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Abstract

Wilson (1987) criticizes applied game theory’s reliance on common-knowledge as-
sumptions. In reaction to Wilson’s critique, the recent literature of mechanism design
has adopted the goal of finding detail-free mechanisms in order to eliminate this re-
liance. In practice this has meant restricting attention to simple mechanisms such as
dominant strategy mechanisms. However there has been little theoretical foundation
for this approach. In particular it is not clear the search for an optimal mechanism
that does not rely on common-knowledge assumption would lead to simpler mechanisms
rather than more complicated ones. This paper tries to fill the void. In the context of
an expected revenue maximizing auctioneer, we investigate some foundations for using
simple, dominant-strategy auctions.

JEL Classification: C70, D82
Keywords: Wilson Doctrine, dominant strategy mechanism, detail-free mechanism

∗Thanks to Larry Epstein, Stephen Morris and Balasz Szentes for discussions. Also we thank the Editor
and two anonymous referees for helpful suggestions for revising the paper.

†Support from the National Science Foundation under grant #SES 99-85462 is gratefully acknowledged.

1

mailto:sau@northwestern.edu
mailto:jeffely@northwestern.edu


1 Introduction

In the recent literature of mechanism design, there is a research agenda which is motivated
by the so-called Wilson Doctrine. Roughly speaking, the Wilson Doctrine refers to the vision,
articulated in Wilson (1987), that a good theory of mechanism design should not rely too
heavily on assumptions of common knowledge:

“Game theory has a great advantage in explicitly analyzing the consequences of
trading rules that presumably are really common knowledge; it is deficient to the
extent it assumes other features to be common knowledge, such as one agent’s
probability assessment about another’s preferences or information. [...] I foresee
the progress of game theory as depending on successive reduction in the base
of common knowledge required to conduct useful analyses of practical problems.
Only by repeated weakening of common knowledge assumptions will the theory
approximate reality.”

Although there is no clear prescription from Wilson (1987) on how exactly to reduce the
dependence on common knowledge assumptions, the methodology on which the literature
has converged is to impose strong solution concepts which minimize the impact of any such
assumption. To understand the intuitive logic behind this methodology, one can consider
the problem of optimal auction design with possibly correlated valuations. The traditional
approach proceeds in two steps. In step one, the model is closed by adopting the assumption
that the distribution of valuations is common knowledge. Step two then solves the model
by searching for the optimal Bayesian incentive compatible selling mechanism. Step one
inadvertently imposes strong assumptions on bidders’ beliefs, which step two then takes
literally. The results are unrealistic and/or undesirable features of the optimal mechanism.
To avoid these perverse results without giving up step one, one can try to modify step two. In
particular, one can replace Bayesian incentive compatibility with stronger solution concepts
that are insensitive to different assumptions on bidders’ beliefs.

This is the approach taken by, e.g. Dasgupta and Maskin (2000) and Perry and Reny
(2002) who study the design of efficient auctions in interdependent-value settings. To ensure
that the auction form does not rely on fine details of the bidders’ information, they insist that
their designs are ex post incentive compatible. Similarly, when Segal (2003) designs optimal
auctions in private-value settings, he also insists that his designs are dominant strategy
incentive compatible. Both ex post incentive compatibility and dominant strategy incentive
compatibility are stronger solution concepts than Bayesian incentive compatibility.

This methodology appears misdirected. The goal is to eliminate the dependence on sim-
plifying common-knowledge assumptions imposed at step one, but instead of relaxing those
assumptions directly, stronger solution concepts are imposed at step two in order to mini-
mize their effect. In this paper, we shall try to provide some foundations for this approach.
We focus on private-value auctions and ask whether a profit-maximizing auctioneer who is
unwilling to cling to strong common-knowledge assumptions can have a rational basis for
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restricting attention to dominant strategy mechanisms.

The usual argument for imposing stronger solution concepts is that the resulting mecha-
nisms will then be detail free: the rules would not have to be tailored to any fine details of
the environment in which it is employed. Indeed, detail-freeness is the usual interpretation of
the Wilson Doctrine. However, a priori, it is not apparent at all why detail-free mechanisms
would look as simple as the mechanisms prescribed in the above-cited studies. If anything,
the established intuition in mechanism design suggests that detail-free mechanisms in general
should look very complicated indeed.

To see why, recall that a mechanism designer can in principle ask her agents anything that
she does not know, and she should do so if the answers are potentially useful. For example,
consider an auction and an auctioneer who assumes that the bidders share a common prior ρ
about their valuations for the object up for sale. Then it is well-known that the precise rules
of the optimal mechanism depend on the value of ρ; i.e., it is not detail-free. To eliminate
this dependence, the auctioneer must construct a more general mechanism which directly
asks the bidders to announce their prior and adjusts outcomes and payments according to
the answer.

The mechanism that results will be free of any details about the bidders’ first-order
beliefs; i.e., their beliefs over their valuations. But this mechanism is still predicated on the
assumption that these beliefs are common-knowledge. If the auctioneer wishes to remove
this and further detail-dependence, she should ask more and more questions of the bidders.
Pushing this logic to its extreme, a truly detail-free mechanism would become so complicated
that it would entail asking agents to report everything ; i.e., their whole infinite hierarchies
of beliefs.

Of course, the results that can be obtained from a detail-free mechanism are limited by
the constraint of incentive compatibility. In particular, to ensure that bidders truthfully
announce their priors, the mechanism must provide them with an incentive to do so. Note
that this would not be a problem if the auctioneer assumes that this prior is common-
knowledge: simply impose a penalty on the agents if their announcements disagree. But a
detail-free mechanism must not stake incentive compatibility on such assumptions. Indeed,
because the correct incentives for truthfully revealing these first-order beliefs will depend on
the bidders’ second- and higher-order beliefs, a detail-free mechanism is implementable only
if each bidder has an incentive to announce truthfully his complete belief-hierarchy.

It is well-known that dominant strategy mechanisms satisfy this strong form of incentive
compatibility; i.e., they are detail-free.1 However, dominant strategy mechanisms constitute
just one special class of detail-free mechanisms and there has previously been no formal
justification (in terms of optimality) for the leap from detail-freeness in general to dominant
strategy mechanisms in particular.

1See Bergemann and Morris (2005) for a modern treatment. The classical reference is d’Aspremont and
Gerard-Varet (1979)
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In this paper, we shall provide a rationale for using dominant strategy mechanisms which
confronts these problems. Our theory is based on the following often-repeated informal
motivation.2 Let ν denote the distribution of the bidders’ valuations. An auctioneer may
have confidence in her estimate of ν, perhaps based on data from similar auctions in the past.
But she does not have reliable information about the bidders’ beliefs (including their beliefs
about one another’s valuations, their beliefs about these beliefs, etc.), as these are arguably
never observed. She can choose any detail-free mechanism, including those that allow her
to ask the bidders anything about their beliefs that might be relevant. In general such a
mechanism may perform well under some specific common-knowledge assumptions but may
perform badly if those assumptions turn out to be false. On the other hand, a dominant
strategy mechanism secures a fixed expected revenue, independent of any assumption about
the bidders’ beliefs. If the auctioneer is not sufficiently confident in any such assumption,
she may optimally choose a dominant strategy mechanism.

