ2

1(α) + r δ2
1)− v(X(θ2

1(α)), θ2
1(α))

r
≤ U(θ2

1(α) + r δ2
1)−U(θ2

1(α))

r
, (11)

whereas if r < 0 we have instead

U(θ2
1(α) + r δ2

1)−U(θ2
1(α))

r
≤ v(X(θ2

1(α)), θ2
1(α) + r δ2

1)− v(X(θ2
1(α)), θ2

1(α))

r
. (12)

By Lemma 1-(b), U admits two-sided directional derivatives in the direction δ2
1 a.e. in

L(θ1, θ2). Thus, taking the lower limit as r ↓ 0 in (11) and the upper limit as r ↑ 0 in (12),
we infer that a.e. in (0, 1) the following holds:

s(θ2
1(α)) ≤ DU(θ2

1(α); δ2
1) ≤ s(θ2

1(α)). (13)

This shows that S
(
θ2

1(α)
)
6= ∅ a.e. in (0, 1), as desired.

S
(
θ2

1(·)
)

is closed-valued by definition. To show that it is measurable, define the
correspondence T : (0, 1) ⇒ R by T(α) = {s(θ2

1(α))} ∪ {s(θ2
1(α))} when Equation 13

is satisfied, and T(α) = ∅, otherwise. Since the set { α ∈ (0, 1) | T(α) = ∅ } has
zero measure, we deduce from (M) that T is a measurable correspondence, and so
is its convex hull conv(T) = S

(
θ2

1(·)
)
.10 Further, notice that by (A2) Θ is bounded

and that for every x ∈ X , (A3) implies that |dv(x, θ2
1(α); δ2

1)| ≤ `‖δ2
1‖ and similarly

|dv(x, θ2
1(α); δ2

1)| ≤ `‖δ2
1‖, for all α ∈ (0, 1). Hence, S

(
θ2

1(·)
)

is integrably bounded. �

The integral of the regular correspondence S
(
θ2

1(·)
)

is a non-empty, closed interval.
In particular, s(θ2

1(·)) and s(θ2
1(·)) are integrable selections, with the inequalities∫ 1

0
s(θ2

1(α)) dα ≤
∫ 1

0
s(θ2

1(α)) dα ≤
∫ 1

0
s(θ2

1(α)) dα

valid for any integrable selection s(θ2
1(·)) of S

(
θ2

1(·)
)
. We use this fact in our character-

ization result. Given any subset {θ1, θ2, θ3} of Θ, denote δm
n ≡ θm − θn for n, m = 1, 2, 3.

It is understood that s(θm
n (·)) = s(θm

n (·)) ≡ 0 whenever θn = θm.

10Here we use two facts: (i) the union of measurable correspondences is measurable; (ii) the convex hull
of a measurable correspondence is also measurable. See the references given in Section 2.2.
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Theorem 1. Assume (A1) to (A3) are satisfied. Suppose that (M) holds for X : Θ → X . The
following statements are then equivalent.

(a) The allocation rule X : Θ→ X is implementable, with indirect utility function U.

(b) For every subset {θ1, θ2, θ3} of Θ, the subderivative correspondence S
(
θm

n (·)
)

between θn
and θm, n, m = 1, 2, 3, is regular and admits an integrable selection α 7→ s(θm

n (α)) that
satisfies the integral monotonicity condition:

v(X(θm), θm)− v(X(θm), θn) ≥
∫ 1

0
s(θm

n (α)) dα ≥ v(X(θn), θm)− v(X(θn), θn),

and the Mirrlees representation of its indirect utility U:

U(θm) − U(θn) =
∫ 1

0
s(θm

n (α)) dα.

Moreover, these selections satisfy the closed-path integrability condition:∫ 1

0
s(θ2

1(α)) dα +
∫ 1

0
s(θ3

2(α)) dα +
∫ 1

0
s(θ1

3(α)) dα = 0.

Proof (a) =⇒ (b) Fix a subset {θ1, θ2, θ3} of Θ. From Lemma 2, one has that the
correspondence S

(
θm

n (·)
)

is regular, for n, m = 1, 2, 3. Let θm
n (α) = θn + α δm

n for α ∈
(0, 1). From Lemma 1-(b), the function µm

n defined on the unit interval by µm
n (α) =

U(θm
n (α)) is absolutely continuous, with Dµm

n (α) = DU(θm
n (α); δm

n ) for almost all α ∈
(0, 1). Therefore, one has

µm
n (1)− µm

n (0) = U(θm)−U(θn) =
∫ 1

0
DU(θm

n (α); δm
n ) dα.

This expression is combined with Equation 13 to obtain∫ 1

0
s(θm

n (α)) dα ≤ U(θm) − U(θn) ≤
∫ 1

0
s(θm

n (α)) dα. (14)

To obtain the Mirrlees representation, use the convexity of the integral of the subderiva-
tive correspondence S

(
θm

n (·)
)
, which gives us an integrable selection s(θm

n (·)) such that∫ 1

0
s(θm

n (α)) dα = U(θm) − U(θn). (15)

From the proof of Lemma 1-(a), we notice that

v(X(θm), θm) − v(X(θm), θn) ≥ U(θm) − U(θn) ≥ v(X(θn), θm) − v(X(θn), θn).

This expression is combined with Equation 15 to obtain the integral monotonicity con-
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dition.
Clearly, we have (U(θ2)−U(θ1)) + (U(θ3)−U(θ2)) + (U(θ1)−U(θ3)) = 0. There-

fore, using the selection s(θm
n (·)) from the subderivative correspondence S

(
θm

n (·)
)

for
each respective case, we immediately obtain the closed-path integrability condition.

(b) =⇒ (a) Fix a type θ0 ∈ Θ. Define the payment rule p : Θ→ R by

p(θ1) = v(X(θ1), θ1) −
∫ 1

0
s(θ1

0(α)) dα, for all θ1 ∈ Θ .