We call this story the maxmin foundation of dominant strategy mechanisms, because the
auctioneer chooses among mechanisms according to their worst-case performance. Formally,
the theorem we are seeking is illustrated in Figure 1. In Figure 1, we (heuristically) plot the
performance of arbitrary detail-free mechanisms against different assumptions about bidders’
beliefs. The graph of any dominant strategy mechanism—and in particular the graph of the
best one among all dominant strategy mechanisms—will be a horizontal line. To establish
the maxmin foundation, we would need to show that the graph of any (potentially very
complicated) mechanism must dip below the graph of the best dominant strategy mechanism
at some point.

Although we believe that Figure 1 captures the intuition of many advocates of dominant
strategy mechanisms, it turns out to be very difficult to prove in general. With no restriction
on the environment, the set of all detail-free mechanisms is quite rich, and it would be
contrary to the spirit of our investigation to impose exogenous restrictions on the complexity
of the mechanism.

Instead, in this paper, we introduce a sufficient condition on the distribution of bidders’
valuations (recall that the auctioneer has confidence in the distribution of bidders’ valuations
although not in the distribution of bidders’ beliefs). The condition generalizes to the case
of an arbitrary (possibly correlated) ν what Myerson (1981) calls “the regular case” in his
classical paper on optimal auctions with independent valuations. It is a familiar condition
in mechanism design and comfortably assumed in many applications.

In fact, under our condition, we are able to prove a stronger result (see Figure 2): there
will be a particular distribution of bidders’ beliefs, at which point the graph of every (po-
tentially very complicated) detail-free mechanism must dip below the graph of the best
dominant strategy mechanism. We say that this distribution rationalizes dominant-strategy
incentive-compatibility.

2See, for example, Segal (2003) sec.VI, who conjectures a result similar to ours.
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the best dominant strategy mechanism

different assumptions about (distributions of) bidders’ beliefs

a (potentially very complicated) mechanism

another (potentially very complicated) mechanism

Figure 1: The graph of any mechanism dips below the graph of the best dominant strategy
mechanism at some point.

The rationalizing distribution has a simple form. It can be described by a finite type
space in which each possible bidder’s valuation is represented by a single type. Moreover,
when the distribution of bidders’ valuations, ν, converges to a product measure, the bidders’
beliefs approach those that would obtain if ν were the common prior. This ties our theorem
nicely to the classical result that there exists a dominant strategy mechanism that is optimal
among Bayesian mechanisms when valuations are independently distributed.

Clearly Figure 2 implies the maxmin foundation we seek. In addition, Figure 2 is signif-
icant in its own right. To expand on this, let us think about the auctioneer in a different,
perhaps more standard, context.

Imagine the auctioneer as a Bayesian decision maker. When she needs to choose a mecha-
nism, she forms a subjective belief about bidders’ beliefs, and compares different mechanisms
by calculating the expected performance with respect to that subjective belief. When we
observe that this auctioneer chooses a dominant strategy mechanism, we can ask whether or
not such a choice is consistent with Bayesian rationality; i.e., whether or not such a choice is
optimal with respect to some subjective beliefs. If so, we say that there is a Bayesian foun-
dation for dominant strategy mechanisms. Figure 2 says that, in the regular case, dominant
strategy mechanisms have a Bayesian foundation.

Note that the existence of a rationalizing belief (Figure 2) is a stronger requirement than
the maxmin foundation (Figure 1). We mentioned previously that we do not know whether
the maxmin foundation is valid in general (beyond the regular case). However, we do show
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another (potentially very complicated) mechanism

a (potentially very complicated) mechanism

the best dominant strategy mechanism

an assumption about (or distribution of)
bidders’ beliefs at which every other

best dominant strategy mechanism

Figure 2: there is a particular point at which the graph of every mechanism dips below the
graph of the best dominant strategy mechanism.

by example below that beyond the regular case, a Bayesian foundation need not exist. As a
negative result about the rationality of using dominant strategy mechanisms, we view this
as particularly strong: for some distributions of valuations, no Bayesian expected-revenue
maximizing auctioneer would optimally employ a dominant strategy mechanism, regardless
of her beliefs.

Finally, we relate our results to the widely adopted assumption that all agents’ beliefs
are consistent with a common prior. A tempting conjecture is that such consistency is a
necessary condition for a rationalizing belief. After all, it is well known that when agents
have inconsistent beliefs there exists a bet which has positive expected value for all. It would
seem that the auctioneer could improve upon any dominant strategy mechanism by building
into it such a bet.

This intuition is incorrect and the reason uncovers a key insight that is behind our anal-
ysis. Any bet between the auctioneer and the bidders must be incentive compatible. Even
when beliefs are inconsistent, the incentive compatibility constraint can prevent the auc-
tioneer from profiting from the inconsistency. Indeed, the rationalizing belief we identify in
is in general inconsistent with a common prior. The belief is constructed so that incentive
compatibility renders any side-bets unprofitable. Because this is a key step in our analy-
sis, following the statement of our result in Section 3 we present a worked example which
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illustrates it.

Nevertheless the common prior assumption (CPA) is widely adopted in applied analysis,
and so it may be of interest to know whether dominant strategy mechanisms can be rational-
ized by a belief consistent with the CPA. Surprisingly, we show by example in Section 5 that
this need not be possible even in the regular case. We do however present a positive result
that holds when the valuation distribution is close to independent. In this case there is a
CPA belief for the auctioneer against which dominant strategies are approximately optimal:
the associated revenue loss relative to the optimal mechanism is vanishingly small.

The rest of the paper is organized as follows. The remainder of this introduction discusses
some important related literature. Section 2 presents the model and formalizes the problem.
Our main result will be presented and proved in Section 3. Our first example also appears
in this section. Section 4 interprets our result in terms of a Bayesian foundation and then
presents an example to show that a Bayesian foundation for dominant strategy mechanisms
need not exist in general. In Section 5, we present our results related to the CPA and
Section 6 then concludes the paper with an observation about the English auction.

1.1 Related Literature

This paper is not the first to offer a foundation for dominant strategy mechanisms. Berge-
mann and Morris (2005) offers an alternative foundation for ex post incentive compatible
mechanisms, which in private-value settings are equivalent to dominant strategy mechanisms.
The main difference between Bergemann and Morris (2005) and the present paper concerns
the type of mechanisms being considered. Bergemann and Morris (2005) focus exclusively
on mechanisms in which the outcome can depend only on payoff-relevant data. These mech-
anisms are naturally suited to study efficient design. On the other hand, we are interested
here in revenue maximization for a seller. The optimal mechanism for such a designer will
almost always depend not just on the valuations, but also on payoff-irrelevant data such as
beliefs and higher-order beliefs.3 This is why the results of Bergemann and Morris (2005) do
not apply in our setting.

Neeman (2003) is similar in spirit in that he performs a worst-case assessment of the En-
glish auction (which is a dominant strategy mechanism). He compares the revenue generated
by the English auction to the benchmark of full-surplus extraction. The ratio of these two
values is called “effectiveness.” He shows that the effectiveness of the English auction can be
fairly high, and in fact close to 1 for a wide variety of distributions of valuations. The bench-
mark of full-surplus extraction was used despite the fact that this benchmark may not be
feasible even for the optimally chosen mechanism,4 mainly because determining the optimal
auction for an environment as general as he considers is a daunting task. One contribution of
the present paper is to show how to derive the optimal auction in the worst-case assumption

3For instance, see the auctions depicted below in Figures 10, 11, 12, 13, 8, and 9.
4In fact, Neeman (2004) showed this.
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about bidder’s beliefs. We are thus able to compare dominant strategy mechanisms with the
optimal auction benchmark and show that the optimal dominant strategy auction performs
at least as well in the worst case. We discuss another connection with Neeman (2003) in
footnote 6 after we introduce the regular case.

2 Preliminaries

2.1 Notation

If {Xi}N
i=1 is a collection of sets, then X denotes the Cartesian product ×iXi, or the set

of “profiles” of elements of {Xi}. We write X−i = ×j 6=iXj. If x ∈ X, then xi refers to the ith
co-ordinate, and we use x−i to denote the element of X−i obtained by removing xi. Likewise,
if {fi}i∈N is a collection of mappings fi : Xi → Yi, then f−i denotes the “product” mapping
f−i : X−i → Y−i where f−i(x−i) = (f1(x1), . . . , fi−1(xi−1), fi+1(xi+1), . . . , fN(xN)). If Y is a
measurable set, then ∆Y is the set of all probability measures on Y . If Y is a metric space,
then we treat it as a measurable space with its Borel σ-algebra.

2.2 The Auction Environment

A single unit of an indivisible object is up for sale. There is a set N of risk-neutral
bidders with privately known valuations competing for the object. Each bidder has M
possible valuations and for notational simplicity, we suppose that the set Vi of possible
valuations is the same for each bidder i and that Vi = {v1, v2, . . . , vM}, where vm−vm−1 = γ
for each m for some γ > 0.5 The bidders’ valuations are distributed according to a given
probability distribution ν ∈ ∆V . Note that we are allowing for correlated values and that the
independent private value model is included as a special case when ν is a product measure.
We assume that ν has full-support.

A bidder i with valuation vi receives expected utility pivi− ti if pi is the probability with
which he will be awarded the object and if his expected monetary payment is ti. A typical
element of V is v, and a typical element of V−i is v−i.

We consider distributions satisfying a generalized version of Myerson’s (1981) regularity
condition. Let Fi(vi, v−i) =

∑
v̂i≤vi

ν(v̂i, v−i) denote the cumulative distribution function of
i’s valuation conditional on the opponents having valuation profile v−i. The virtual valuation
of bidder i at profile v is

γi(v) := vi − γ
1− Fi(v)

ν(v)
.

5These notational conventions simplify the statements of results and notation, but are entirely innocuous.
Assumptions of asymmetry in the bidders’ valuation sets, or differing gaps between valuations would not
affect any of our results.
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Definition 1 We say that ν is regular if the virtual valuations satisfy the single-crossing
condition: for each v, i ∈ {1, . . . , N}, and j ∈ {0, . . . , N}, j 6= i,

γi(v) ≥ γj(v) =⇒ γi(v̂i, v−i) > γj(v̂i, v−i)

for every v̂i > vi, where γ0(·) ≡ 0 denotes the auctioneer’s value for the object.

Our definition extends Myerson’s (1981) regularity condition to correlated ν but reduces
to his original condition when ν is independent. To see this note that if ν is independent,
then the virtual valuation of bidder j depends only on vj. Thus, the single crossing condition
reduces to the requirement that the virtual valuation of each bidder i is increasing.

The regularity condition is stated directly in terms of virtual valuations. A familiar set of
sufficient conditions on ν is given below. First, the monotone hazard rate condition is satisfied
if for each i and v−i, the hazard rate, hi(v̂i|v−i) = ν(v̂i,v−i)

1−Fi(v̂i,v−i)
, is an increasing function of v̂i.

The valuations are affiliated if for each pair of profiles v, v′, ν(v∨ v′) · ν(v∧ v′) ≥ ν(v) · ν(v′),
where v ∨ v′ is the component-wise maximum and v ∧ v′ the component-wise minimum of
the two valuation vectors.6

We prove the following in Appendix B (see Proposition 3.).

Proposition 1 If ν satisfies both the monotone hazard rate condition and affiliation, then
ν is regular.

2.3 Types

To characterize the (equilibrium) behavior of the bidders who compete in some given
auction mechanism, it is not enough to specify the bidders’ possible valuations or even the
probability distribution from which they are drawn. In addition, we must also specify their
beliefs about the valuations of their opponents (called the first-order beliefs), their beliefs
about one another’s first-order beliefs (called the second-order beliefs), etc.

The standard approach to modeling the bidders’ information is to use a type space. A
type space, denoted Ω = (Ωi, fi, gi)i∈N is defined by a measurable space of types Ωi for each
player, and a pair of measurable mappings fi : Ωi → Vi, defining the valuations of each type,
and gi : Ωi → ∆Ω−i, defining each type’s belief about the types of the other bidders.

6 Affiliation is a strong form of positive correlation. In the worst-case analysis of Neeman (2003), the
distribution of valuations itself was a free variable. He showed that the worst-case distribution of valuations
involves negative correlation. It is thus not surprising that we use a condition such as affiliation. Furthermore,
our counterexample in Section 4 also involves negative correlation. While the performance measure used in
Neeman (2003) is not the same as ours, the similarity between this aspect of the two results suggests some
deeper connection.
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A type space encodes in a parsimonious way the beliefs and all higher-order beliefs of the
bidders. 7 One simple kind of type space is the naive type space8 generated by the valuation
distribution ν. In the naive type space, each bidder believes that all bidders’ valuations are
drawn from the distribution ν, and this is common-knowledge. In the formal notation of
type spaces introduced above, this is modeled as follows. For each vi ∈ Vi, there is a unique
type, denoted ωvi , with the property fi(ω

vi) = vi . The belief gi(ω
vi) is defined in two steps:

first the conditional probability ν(·|vi) over V−i is derived from ν, then this is transformed
in the natural way into a belief over the other bidders’ types, so that the probability ωvi

assigns to the type profile ωv−i for the opponents is given by gi(ω
vi) [ωv−i ] = ν(v−i|vi). We

let Ων denote the naive type space associated with valuation distribution ν.