Here s(θm
n (·)) are integrable selections of the regular subderivative correspondences

S
(
θm

n (·)
)

for which the assumptions of the theorem are satisfied. We claim that (X, p) is
incentive compatible. Indeed, for any θ1, θ2 ∈ Θ, the payment difference is

p(θ2)− p(θ1) = v(X(θ2), θ2)− v(X(θ1), θ1) +
∫ 1

0
s(θ1

0(α)) dα +
∫ 1

0
s(θ0

2(α)) dα

= v(X(θ2), θ2) − v(X(θ1), θ1) −
∫ 1

0
s(θ2

1(α)) dα,

where the first equality follows from s(θ0
2(α)) = − s(θ2

0(1− α)), and the last equality
follows from the closed-path integrability condition. Using this expression, we deduce
from the integral monotonicity condition that{

v(X(θ1), θ1) − p(θ1)
}
−
{

v(X(θ2), θ1) − p(θ2)
}

= v(X(θ1), θ1) − v(X(θ2), θ1) + p(θ2) − p(θ1)

= v(X(θ2), θ2) − v(X(θ2), θ1) −
∫ 1

0
s(θ2

1(α)) dα ≥ 0.

Hence, it follows that v(X(θ1), θ1)− p(θ1) ≥ v(X(θ2), θ1)− p(θ2). Since θ1 and θ2 were
arbitrarily chosen, this shows that p implements X, as desired. �

The closed-path integrability condition of our characterization theorem is trivially
satisfied with one-dimensional type spaces. We notice that one can replace the global
conditions in part (b) of Theorem 1 with their local versions, an approach that was
introduced by Archer and Kleinberg (2008) for the case of linear valuations. This relies
on the fact that for all θ1, θ2, θ3 in Θ, the convex hull of the closure of the line segments
L(θn, θm) (n, m = 1, 2, 3) is a compact subset of Rk. Thus, one can replace an open
cover of any such set with a finite subcover to obtain the desired conditions. This is
formally stated in the next proposition, whose proof can be adapted from the arguments
of Lemmas 3.2 and 3.5 in Archer and Kleinberg (2008).

Proposition 1. Assume (A1) to (A3) are satisfied. Assume in addition that (M) is satisfied for
the allocation rule X : Θ→ X . The following are equivalent:

(a) The allocation rule X : Θ→ X is implementable.
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(b) For each θ1 ∈ Θ, there exists an open neighborhood O of θ1 such that for all θ2, θ3 ∈ O ∩
Θ, for n, m = 1, 2, 3, the subderivative correspondence S

(
θm

n (·)
)

is regular and admits
an integrable selection s(θm

n (·)) satisfying the local integral monotonicity condition:

v(X(θm), θm)− v(X(θm), θn) ≥
∫ 1

0
s(θm

n (α)) dα ≥ v(X(θn), θm)− v(X(θn), θn).

Further, the selections s(θm
n (·)) satisfy the local closed-path integrability condition:∫ 1

0
s(θ2

1(α)) dα +
∫ 1

0
s(θ3

2(α)) dα +
∫ 1

0
s(θ1

3(α)) dα = 0.

Example 1 (continued). The regular subderivative correspondence for the efficient alloca-
tion rule X∗ is S(θ) = [θ, 3θ], all θ ∈ Θ = [0, 1]. Since X∗(θ) = θ, integral monotonicity
is expressed as

θ2 + θθ̂ − 2θ̂2 ≥
∫ θ

θ̂
s(θ̃) dθ̃ ≥ θθ̂ − θ̂2, 0 ≤ θ̂ < θ ≤ 1.

Letting θ̂ = 0 in the above expression, one sees that for each type θ ∈ Θ, it must be
that θ2 ≥

∫ θ
0 s(θ̃) dθ̃ ≥ 0. It follows that here any integrable selection θ 7→ s(θ) of the

subderivative correspondence S satisfying θ ≤ s(θ) ≤ 2θ, all θ ∈ Θ, can be employed
to construct a payment rule that implements X∗. �

4 A Revenue Inequality

In our general setting, the revenue associated with a given allocation rule may not be
uniquely determined up to a constant. However, one important feature that resembles
the revenue equivalence principle is preserved: from Theorem 1, it follows that the
range of indirect utilities is determined by the allocation rule alone. In this section, we
focus on normalized payment rules that generate an indirect utility of u0 ∈ R for the
“lowest type” θ0 ∈ Θ. One has the following revenue inequality.

Theorem 2. Assume (A1) to (A3) hold and let X : Θ→ X be an allocation rule for which (M)
is satisfied. Suppose that p : Θ→ R and p′ : Θ→ R implement X and let U and U′ denote the
indirect utility functions generated by (X, p) and (X, p′), respectively, with U(θ0) = U′(θ0) =
u0. Then for all θ1 ∈ Θ:

|U(θ1) − U′(θ1) | ≤
∫ 1

0

{
s(θ1

0(α)) − s(θ1
0(α))

}
dα. (16)

Proof By Theorem 1, both indirect utilities U and U′ satisfy Equation 14 for types
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θ1 = θm and θ0 = θn. We deduce the following inequalities:∫ 1

0
s(θ1

0(α)) dα ≤ U(θ1)−U(θ0) ≤
∫ 1

0
s(θ1

0(α)) dα, and

−
∫ 1

0
s(θ1

0(α)) dα ≤ U′(θ0)−U′(θ1) ≤ −
∫ 1

0
s(θ1

0(α)) dα.