The naive type space is used almost without exception in auction theory and mechanism
design. The cost of this parsimonious model is that it implicitly embeds some strong as-
sumptions about bidders’ beliefs, and these assumptions are not innocuous. For example, if
the bidders’ valuations are independent under ν, then in the naive type space, the bidders’
beliefs are commonly known. On the other hand, for a generic ν, it is common-knowledge
that there is a one-to-one correspondence between valuations and beliefs. Myerson (1981)
characterizes the optimal auction in the independent case and Crémer and McLean (1985) in
the other case. Which of these cases holds makes a big difference for the structure and wel-
fare properties of the optimal auction. These and similar issues have been raised in Neeman
(2004), Bergemann and Morris (2005), Heifetz and Neeman (2006), Morris (2002), Dekel,
Fudenberg, and Morris (forthcoming) and Weinstein and Yildiz (2004). The spirit of the
Wilson doctrine is to avoid making such assumptions.

Instead, as explained in the introduction, the common approach is to maintain the naive
type space, but try to diminish its adverse effect by imposing stronger solution concepts. To
provide foundations for this methodology, we have to return to the fundamentals. Formally,
weaker assumptions about bidders’ beliefs are captured by larger type spaces. Indeed, we can
remove these assumptions altogether by allowing for every conceivable hierarchy of higher-
order beliefs. By the results of Mertens and Zamir (1985), there exists a universal type
space, Ω∗ = (Ω∗

i , f
∗
i , g∗i )i∈N , with the property that, for every valuation vi and every infinite

hierarchy of beliefs ĥi, there is a type of player i, ωi, with valuation vi and whose hierarchy
is ĥi, Moreover, each Ω∗

i is a compact topological space.9

7Consider a type ωi ∈ Ωi. Its first-order belief is a probability distribution over the valuation profiles of
i’s opponents. We can uncover this probability distribution as follows. The probability type ωi assigns to
a given valuation profile v−i is gi(ωi)({ω−i : f−i(ω−i) = v−i}); i.e., the probability ωi assigns to the set of
types of the opponents’ with valuations v−i. Next, for any profile ρ−i of first-order beliefs for i’s opponents,
let β−i(ρ−i) be the set of types with first order beliefs (as derived previously) ρ−i. Then the second-order
beliefs of ωi assign probability gi(ωi)

[
f−1
−i (v−i) ∩ β−i(ρ−i)

]
to the profile (v−i, ρ−i) of valuation/first-order

belief pairs for the opponents. This procedure can be repeated to compute all higher-order beliefs of each
bidder.

8This terminology originated in Bergemann and Morris (2005).
9See Appendix A for the details on the Mertens and Zamir (1985) construction and how it is applied to

our setting. To be precise, the universal type space includes all hierarchies that satisfy a natural coherency
property. Also, in the MZ universal type space generated by V , there would exist types who are uncertain
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Another sense in which Ω∗ is “universal” is the following. Certain simple type spaces are
essentially “subspaces” of Ω∗ as captured by the following proposition, which will be used in
the proof of the main Theorem.

Lemma 1 Let Ω be a type space in which the mapping ωi → (fi(ωi), hi(ωi)) is one-to-one.
Then there exists subsets Ω̂i ⊂ Ω∗

i and bijective mappings mi : Ωi → Ω̂i such that

1. f ∗i (mi(ωi)) = fi(ωi) for all ωi ∈ Ωi,

2. g∗i (mi(ωi)) [m−i(ω−i)] = gi(ωi) [ω−i] for all ωi ∈ Ωi and ω−i ∈ Ω−i,

where m−i(ω−i) = (m1(ω1), . . . ,mi−1(ωi−1), mi+1(ωi+1), . . . ,mN(ωN)).

The lemma shows that simple type spaces in which each possible valuation/belief-hierarchy
pair is held by exactly one type of each player can be embedded in the universal type space
in a way that preserves all of the relevant structure.

When we start with the universal type space, we remove any implicit assumptions about
the bidders’ beliefs. We can now explicitly model any such assumption as a probability
distribution over the bidders’ universal types. Specifically, an assumption for the auctioneer
is a distribution µ over Ω∗.

In this paper we will mainly deal with two varieties of type spaces, naive type spaces and
the universal type space. Once the information of the bidders’ has been specified through
the choice of type space, the seller’s problem is to design a selling procedure in order to
maximize revenue. We turn to this in the next subsection.

2.4 Mechanisms

An auction mechanism consists of a set Mi of messages for each bidder i, an allocation
rule p : M → [0, 1]N , and a payment function t : M → RN . Each bidder will select a
message from his set Mi, and based on the resulting profile of messages m, the object is
awarded according to p(m) and payments are exacted according to t(m). Player i receives
the object with probability pi(m) and pays ti(m) to the seller.

We consider environments in which the seller cannot compel the bidders to participate in
the auction, so we require that each Mi includes the non-participation message ∅i. Selecting
∅i is equivalent to “opting-out” of the auction and so we assume that for any profile m in
which mi = ∅i, the allocation and payments rules satisfy pi(m) = 0 and ti(m) = 0. A
direct-revelation mechanism for a given type space Ω is one in which Mi = Ωi ∪ {∅i}.

about their own valuations. Our private-values model corresponds to the subspace of the universal type
space in which it is common-knowledge that each bidder knows his own value. (Heifetz and Neeman, 2006,
Section 2.2) call this the private values universal type space and Bergemann and Morris (2005) the known
own-payoffs universal type space.
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The auction mechanism defines a game-form, which together with the type space consti-
tutes a game of incomplete information. The mechanism design problem is to fix a solution
concept and search for the auction mechanism that delivers the maximum revenue for the
seller in some outcome consistent with the solution concept. The now-widely adopted ap-
proach to implement the Wilson-doctrine and minimize the role of assumptions built into
the naive type space is to adopt a strong solution concept which does not rely on these
assumptions. In our private-value setting the often-used solution concept for this purpose is
dominant strategy equilibrium.

By the revelation principle, an outcome can be implemented in dominant strategy equi-
librium if and only if it is dominant strategy incentive compatible.

Definition 2 A direct-revelation mechanism Γ for type space Ω is dominant strategy incen-
tive compatible (dsIC) if for each bidder i and type profile ω ∈ Ω,

pi(ω)fi(ωi)− ti(ω) ≥ 0, and

pi(ω)fi(ωi)− ti(ω) ≥ pi(ω̂i, ω−i)fi(ωi)− ti(ω̂i, ω−i),

for any alternative type ω̂i ∈ Ωi.

Definition 3 A dominant strategy mechanism is a dsIC direct-revelation mechanism for the
naive type space Ων. We denote by Φ the class of all dominant strategy mechanisms.

When the type space is the naive type space, we have |Ων
i | = |Vi|, and the incentive com-

patibility constraints for dsIC depend only on valuations. As a result, an auction mechanism
is dsIC with respect to Ων if and only if it is dsIC with respect to any other naive type
space Ων′ . So we can always discuss whether an auction mechanism is a dominant strategy
mechanism without referring to any specific naive type space.

To provide a foundation for this indirect approach to implement the Wilson Doctrine, we
shall compare it to the direct route of completely eliminating common knowledge assumptions
about beliefs. We maintain the standard solution concept of Bayesian equilibrium but now
we enlarge the type space all the way to the universal type space. The revelation principle
implies that the set of resulting outcomes is equal to those that arise from truth-telling
in Bayesian incentive compatible (BIC) direct-revelation mechanisms for the universal type
space.

Definition 4 A direct-revelation mechanism Γ for type space Ω = (Ωi, fi, gi) is Bayesian
incentive compatible (BIC) if for each bidder i and type ωi ∈ Ωi,∫

Ω−i

[pi(ω)fi(ωi)− ti(ω)]gi(ωi)[dω−i] ≥ 0, and∫
Ω−i

[pi(ω)fi(ωi)− ti(ω)]gi(ωi)[dω−i] ≥
∫

Ω−i

[pi(ω̂i, ω−i)fi(ωi)− ti(ω̂i, ω−i)] gi(ωi)[dω−i]

for any alternative type ω̂i ∈ Ωi.
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A mechanism which does not rely on implicit assumptions about higher-order beliefs
should be incentive compatible for all belief-hierarchies. In other words, it should be BIC
relative to the universal type space.

Definition 5 Let Ψ be the class of all BIC direct-revelation mechanism for the universal
type space. We say that such a mechanism is detail-free.

2.5 The Auctioneer as a Maxmin Decision Maker

The given valuation distribution, ν, represents the auctioneer’s estimate of the bidders’
valuations. An assumption µ about the distribution valuations and beliefs of the bidders is
consistent with this estimate if the induced marginal distribution on V is ν. Let M(ν) denote
the compact subset of such assumptions. For any mechanism Γ, the µ-expected revenue of
Γ is defined as Rµ(Γ) =

∫
Ω∗

∑
i ti(ω) dµ(ω).

Unlike the standard formulation of the optimal auction design problem, we do not assume
that the auctioneer has confidence in the naive type space as her model of bidders’ beliefs.
Rather the auctioneer considers other assumptions within the set M(ν) as possible as well.
An auctioneer who chooses an auction that maximizes the worst-case performance solves the
maxmin10 problem of

sup
Γ∈Ψ

inf
µ∈M(ν)

Rµ(Γ). (1)

If the auctioneer uses a dominant strategy mechanism, then her maximum revenue would
be:

ΠD(ν) := sup
Γ∈Φ

Rν(Γ),

where Rν(Γ) =
∑

v ν(v)
∑

i ti(v) for any dominant strategy mechanism Γ ∈ Φ.

As we show in the following lemma, any dominant strategy mechanism can be extended
to a revenue equivalent detail-free mechanism. Thus, the optimal dominant strategy revenue
is a lower bound for the maxmin value in (1).

Lemma 2 The auctioneer can do no worse than the optimal dominant strategy mechanism;
i.e.,

sup
Γ∈Ψ

inf
µ∈M(ν)

Rµ(Γ) ≥ ΠD(ν). (2)

Proof: Let Γ = (p, t) be any dominant strategy mechanism. It induces a mechanism
Γ′ = (p′, t′) for the universal type space as follows. For all ω ∈ Ω∗, set p′(ω) = p(f ∗(ω)) and
t′(ω) = t(f ∗(ω)). In other words, Γ′ is defined over the universal type space but depends

10Another way to think about this formulation of the problem is to view the auctioneer as uncertainty
averse. The beliefs of the bidders are ambiguous to the auctioneer and this ambiguity is modeled by supposing
that the auctioneer holds all possible priors µ.
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only on valuations and not on beliefs. Since for each realized valuation profile, Γ′ produces
the same outcome as the dominant strategy mechanism Γ, it follows immediately that Γ′ is
BIC. Moreover, for any µ ∈ M(ν),

Rµ(Γ′) = Eµt
′ = Eµt ◦ f ∗ =

∑
v∈V

t(v) · µ({ω : f ∗(ω) = v}) =
∑
v∈V

t(v)ν(v) = Eνt = Rν(Γ).

Thus infµ∈M(ν) Rµ(Γ′) = Rν(Γ), and the Lemma follows.

The maxmin foundation of dominant strategy mechanisms exists when in fact the auc-
tioneer can do no better than the optimal dominant strategy mechanism; i.e., when (2) holds
with equality. We will show that the maxmin foundation exists for every regular ν. Specifi-
cally, we shall prove that, whenever ν is regular, there will exist an assumption µ∗ ∈ M(ν),
under which

ΠD(ν) = sup
Γ∈Ψ

Rµ∗(Γ), (3)

which implies

ΠD(ν) = sup
Γ∈Ψ

Rµ∗(Γ) ≥ inf
µ∈M(ν)

sup
Γ∈Ψ

Rµ(Γ) ≥ sup
Γ∈Ψ

inf
µ∈M(ν)

Rµ(Γ),

so that (2) holds with equality. For this reason, if µ∗ satisfies (3) then we say that µ∗

rationalizes the use of dominant strategy mechanisms.

3 The Main Result

We can now state the main result.

Theorem 1 If ν is regular, then the use of dominant strategy mechanisms has a maxmin
foundation, i.e.

sup
Γ∈Ψ

inf
µ∈M(ν)

Rµ(Γ) = ΠD(ν).

The proof of Theorem 1 is in the appendix. Here we shall use a simple example to
illustrate the ideas behind the proof. Consider an auction with two bidders, each with
two possible valuations. Bidders’ valuations are correlated according to the distribution ν
depicted in Figure 3.

The optimal dominant strategy mechanism is depicted in Figure 4. In Figure 4, “α = i”
is the shorthand for “allocating the object to bidder i” (i.e., pi = 1 and p−i = 0), and “α = 0”
means no sale.

We first verify that ν is regular. Note that the virtual valuation of the high-valuation
type is equal to the valuation itself. Thus, the single-crossing condition will be satisfied

14



v1 = 4 v1 = 9
v2 = 11 3/10 1/10
v2 = 5 3/10 3/10

Figure 3: The distribution ν of bidders’ valuations.

v1 = 4 v1 = 9
v2 = 11 α = 2, t1 = 0, t2 = 11 α = 2, t1 = 0, t2 = 11
v2 = 5 α = 0, t1 = 0, t2 = 0 α = 1, t1 = 9, t2 = 0

Figure 4: The optimal dominant strategy mechanism Γ.

provided the high valuation of bidder i exceeds the low valuation of bidder −i, and this is
indeed the case in our example. Hence, according to Theorem 1 there exists an assumption
µ∗ consistent with the distribution ν such that equation (3) holds. To illustrate the issues
that are involved, we construct one such assumption below, keeping our exposition informal.