Since U(θ0) = U′(θ0) = u0, Equation 16 follows by adding up these expressions. �

Theorem 2 implies that, given two incentive compatible mechanisms that share an
allocation rule and generate equilibrium payoff of u0 to type θ0, the difference in the
indirect utility functions is pinned down by solely the allocation rule, since X alone
determines the right and left subderivative functions of Equation 16.

Example 1 (continued). The constant payment rule p ≡ 0 implements X∗ and generates
an indirect utility U with U(θ) = θ2, all θ ∈ Θ. In addition, the payment rule p′ defined
by p′(θ) = θ2/2 implements X∗ and generates an indirect utility U′ with U′(θ) = θ2/2,
all θ ∈ Θ. Immediately, for every θ in Θ,

1
2 θ2 =

∣∣U(θ)−U′(θ)
∣∣ ≤ ∫ θ

0

{
s(θ̃)− s(θ̃)

}
dθ̃ = θ2. �

Suppose that (X, p) is an incentive compatible mechanism, with associated indirect
utility U : Θ→ R. Using the Mirrlees representation of U given in Theorem 1, we infer
that for θ0 ∈ Θ, for all θ1 ∈ Θ:

U(θ1) ≡ v(X(θ1), θ1) − p(θ1) =
∫ 1

0
s(θ1

0(α)) dα + U(θ0),

where s(θ1
0(·)) is one (of the possibly many) integrable selection of the subderivative

correspondence S
(
θ1

0(·)
)

between θ0 and θ1 that satisfies integral monotonicity and
closed-path integrability. Normalizing payments so that U(θ0) = u0, we obtain the
following result.

Proposition 2. Assume (A1) to (A3) and (M) hold. Suppose that (X, p) is incentive compat-
ible, with associated indirect utility function U : Θ → R satisfying U(θ0) = u0. Then, for
every θ1 ∈ Θ, there exists an integrable selection s(θ1

0(·)) of the subderivative correspondence
S
(
θ1

0(·)
)

between θ0 and θ1 such that

p(θ1) = v(X(θ1), θ1) −
∫ 1

0
s(θ1

0(α)) dα − u0. (17)

Thus, every payment rule p that implements X can be expressed via Equation 17.
Consider now two payment rules that are used to implement X, namely p′ and p′′,
with corresponding selections s′(θ1

0(·)) and s′′(θ1
0(·)) from subderivative correspon-

dence S
(
θ1

0(·)
)

between θ0 and θ1, for all θ1 ∈ Θ. Fix 0 ≤ λ ≤ 1. From the convexity
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of the integral of the subderivative correspondence, for every θ1 6= θ0 there exists an
integrable selection α 7→ sλ(θ1

0(α)) such that∫ 1

0
sλ(θ1

0(α)) dα = λ
∫ 1

0
s′(θ1

0(α)) dα + (1− λ)
∫ 1

0
s′′(θ1

0(α)) dα.

Clearly, sλ(θ1
0(·)) satisfies the integral monotonicity and closed-path integrability condi-

tions. Thus, the payment rule pλ : Θ → R defined by pλ(θ) = λp′(θ) + (1− λ)p′′(θ),
all θ ∈ Θ, implements X as well.

Corollary 1. If U′ and U′′ are indirect utility functions generated by two incentive compatible
mechanisms sharing the allocation rule X and assigning U′(θ0) = U′′(θ0) = u0 to θ0 ∈ Θ,
then for every λ ∈ [0, 1] there exists an incentive compatible mechanism (X, pλ) such that
Uλ = λU′ + (1− λ)U′′.

5 Applications

We apply our techniques and characterization result to two economic settings: a public
goods problem, where we look for efficient implementation, and a buyer-seller situation
with a loss-averse buyer, where we address revenue maximization.

When the revenue equivalence principle is in place, the efficient allocation rule is
implementable if, and only if, it is implementable via a Vickrey-Clarke-Groves (VCG)
payment scheme. It is well known that with sufficiently rich type spaces, generally
VCG payments do not balance the budget ex post.11 We consider a public goods setting
where revenue equivalence fails and show that efficient allocations can be implemented
with a budget-balanced payment rule that is, in addition, individually rational, and yet
no VCG payment balances the budget.

In the buyer-seller model, the buyer has reference-dependent preferences for some
good. In particular, the buyer exhibits loss aversion à la Kőszegi and Rabin (2006)
which, due to a kink of the valuation at the reference point, fail standard requirements
of differentiability or convexity. Nevertheless, our characterization allows us to follow
Myerson’s (1981) approach and reformulate the seller’s maximization problem in terms
of virtual valuations. In the optimal selling mechanism, a range of intermediate types
purchase their reference quantity, so that the flexibility of pricing rules afforded by our
characterization plays an important role. Compared to the optimal selling mechanism
without loss aversion, some of these intermediate types have their quantities distorted
downward to exploit the loss aversion of higher types, whose incentive constraints are
thereby slackened and whose payments are correspondingly increased. On the other
hand, the loss aversion of the lower end of this intermediate type range is exploited
by making them pay a premium to increase their quantity from zero to their reference

11The classic reference is Green and Laffont (1979).
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point. It follows that expected revenue generated by the the optimal selling mechanism
under loss aversion is higher than expected revenue generated by its counterpart for
the case without loss aversion.

5.1 Providing a public good with a balanced budget

The set of public alternatives is X = [0, 1]. There are two ex ante identical agents, A and
B, with publicly known identities. Each agent i ∈ {A, B} has a type space Θi = [0, 1]
and a valuation function vi : X ×Θi → R given by:

vi(x, θi) = 1− |x− θi|.