It will suffice to consider assumptions which have a simple form. For each valuation of
bidder i, there will be exactly one type with that valuation in the support. We write ai (bi)
for the first-order belief held by a high-valuation (low-valuation) type of i that the opponent
−i has high valuation. Figure 5 depicts a probability distribution over the four possible
profiles of valuation/first-order belief pairs.

b1 = 2/5 a1 = 1/4
a2 = 1/4 3/10 1/10
b2 = 2/5 3/10 3/10

Figure 5: Deriving the assumption µ∗.

Figure 5 uniquely defines an assumption µ∗ as follows. We first derive the belief hierarchies
from Figure 5 by induction. For example, for a low-valuation type of bidder 1, the second-
order belief assigns probability 2/5 (3/5) to bidder 2 having high (low) valuation and holding
first-order belief a2 = 1/4 (b2 = 2/5); and a high-valuation (low-valuation) type of bidder 2
has a third-order belief that assigns probability 3/4 (3/5) to bidder 1 having low valuation
and having such a second-order belief, and so on. Thus, we derive a unique belief-hierarchy
for each valuation. The assumption µ∗ is the measure which attaches the probabilities in
figure 5 to the resulting four valuation/hierarchy profiles. It is obvious that this assumption
µ∗ is consistent with the distribution ν.
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Under this assumption µ∗, there are at least two potential ways to improve upon the
optimal dominant strategy auction Γ in Figure 4. First, according to µ∗, conditional on
bidder 1 having low valuation, the conditional probability that bidder 2 has high valuation is
1/2. This is different from the first-order belief of the low-valuation type of bidder 1, which
is b1 = 2/5. In other words, µ∗ is not consistent with a common prior. This suggests the
possibility of a mutually acceptable bet between the auctioneer and the low value type of
bidder 1 about the realized value of bidder 2. One possible way to improve upon Γ is to
build this bet into the mechanism.

Second, since the two types of bidder 1 hold different beliefs, another potential way to
improve upon Γ is to introduce lotteries in the spirit of the surplus extraction mechanisms
of Crémer and McLean (1985). Note that in the dominant strategy mechanism Γ, the object
goes unsold when both bidders have low valuation resulting in a deadweight-loss of total
surplus. If the auctioneer were to try to capture some of that surplus by selling the good to
bidder 1, dominant strategy incentive compatibility would require that the high-valuation
type of bidder 1 earn “information rents.” On net, the auctioneer finds this unprofitable and
this is why the auctioneer witholds the object when dominant strategy incentive compatibility
is imposed.

So the auctioneer may try to improve upon dominant strategies by adding payments that
depend on the reported valuation of bidder 2. Due to the differences in beliefs of the two
types of bidder 1, such payments can be found that induce self-selection between these two
types and thereby relax the constraint of incentive compatibility.

However, incentive compatibility prevents the auctioneer from profiting from either of
these maneuvers, as we now show. First, consider a bet between the auctioneer and bidder
1 about the realized valuation of bidder 2. Let x and y be the amount bidder 1 pays the
auctioneer in the event bidder 2 has low and high valuations respectively. This bet will be
acceptable to both the auctioneer and the low-valuation type of bidder 1 only if

(1/2)x + (1/2)y ≥ 0, and

(3/5)(−x) + (2/5)(−y) ≥ 0,

with at least one inequality being strict unless x = y = 0. But then the high-valuation type
of bidder 1 would find the bet acceptable as well because

(3/4)(−x) + (1/4)(−y) = (5/2)[(3/5)(−x) + (2/5)(−y)] + (3/2)[(1/2)x + (1/2)y],

is strictly bigger than the zero rent for the high-valuation type of bidder 1 under Γ. Thus,
offering the bet to the low type but not the high type would violate (Bayesian) incentive
compatibility. And when both types of bidder 1 accept, the bet turns sour for the auctioneer,
as

(3/5)(−x) + (2/5)(−y) ≤ 0.

This explains why introducing the first type of modification does not help.
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Second, consider introducing a lottery in the style of Crémer and McLean (1985) to
separate the high- and low-valuation types of bidder 1. By offering a bet (x, y) depending
on the realization of bidder 2’s type, the seller may be able to relax the downward incentive
compatibility constraint and sell to the low-valuation type of bidder 1 without leaving extra
rent for the high-valuation type. If such a modification is successful then we must have

(3/5)(4− x) + (2/5)(−y) ≥ 0, and

(3/4)(9− x) + (1/4)(−y) ≤ 0.

The first inequality would be the individual rationality constraint of the low type of bidder
1, and the second would be the incentive compatibility constraint of the high type. However,
these together imply that any bet like this cannot be profitable for the auctioneer, as

(1/2)x + (1/2)y = (2/3)[(3/4)(−x) + (1/4)(−y)]− (5/3)[(3/5)(−x) + (2/5)(−y)] ≤ −1.

This explains why introducing the second kind of bet does not help either.

More generally, these two types of modifications could be combined in various ways and
there are conceivably a variety of other potential ways to improve upon the optimal dominant
strategy mechanism Γ. However, in the formal proof of Theorem 1 we use a general technique
to show that in fact that there is no modification of Γ that could improve the seller’s expected
revenue.

4 Bayesian Foundations for Dominant Strategy Mech-

anisms

In this section, we shall investigate another possible foundation of dominant strategy
mechanisms, namely the Bayesian foundation. Imagine the auctioneer as a Bayesian decision
maker. When she needs to choose a mechanism under uncertainty of bidders’ beliefs, she
forms a subjective belief in M(ν). She evaluates any mechanism according to, instead of
its worst-case performance, its average performance with respect to this subjective belief.
When we as outside observers observe that this auctioneer chooses a particular mechanism,
say a dominant strategy mechanism, we can ask whether or not such a choice is consistent
with Bayesian rationality; i.e., whether or not such a choice is optimal with respect to some
subjective belief. If the answer is yes, then we say that such a choice is rationalizable. Given
the predominant role of Bayesian rationality in the literature of mechanism design, it seems
even more natural to pursue the Bayesian foundation.

To investigate the possibility of the Bayesian foundation, we only need minimal changes
in our setting. We now interpret a probability measure over the universal type space as a
belief held by the auctioneer over the belief-hierarchies held by the bidders. Such a belief
is consistent with the given distribution of valuations ν if it belongs to M(ν). A Bayesian
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foundation for dominant strategies then exists if there is a belief µ∗ ∈ M(ν) such that

ΠD(ν) = sup
Γ∈Ψ

Rµ∗(Γ),

i.e. (3) holds.