Think of X as the set of possible locations for a hospital, library, or other public facility.
Agent i resides at location θi ∈ [0, 1] and pays a linear cost to travel to the public facility,
were it not situated at θi. We abuse notation and write θ = (θi, θ j) to indicate a type
profile where θi ∈ Θi and θ j ∈ Θj, for i, j ∈ {A, B}, i 6= j. The cost of locating the public
facility somewhere in the unit interval is represented by the differentiable cost function
c : X → R, with 0 < c′(x) < 2 for all x ∈ X . The efficient allocation rule θ 7→ X∗(θ) =
min{θA, θB} selects the location that maximizes social welfare vA(x, θA) + vB(x, θB)−
c(x).

Fix a report θ j ∈ Θj. If θi ≤ θ j is truthfully reported, then X∗(θ) = θi and thus the
right and left subderivatives of vi(x, ·) with respect to types evaluated at (X∗(θ), θi) are
dvi(X∗(θ), θi) = −1 and dvi(X∗(θ), θi) = 1. If θi > θ j is reported instead, X∗(θ) = θ j

and thus dvi(X∗(θ), θi) = dvi(X∗(θ), θi) = −1. Note that (M) is satisfied. Thus, agent
i’s subderivative correspondence Si(·, θ j) : Θi ⇒ R is

Si(θi, θ j) =

{
[−1, 1], if θi ≤ θ j;
−1, if θi > θ j.

(18)

Clearly, Si(·, θ j) is regular. Agent i’s integral monotonicity condition is expressed as
follows: for all θ̂i < θi ∈ Θi,

vi(X∗(θi, θ j), θi)− vi(X∗(θi, θ j), θ̂i) ≥
∫ θi

θ̂i
si(θ̃i, θ j) dθ̃i (19)

≥ vi(X∗(θ̂i, θ j), θi)− vi(X∗(θ̂i, θ j), θ̂i),

for an integrable selection si(·, θ j) of Si(·, θ j). We claim that any selection satisfies Equa-
tion 19. Indeed, for θ̂i < θi ≤ θ j, (19) becomes

θi − θ̂i ≥
∫ θi

θ̂i
si(θ̃i, θ j) dθ̃i ≥ θ̂i − θi,
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a condition satisfied for any selection θ̃i 7→ si(θ̃i, θ j) ∈ [−1, 1] for all θ̂i ≤ θ̃i ≤ θi.
Suppose that instead one has θ̂i ≤ θ j < θi. In this case, X∗(θ̂i, θ j) = θ̂i and X∗(θi, θ j) =

θ j. Thus, (19) is now

(θ j − θ̂i)− (θi − θ j) ≥
∫ θ j

θ̂i
si(θ̃i, θ j) dθ̃i +

∫ θi

θ j
si(θ̃i, θ j) dθ̃i ≥ θ̂i − θi,

which holds for any selection si(·, θ j) of Si(·, θ j) such that θ̃i 7→ si(θ̃i, θ j) ∈ [−1, 1] for
θ̂i ≤ θ̃i ≤ θ j and θ̃i 7→ si(θ̃i, θ j) = −1 for θ j ≤ θ̃i ≤ θi. Finally, if θ j < θ̂i < θi, then
X∗(θ̂i, θ j) = X∗(θi, θ j) = θ j and both valuation differences in (19) are equal to θ̂i − θi.
Integral monotonicity is satisfied for θ̃i 7→ si(θ̃i, θ j) = −1, for all types θ̂i ≤ θ̃i ≤ θi.

It follows from Theorem 1 and Proposition 2 that any payment rule implementing
X∗ can be constructed using an integrable selection of the subderivative correspondence
in Equation 18. Normalizing payments so that θi = 0 obtains payoffs equal to 1, agent
i’s payments take the form:

pi(θ) = vi(X∗(θ), θi) −
∫ θi

0
si(θ̃i, θ j) dθ̃i − 1 = −

∫ min{θi ,θ j}

0
si(θ̃i, θ j) dθ̃i. (20)

Hence, there exists a payment rule p = (pA, pB) : ΘA ×ΘB → R2 that implements
X∗ and balances the budget ex post if, and only if, there are selections sA and sB of the
subderivative correspondences SA and SB such that, for every θ,

∫ min{θA,θB}

0
sA(θ̃A, θB) dθ̃A +

∫ min{θA,θB}

0
sB(θ̃B, θA) dθ̃B + c(X∗(θ)) = 0.

We stress that single-peak preferences for the public good is not an essential feature
of our stylized model. What matters is that, at efficient allocations, the subderivative
correspondence of at least one agent is not a singleton, thus revenue equivalence fails.
Hence, it may be possible to balance the budget using non VCG payment schemes.

Example 2. Consider a linear cost function x 7→ c(x) = x. We first claim that no VCG
payment can be budget-balanced. Indeed, any VCG payment function pi

g for agent
i ∈ {A, B} takes the form pi

g(θ) = hi(θ j)− vj(X∗(θ), θ j) + c(X∗(θ)) = hi(θ j)− 1 + θ j,
where hi is an auxiliary function defined on Θj (j 6= i). Suppose, to obtain a contradic-
tion, that there are functions hi on Θj and hj on Θi for which the expression

pA
g (θ) + pB

g (θ)− c(X∗(θ)) = hA(θB) + hB(θA)− 2 + θA + θB −min{θA, θB}

vanishes at every profile θ. In particular, for θB = 1, one has that hA(1) + hB(θA) = 1
must hold for all θA ∈ ΘA. This implies that hB is constant on ΘA. A similar argument
applies to hA; thus hi(θ j) ≡ hi for i ∈ {A, B}. Balancing the budget requires that hA +
hB − 2 + θA + θB −min{θA, θB} = 0 be satisfied for all θ, which is impossible.
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We now use the subderivative correspondence of Equation 18 to construct non VCG
payments to implement X∗. Consider first the integrable selection si

e of Si (i = A, B) for
which si

e(θ) = − 1
2 for all θi ≤ θ j, and si

e(θ) = −1 for all θi > θ j. This selection yields
a payment rule pe = (pA

e , pB
e ) that implements X∗ in dominant strategies, balances the

budget ex post, is ex post individually rational, and is egalitarian in that it does not
discriminate ex ante between agents. Indeed, replacing si

e in Equation 20 we obtain
pi

e(θ) =
1
2 min{θi, θ j}, for all θ and i ∈ {A, B}. Immediately,

pA
e (θ) + pB

e (θ) = min{θA, θB} = c(X∗(θ)), all θ ∈ ΘA ×ΘB.