It follows from the proof of Theorem 1 that there exists a Bayesian foundation for the use
of dominant strategy mechanisms when the distribution of valuations is regular. However,
we shall show by example below that beyond the regular case, a Bayesian foundation need
not exist. As a negative result about the rationality of using dominant strategy mechanism,
we view this as particularly strong: for some distributions of valuations, no Bayesian-rational
auctioneer would optimally employ a dominant strategy mechanism, regardless of her sub-
jective belief about bidders’ beliefs.

In this example, there are two bidders and each has two possible valuations. The distri-
bution of valuations ν is represented in Figure 6.11

v1 = 5 v1 = 10
v2 = 4 1/6 0
v2 = 2 1/3 1/2

Figure 6: The distribution ν.

The optimal dominant strategy mechanism is depicted in Figure 7, where we follow the
convention from the previous example and use “α = i” as the shorthand for “allocating the
object to bidder i.”.

v1 = 5 v1 = 10
v2 = 4 α = 2, t1 = 0, t2 = 2 α = 1, t1 = 10, t2 = 0
v2 = 2 α = 2, t1 = 0, t2 = 2 α = 1, t1 = 10, t2 = 0

Figure 7: The optimal dominant strategy mechanism Γ.

It is helpful to pay attention to a few noteworthy aspects of this environment and the
optimal dominant strategy mechanism. Notice that the valuation of bidder 1 is always higher
than that of bidder 2. Nevertheless, the auctioneer chooses to sell to bidder 2 when bidder
1 has low valuation. This is optimal because conditional on bidder 2 having low valuation,
the probability that bidder 1 has high valuation is greater than 1/2. This means that it is

11The distribution ν in this example does not have full support. This simplifies the exposition of the
example, but the conclusion would be the same if the event {v1 = 10, v2 = 4} had positive (but small)
probability.
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optimal to exclude the low-valuation type of bidder 1 to relax the incentive constraint and
sell to the high-valuation type at his reservation price. Given this, the auctioneer may as well
sell to bidder 2 when bidder 1 has a low valuation. If monotonicity were not a constraint,
the auctioneer would choose to sell to bidder 1 when bidder 2 had high valuation. Thus, the
monotonicity constraint binds here, and in order to satisfy it, the object is sold to bidder 2
in this case.

The following proposition says that, when bidders’ valuations are distributed as in Fig-
ure 6, the dominant strategy mechanism in Figure 7 can never be optimal regardless of the
auctioneer’s belief. It should be obvious from the proof of the proposition that this example
is robust.

Proposition 2 For the distribution ν depicted in Figure 6, the maximum revenue achievable
by any mechanism is uniformly bounded away from the maximum revenue achievable by
dominant strategy mechanisms regardless of the auctioneer’s subjective belief; i.e.,

inf
µ∈M(ν)

sup
Γ′∈Ψ

Rµ(Γ′) > V D(ν).

The proof of Proposition 2 is in the appendix. Here we give a verbal sketch of the
argument. There are a few different ways the auctioneer could conceivably improve on the
dominant strategy mechanism and for any belief of the auctioneer at least one of them will
indeed improve.

The outcome of the mechanism could be made to depend on the first-order belief of bidder
2. In particular, the mechanism could ask bidder 2 to report his belief in the probability that
1 has a low valuation. Suppose 2 were to report that his own value is low and that 1 is quite
likely also to have a low valuation. In an incentive-compatible mechanism, 2’s report can be
assumed to be truthful. But this only means that 2 truthfully believes that 1 is likely to have
a low valuation. What matters is the inference made by the auctioneer about 1’s valuation
conditional on learning that this is the 2’s belief. There are two possibilities depending on
the auctioneer’s belief.

The auctioneer may disagree with bidder 2. But if this is the case, then a mechanism
which involves a bet between the auctioneer and bidder 2 about 1’s valuation would improve
the seller’s revenue. Alternatively, the auctioneer may agree with bidder 2. In that case,
conditional on learning that both bidders have a low valuation, the object should be sold
to bidder 1 (who is willing to pay more) contrary to the outcome of the dominant strategy
mechanism.

Therefore, only if the seller believes that a low-valuation bidder 2 would never believe
that bidder 1 has a low valuation could it be optimal to use a mechanism which, like the
optimal dominant strategy mechanism does not depend on the beliefs of bidder 2. By a
symmetric argument, only if the seller believes that a high-valuation bidder 2 would never
believe that bidder 1 has a high valuation could a dominant strategy mechanism be optimal.
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But this means that the auctioneer must believe that the two valuation-types of bidder 2
must have a strong difference in beliefs. In such a situation, the auctioneer could improve his
mechanism by including Crémer-McLean separating bets to weaken incentive constraints.

5 Remarks on the Common Prior Assumption

The validity, in the regular case, of the maxmin and Bayesian foundations for the use of
dominant strategy mechanisms was shown by construction of a particular assumption about
bidders’ beliefs. It is noteworthy that the assumption constructed in the proof of Theorem 1
is inconsistent with the widely-adopted common prior assumption (CPA).

Loosely speaking, the CPA says that there is a common probability measure (the common
prior) from which each bidder derives his belief by computing the conditional probability of
opponents’ types conditional on his own “signal” or “information.” In our current setting,
where any assumption about bidders’ types is already modeled as a probability distribution
over bidders’ types, we can relate any assumption µ to the CPA as follows. For any subset
A ∈ Ω∗

i , we shall write µ(A) as a short hand for µ(A×Ω∗
−i). In other words, we abuse notation

and use the same notation for a probability measure as well as its marginal distributions.

Definition 6 We say that an assumption µ is a CPA-assumption if for any measurable
subsets A ⊂ Ω∗

i and B ⊂ Ω∗
−i,∫

A

g∗i (ωi)(B) µ(dωi) = µ(A×B).

It is apparent that the particular assumption µ∗ we used in the proof of Theorem 1 is not
an CPA-assumption. Is it possible to rationalize dominant strategy mechanisms using only
CPA-assumptions? We investigate this possibility in the present section.

The following notation will be convenient. Let Ω be a type space which can be embedded
via Lemma 1 by some mapping m in Ω∗, and let ρ be any common prior over Ω. The
corresponding prior over Ω∗ is defined by ρ ◦m−1. We denote it by m(ρ). If Ω is the naive
type space Ων , we abuse notation and use ν to denote also the common prior over Ων , and
use m(ν) to denote the corresponding distribution over Ω∗. If µ takes the form of m(ρ),
where ρ is the common prior of some type space Ω embeddable in the universal type space
Ω∗, then µ will be an CPA-assumption in the sense of Definition 6.

In Appendix C, we use an example to demonstrate that, when ν is far from being an
independent distribution over V , the answer is negative. In this section, we shall present
some positive results for the case when ν is close to an independent distribution.