To verify that (X∗, pe) is individually rational, notice that agent i’s indirect utility is

Ui
e(θ) = vi(X∗(θ), θi)− pi

e(θ) =

{
1− 1

2 θi, if θi ≤ θ j;
1− θi + 1

2 θ j, if θi > θ j.

Consider now an alternative payment rule pd = (pA
d , pB

d ) defined by Equation 20
using the following selections: sA

d (θ) = −1 for all θ, and sB
d (θ) = 0 for θB ≤ θA and

sB
d (θ) = −1 for θB > θA. We claim that (X∗, pd) is incentive compatible, ex post budget-

balanced and ex post individually rational, but discriminate against A. Indeed, pd =
(pA

d , pB
d ) is defined by

pA
d (θ) = min{θA, θB}, and pB

d (θ) = 0, all θ ∈ ΘA ×ΘB.

The reader can verify that (X∗, pd) is budget-balanced and individually rational, but
agent A bears the entire cost of the public good. Indeed, A is uniformly worse off, and B
uniformly better off, under the discriminatory regime: UA

d (θ)−UA
e (θ) = − 1

2 min{θA, θB},
while UB

d (θ)−UB
e (θ) =

1
2 min{θA, θB}. �

5.2 Selling to a buyer with reference-dependent preferences

A seller and a buyer are negotiating the quantity and price of a homogenous good.
The seller produces x ∈ X = [0, x̄] at a constant zero marginal cost. The buyer has
a privately known type θ ∈ Θ = [0, 1], and his gross valuation for x is given by θx.
The buyer has reference-dependent preferences: he enters negotiations with a reference
point y ∈ X and evaluates deviations from y differently, depending on whether they
are gains or losses. Following Kőszegi and Rabin (2006), we model the buyer’s valua-
tion for x, given θ and y, as

ν(x, θ, y) = θx + µ(x, y),
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where the gain-loss utility µ(x, y) is given by

µ(x, y) = γ [x− y]+ + (γ + λ) [x− y]−

and γ ≥ 0 and λ > 0. Here [α]+ = max{α, 0} and [α]− = min{α, 0} denote the positive
and negative parts, respectively. Thus, the buyer is loss-averse: losses relative to the
reference point have a larger marginal impact than gains.12 We assume that y is a linear
function of the buyer’s type, so that θ 7→ y(θ) = θx̄. In this formulation, the buyer’s
valuation function v : X ×Θ→ R is given by

v(x, θ) =

{
θx + γ(x− θx̄), if x ≥ θx̄;
θx + (γ + λ)(x− θx̄), if x ≤ θx̄.

The buyer has the option not to participate in the transaction and thereby obtain-
ing zero quantity and making no payment; this gives type θ a reservation value of
v(0, θ) = −(γ + λ)θx̄.13 The seller has a prior belief about θ represented by the distri-
bution function F over domain Θ, with continuous, strictly positive density f . The seller
chooses an incentive compatible and individually rational selling mechanism (X, p) to
maximize expected payments from the buyer.

Let X : Θ → X be a selling rule. One has dv(X(θ), θ) = dv(X(θ), θ) = X(θ)− γx̄
when θx̄ < X(θ), dv(X(θ), θ) = dv(X(θ), θ) = X(θ) − (γ + λ)x̄ when θx̄ > X(θ),
and dv(X(θ), θ) = X(θ)− (γ + λ)x̄ < X(θ)− γx̄ = dv(X(θ), θ) when θx̄ = X(θ). In
this case, (M) is satisfied whenever X is measurable (cf. Section 6.1). The subderivative
correspondence S : Θ ⇒ R is defined by

S
(
θ
)
=


X(θ)− γx̄, if X(θ) > θx̄;
X(θ)− (γ + λ)x̄, if X(θ) < θx̄;[
X(θ)− (γ + λ)x̄, X(θ)− γx̄

]
, if X(θ) = θx̄.

(21)

From Proposition 2, we restrict the analysis to payment rules of the form p(θ) =

v(X(θ), θ) −
∫ θ

0 s(θ̃) dθ̃ − u0, with u0 indicating the payoff of type θ = 0 and θ 7→ s(θ)
is an integrable selection of S. Clearly, an optimal payment rule chooses u0 = 0. Thus,
the seller’s expected profits are

ΠE =
∫ 1

0
v(X(θ), θ) f (θ) dθ −

∫ 1

0

∫ θ

0
s(θ̃) dθ̃ f (θ) dθ.

Integrating by parts the second term of the right-hand side of the above expression and

12Eisenhuth (2010) considers the optimal auction to many loss-averse buyers. Unlike selling to a single
buyer, auctions naturally generate random allocations to individual bidders, and sufficient smoothness in
the distribution of types restores differentiability and allows the use of standard techniques.

13Thus, the reservation value is type-dependent.
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rearranging, we obtain

ΠE =
∫ 1

0

[
v(X(θ), θ)− 1− F(θ)

f (θ)
s(θ)

]
f (θ) dθ. (22)

The seller’s problem is to choose X : Θ → X together with an integrable selection
of the subderivative correspondence in Equation 21 to maximize expected revenue ΠE,
subject to the incentive compatibility and participation constraints. Let us ignore these
constraints for the moment. Pointwise maximization of Equation 22 requires choosing
the selection s with values s(θ) = X(θ)− γx̄ for X(θ) > θx̄, and s(θ) = X(θ)− (γ+ λ)x̄
for X(θ) ≤ θx̄. To simplify notation, express the inverse hazard rate as φ(θ) = [1−
F(θ)]/ f (θ); as usual, we assume that φ is a decreasing function. Thus, for every θ ∈ Θ,
virtual surplus VS(θ) ≡ v(X(θ), θ) − φ(θ)s(θ) takes the form

VS(θ) =

{(
θ − φ(θ) + γ

)
X(θ) − γ

(
θ − φ(θ)

)
x̄, if X(θ) > θx̄;(

θ − φ(θ) + γ + λ
)
X(θ) − (γ + λ)

(
θ − φ(θ)

)
x̄, if X(θ) ≤ θx̄.

It follows that VS(θ) is maximized by choosing a quantity equal to 0, to θx̄, or x̄;
which is the case will vary with θ and φ. For suitable parameters, i.e., for 1/ f (0) > γ +
λ, there exist cutoff types θ′ and θ′′, with 0 < θ′ < θ′′ < 1, such that θ−φ(θ)+γ+λ ≥ 0
for all θ ≥ θ′ and θ − φ(θ) + γ + λ < 0 for all θ < θ′, and similarly θ − φ(θ) + γ ≥ 0
for all θ ≥ θ′′ and θ − φ(θ) + γ < 0 for all θ < θ′′. We distinguish three cases. In the
first case, 0 < θ < θ′ and the optimal solution is therefore Xo(θ) = 0. In the second
case, θ′ ≤ θ < θ′′ and the optimal solution is Xo(θ) = θx̄. The analysis of the third case,
when θ′′ ≤ θ ≤ 1, is slightly more complicated as the optimal selling rule depends on
which of the two feasible solutions, x̄ and θx̄, generates higher virtual surplus. Taking
differences, we obtain

VS(θ|x̄)−VS(θ|θx̄) = (θ − φ(θ) + γ)(1− θ)x̄ − λφ(θ)x̄. (23)

For purposes of exposition we now specialize to an example where this difference can
easily be signed and a simple expression for the optimal allocation rule can be derived.

Example 3. Let γ = 0, 0 < λ < 1 so that only losses relative to the reference point enter
µ, and suppose that types are distributed uniformly on Θ = [0, 1]. In this case θ′ = 1−λ

2 ,
θ′′ = 1

2 , and the difference in Equation 23 equals (2θ− 1− λ)(1− θ)x̄. Thus, the optimal
selling rule is

Xo(θ) =


0, if 0 ≤ θ < 1−λ

2 ;
θx̄, if 1−λ

2 ≤ θ < 1+λ
2 ;

x̄, if 1+λ
2 ≤ θ ≤ 1.

(24)

Notice that Xo is strictly increasing for intermediate types. Contrast this with the case
of no loss aversion (λ = 0), where the optimal selling rule gives 0 to every type θ < 1

2 ,
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and x̄ to every type θ ≥ 1
2 . The integrable selection s is therefore

s(θ) =


−λx̄, if 0 ≤ θ < 1−λ

2 ;
(θ − λ)x̄, if 1−λ

2 ≤ θ < 1+λ
2 ;

x̄, if 1+λ
2 ≤ θ ≤ 1.

It is not difficult to verify that the integral monotonicity condition holds. For in-
stance, for 0 ≤ θ̂ < 1−λ

2 ≤ θ < 1+λ
2 , we have v(Xo(θ), θ) − v(Xo(θ), θ̂) = θ(θ − θ̂)x̄,

while v(Xo(θ̂), θ)− v(Xo(θ̂), θ̂) = − λ(θ − θ̂)x̄, and∫ θ

θ̂
s(θ̃) dθ̃ = −λ(θ − θ̂)x̄ + 1

2

(
θ2 −

( 1−λ
2

)2
)

x̄.

From these expression the integral monotonicity follows readily. Using Theorem 1 we
deduce that Xo is implementable. The optimal selling mechanism is (Xo, po), where

po(θ) =


0, if 0 ≤ θ < 1−λ

2 ;
x̄
2

(
θ2 + 2λθ + ( 1−λ

2 )2) , if 1−λ
2 ≤ θ < 1+λ

2 ;
x̄
2

(
λ2 + λ + 1

)
, if 1+λ

2 ≤ θ ≤ 1.

The reader can verify using the Mirrlees representation that the optimal selling
mechanism (Xo, po) generates an indirect utility function Uo equal to

Uo(θ) =


− λθx̄, if 0 ≤ θ < 1−λ

2 ;
− λθx̄ + x̄

2

(
θ2 − ( 1−λ

2 )2) , if 1−λ
2 ≤ θ < 1+λ

2 ;
− λθx̄ + x̄

2

(
2θ(1 + λ)− λ2 − λ− 1

)
, if 1+λ

2 ≤ θ ≤ 1.

It is immediate to conclude that the participation constraints are satisfied. �

6 Discussion

We return to the single agent environment described in Section 2.1 to relate our tech-
niques and results to recent developments in the literature.

6.1 When is (M) satisfied?

In some applications our assumption (M) is readily verified. More importantly, (M) will
follow directly from the structure of the design problem in commonly used environ-
ments. Consider, as Archer and Kleinberg (2008), a setting with a bounded allocation
set X ⊆ Rk, a bounded convex type space Θ ⊆ Rk, and valuation that are linear in
types, so that θ 7→ v(x, θ) = x · θ for each allocation x. Notice that (A1) to (A3) are
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1+ λ
2

X o(θ)

Figure 1: the optimal selling rule Xo

satisfied. Let X : Θ → X be any measurable allocation rule. One readily sees that the
derivative of v with respect to θ evaluated at (X(θ), θ) is given by Dv(X(θ), θ) = X(θ),
therefore (M) is satisfied and our characterization theorem applies. Berger, Müller, and
Naeemi (2010) deal with an arbitrary allocation set, a convex type space in Rk, and
valuations that are convex functions of types. Directional derivatives of convex (and
concave) functions are sufficiently well-behaved for our characterization result to be ap-
plicable. We require the following preliminary result, which is taken from Hildenbrand
(1974, p. 42). HereM⊗B([0, 1]) denotes the product σ-algebra ofM and B([0, 1]).

Proposition 3. Let (X ,M) be a measurable space and f : X × [0, 1] → R be a bounded
real-valued function. Suppose the following conditions hold:

(a) For every α ∈ [0, 1], the function x 7→ f (x, α) isM-measurable.

(b) For every x ∈ X , the function α 7→ f (x, α) is right (left) continuous.

Then the function f isM⊗B([0, 1])-measurable.

Under a mild measurability requirement on the right and left subderivative func-
tions, Theorem 1 covers relevant cases previously studied in the literature.

Proposition 4. Let (A1) to (A3) be satisfied. Assume that for every type θ ∈ Θ and every direc-
tional vector δ ∈ Rk, the functions x 7→ dv(x, θ; δ) and x 7→ dv(x, θ; δ) areM-measurable.
In addition, assume one of the following conditions hold:

(a) For every x ∈ X , θ 7→ v(x, θ) is convex in Θ.
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(b) For every x ∈ X , θ 7→ v(x, θ) is concave in Θ.

(c) For every x ∈ X , θ 7→ v(x, θ) is continuously differentiable in Θ.

If X : Θ→ X is a measurable allocation rule, then (M) is satisfied.

Proof We deal with convex valuations; the remaining cases are similarly handled. Fix
θ1, θ2 ∈ Θ. From (A3) and the convexity of θ 7→ v(x, θ) on Θ, it follows that for every
x ∈ X the right subderivative dv(x, θ2

1(α); δ2
1) is equal to the right derivative of the con-

vex real-valued function α 7→ w(α; x, δ2
1) = v(x, θ2

1 + α δ2
1) defined on (0, 1). Thus, the

function α 7→ dv(x, θ2
1(α); δ2

1) is right continuous on (0, 1). By assumption, the function
x 7→ dv(x, θ2

1(α); δ2
1) isM-measurable for every α ∈ (0, 1). Thus, we infer from Propo-

sition 3 that the function d(·, ·; δ2
1) isM⊗B(0, 1)-measurable. Since X is a measurable

allocation rule, it is seen that the function α 7→ (X(θ2
1(α)), θ2

1(α)) is B(0, 1)-measurable,
hence we obtain the measurability of α 7→ s(θ2

1(α)) = dv(X(θ2
1(α)), θ2

1(α); δ2
1) by notic-

ing that the composition of measurable functions is also measurable. The argument for
s(θ2

1(·)) is similar, except that in this case one uses the left derivative of the respective
convex scalar function, which is left continuous on (0, 1). �

Suppose that we partition X into measurable sets {X1, X2, X3}, such that for every
x ∈ X1 (respectively, X2, X3), the function θ 7→ v(x, θ) is convex in Θ (respectively,
concave, continuously differentiable). One can use Proposition 4 to show that (M) is
also satisfied in this type of mixed models.

6.2 Back to Revenue Equivalence

Our revenue inequality (Theorem 2) establishes a precise range for the value of the dif-
ference between two indirect utilities associated with the allocation rule X. If for all
types θ1, θ2, the subderivative correspondence S

(
θ2

1(·)
)

is single-valued almost every-
where, then revenue equivalence is restored.

Proposition 5. Assume that (A1) to (A3) and (M) are satisfied. Let p : Θ → R and p′ : Θ →
R be two payment rules that implement X : Θ → X and generate indirect utility functions U
and U′, respectively, satisfying U(θ0) = U′(θ0) = u0. If for every pair of types θ1, θ2 ∈ Θ, one
has s(θ2

1(α)) = s(θ2
1(α)) for almost all α ∈ (0, 1), then U = U′.

Proof Suppose that for all θ1, θ2 in Θ, it is the case that s(θ2
1(α)) = s(θ2

1(α)) a.e. in (0, 1).
Readily from Equation 16, it follows U(θ1) = U′(θ1), for all θ1 ∈ Θ. �

We obtain the following corollary.

Corollary 2. Under the assumptions of Proposition 5, U = U′ whenever one of the following
conditions hold.

(a) For every x ∈ X , θ 7→ v(x, θ) is convex in Θ.
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(b) For every x ∈ X , θ 7→ v(x, θ) is differentiable in Θ.

(c) The allocation set X is finite.

Proof (a) Suppose θ 7→ v(x, θ) is convex. Then, for all θ̂ ∈ Θ and all δ ∈ Rk,

dv(x, θ̂; δ) = lim
r↑0

v(x, θ̂ + rδ)− v(x, θ̂)

r
≤ lim

r↓0

v(x, θ̂ + rδ)− v(x, θ̂)

r
= dv(x, θ̂; δ).

Since Equation 13 requires that at almost all equilibrium points (X(θ), θ) the reverse
inequality holds, one sees that the condition of Proposition 5 is in place.

(b) Immediate.

(c) Let θ1, θ2 be arbitrary and define the function α 7→ X̂(α) ≡ X(θ2
1(α)) on (0, 1).

Since X is finite, X̂((0, 1)) = {x1, . . . , xN}, for some N ∈ N. Thus, the sets E1, . . . , EN ,
with En = X̂−1({xn}) for each n = 1, . . . , N, constitute a collection of pairwise disjoint,
measurable subsets of (0, 1) whose union is (0, 1). Without loss of generality, we assume
that each En has non zero measure. Then, for each n = 1, . . . , N, the function α 7→
νn(α) ≡ v(xn, θ2

1(α)) is Lipschitz continuous on En and therefore differentiable a.e. in
En (by Rademacher-Stepanoff Theorem). It follows that s(θ2

1(α)) = s(θ2
1(α)) almost

everywhere on the unit interval (0, 1), as desired. �

Note that Corollary 2-(c) does not require the valuation function to be linear, convex
or differentiable in types: for the finite allocation sets, assumptions (A1) to (A3) and (M)
suffice to obtain revenue equivalence.

6.3 Weak monotonicity versus integral monotonicity

An allocation rule X : Θ → X satisfies the weak monotonicity condition if for every pair
of types θ, θ̂ in Θ, one has

v(X(θ), θ)− v(X(θ), θ̂) ≥ v(X(θ̂), θ)− v(X(θ̂), θ̂).

Weak monotonicity has been shown to characterize implementation when the type
space is convex, the valuation function linear in types, and the allocation set either finite
or infinite (the latter case requiring the inclusion of the closed-path integrability condi-
tion).14 Clearly, integral monotonicity implies weak monotonicity. However, there are
examples where weak monotonicity does not imply integral monotonicity, even when
X is finite and the valuation function v(x, ·) is piecewise linear in types (Berger, Müller,
and Naeemi, 2010).

On the other hand, Berger, Müller, and Naeemi (2010) discovered that a single-
crossing property is sufficient to obtain the equivalence between weak monotonicity

14See Jehiel, Moldovanu, and Stacchetti (1999), Bikhchandani, Chatterji, Lavi, Mu’alem, Nisan, and Sen
(2006), Saks and Yu (2005), Archer and Kleinberg (2008), and Vohra (2009).
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and integral monotonicity, under the assumption that valuations are either convex or
differentiable in types. As the next proposition shows, their insight extends to our gen-
eral setting. Say that the valuation function v : X × Θ → R satisfies increasing differ-
ences if for all x, y ∈ X , all θ1, θ2 ∈ Θ, and every θ2

1(α) ∈ L(θ1, θ2), v(x, θ2)− v(y, θ2) ≥
v(x, θ2

1(α))− v(y, θ2
1(α)) implies that v(x, θ2

1(α))− v(y, θ2
1(α)) ≥ v(x, θ1)− v(y, θ1).

Proposition 6. Assume that (A1) to (A3) and (M) are satisfied for the allocation rule X : Θ→
X . Suppose in addition that v : X ×Θ → R satisfies increasing differences. Then for every
θ1, θ2 in Θ, the subderivative correspondence S

(
θ2

1(·)
)

is regular and admits an integrable
selection α 7→ s(θ2

1(α)) such that X satisfies integral monotonicity if and only if X satisfies
weak monotonicity.

Proof Clearly the integral monotonicity condition implies that X is weakly monotone.
Conversely, suppose that X satisfies weak monotonicity. Fix arbitrary types θ1, θ2. From
Lemmas 3 and 5 of Berger, Müller, and Naeemi (2010) it follows that the increasing
differences property of the valuation function together with weak monotonicity imply
that X is cyclically monotone on the closure of L(θ1, θ2). Therefore, the restriction of
X to the closure of L(θ1, θ2) is implementable. From Theorem 1, we conclude that the
subderivative correspondence S

(
θ2

1(·)
)

is regular and admits an integrable selection
α 7→ s(θ2

1(α)) for which integral monotonicity is satisfied. �

We stress the fact that, without additional assumptions, Proposition 6 does not im-
ply that there exists a unique selection for which integral monotonicity holds. Thus,
while weak monotonicity may be more readily verified in applications, we are nonethe-
less interested in finding the subderivative correspondence between types and selec-
tions consistent with the integral monotonicity condition, since these objects provide
the (possibly many) payment rules that can be used for implementation.

7 Concluding remarks

In this paper we present a characterization of (dominant strategy) incentive compati-
ble mechanisms in quasi-linear settings where the envelope theorem and the revenue
equivalence principle fail, due to non-convexity and non-differentiability of the valua-
tion function with respect to types. We base our characterization result on the integral
monotonicity and the Mirrlees representation of the indirect utilities (plus the standard
closed-path integrability condition). Our framework allows for the allocation set to
be finite or infinite and the type space of the agent to be a convex subset of a multi-
dimensional Euclidean space. We work with uniformly Lipschitz valuations and im-
pose a measurability requirement on the left and right subderivatives of the valuation
function with respect to types.

These conditions pin down the range of payoff differences generated by two in-
centive compatible mechanisms with the same allocation rule. As a consequence, we
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obtain a revenue inequality that generalizes the standard revenue equivalence princi-
ple: given an implementable allocation rule and normalized payments that assign the
same utility to the “lowest type”, the difference in equilibrium payoffs generated by
any two payment rules is bounded by the allocation rule alone, even though it may be
not vanish.

Our results contribute to the already extensive literature on implementation in sev-
eral ways. First, our environment is less restrictive than those considered in previous
work. In particular, we do not assume linearity, convexity or differentiability of the
valuation with respect to types, but any such hypothesis, in addition to a mild measur-
ability condition, will imply our assumption (M). Second, our characterization result ex-
ploits techniques that differ from the approaches currently employed in the literature,
thus allowing us to handle a broader set of problems with richer payment schemes.
Third, our approach opens new aspects of institutional design for study. We have pro-
vided two applications to illustrate this point. In particular, in certain environments it
may be possible to use several payment rules (which differ by more than just a constant)
to implement an efficient or revenue maximizing allocation rule. While such schemes
may share desirable properties (e.g., budget balancedness, individual rationality), other
(un)desirable features could be introduced. We leave a thorough study of these aspects
of institutional design for future research.
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