We begin by noting that when ν is a product measure, i.e. the players’ valuations are
drawn independently, then the regular case reduces to the familiar monotone hazard rate
condition. In this case, we can consider the naive type space Ων with the prior ν, and it has
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been shown that the optimal BIC mechanism can be implemented in dominant strategies.
When we embed Ων in the universal type space Ω∗, the image of ν (i.e., m(ν)) will be an
CPA-assumption that rationalizes the use dominant strategy mechanisms. We record this
observation as a lemma for ease of reference.

Lemma 3 Let ν be regular and independent, and let m(ν) be the corresponding distribution
over the image of Ων in the universal type space. Then m(ν) is an CPA-assumption, and
supΓ∈Ψ Rm(ν)(Γ) = ΠD(ν).

When ν is close to an independent distribution, but not independent itself, Lemma 3
fails dramatically. Indeed, the Crémer and McLean (1985) mechanism extracts all buyers’
surplus while the optimal dsIC mechanism must yield some information rent to high-value
buyers. Thus, m(ν) itself cannot be used as a rationalizing CPA-assumption. However, we
show that whenever ν is regular and close to an independent distribution, there exists an
CPA-assumption µ which “almost” rationalizes the use of dominant strategy mechanisms.
Precisely, the optimal dominant strategy mechanism achieves nearly the same revenue as the
optimal detail-free mechanism under assumption µ.

To state the general result, we introduce some necessary notation. We say that valuation
distribution ν is ε-close to ν̂ if there exists some ν̃ such that ν = (1− ε)ν̂ + εν̃.

Theorem 2 For any regular and independent ν̂ and δ > 0, there exists ε > 0 such that, if
ν is ε-close to ν̂, then there exists an CPA-assumption µ such that

ΠD(ν) ≥ sup
Γ∈Ψ

Rµ(Γ)− δ.

Proof: We begin by constructing a type space with a common prior. For each bidder i, and
valuation vi there are two types ω̂vi and ω̃vi , with fi(ω̂

vi) = fi(ω̃
vi) = vi. There is a common

prior ρ over the set Ω of type profiles defined as follows.

ρ(ω) =


(1− ε)ν̂(v1, . . . , vn) if ωi = ω̂vi for each i,

εν̃(v1, . . . , vn) if ωi = ω̃vi for each i,

0 otherwise.

That is, with probability 1−ε, the valuations will be drawn from the independent distribution
ν̂, and with the remaining probability from the distribution ν̃. This type space thus has two
belief-closed subspaces corresponding to the value distributions ν̂ and ν̃. We denote these
subspaces Ω̂ and Ω̃. We define the belief mappings gi by Bayesian updating from ρ. By
lemma 1, (Ω, f, g) can be embedded by some mapping m in the universal type space because
each type of bidder i with the same valuation has a distinct hierarchy of beliefs.12 We thus

12Consider the types belonging to Ω̃. For these types it is common-knowledge that values are drawn from
ν̃. A type in Ω can have such a hierarchy if and only if the valuation is indeed drawn from ν̃. Thus, the
remaining types (i.e., types in Ω̂) have different hierarchies.
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take µ to be m(ρ), the corresponding distribution over the image of Ω. It is an immediate
consequence of the construction and Definition 6 that µ∗ is an CPA-assumption and also
that µ ∈ M(ν). Similarly, we define µ̂ = m(ν̂) and µ̃ = m(ν̃). Note that µ = (1− ε)µ̂ + εµ̃.

Let Γ be any mechanism in Ψ. We have

Rµ(Γ) = (1− ε)Rµ̂(Γ) + εRµ̃(Γ).

Hence,

sup
Γ∈Ψ

Rµ(Γ) ≤ (1− ε) sup
Γ̂∈Ψ

Rµ̂(Γ̂) + ε sup
Γ̃∈Ψ

Rµ̃(Γ̃)

= (1− ε)ΠD(ν̂) + ε sup
Γ̃∈Ψ

Rµ̃(Γ̃),

where the equality follows from Lemma 3.

From the maximum theorem, for any κ > 0 we can choose ε small enough so that
ΠD(ν) ≥ ΠD(ν̂)− κ. Thus,

ΠD(ν) ≥ sup
Γ∈Ψ

Rµ∗(Γ)− ε
[
sup Rµ̃(Γ̃)− ΠD(ν̂)

]
− κ.

Because µ̃ is an CPA-assumption, we have the standard accounting identity: total surplus
equals buyers’ expected utility plus Rµ̃(Γ̃). Because Γ̃ ∈ Ψ satisfies individual rationality,
buyers’ surplus is non-negative, so Rµ̃(Γ̃) is bounded by the total surplus which is itself
uniformly bounded by vM = max V < ∞. We thus have

ΠD(ν̂) ≥ sup
Γ∈Ψ

Rµ∗(Γ)− εvM − κ,

which yields the statement of the theorem when we take κ = δ/2 and ε < δ/(2vM).

Theorem 2 shows that when the auctioneer believes that valuations are distributed nearly-
independently, then the use of dominant strategy mechanisms has an approximate maxmin
foundation even if we limit ourselves to CPA-assumptions. In this case, any slight loss in
revenue might be compensated for by the other virtues of dominant strategy mechanisms,
e.g. simplicity and transparency of equilibrium play for the bidders.

6 Conclusion

We have identified a sufficient condition, a direct generalization of the regular case in
Myerson (1981), under which dominant strategy mechanisms can be rationalized as optimal
mechanisms, either by appeal to maxmin or Bayesian optimality criteria. Let us conclude
by pointing out one additional implication of this result. Suppose that in addition to the
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regularity assumption, the distribution of valuations ν is symmetric, a natural assumption for
a seller who does not know the identities or characteristics of the bidders. Then the English
auction with a suitably chosen reserve price is an optimal dominant strategy auction.13 We
have thus shown that in symmetric, regular environments, the widespread use of the English
auction as a selling mechanism can be justified as an optimal response to uncertainty about
the bidders’ beliefs.

13Lopomo (2000) proved that the English auction is the optimal dominant strategy mechanism in (almost)
this setting.
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Appendix A: Universal Type Space

In this appendix, we review the Mertens and Zamir (1985) (hereafter MZ) construction
of the universal type space and show how to apply it in our setting.14 In general, the set of
possible first-order beliefs for bidder i is

T1
i := ∆V−i,

and the set of all possible kth-order beliefs is

Tk
i := ∆(V−i × Tk−1

−i ).

An infinite hierarchy of beliefs for bidder i is a sequence hi = (h1
i , h

2
i , . . .) satisfying hk

i ∈ Tk
i

The projections φk
i : Tk

i → Tk−1
i , defined inductively by φ2

i (h
2
i )(v−i) = h2

i ({v−i} × T1
−i),

and for each measurable subset {v−i} ×B ⊂ V−i × Tk−2
−i ,

φk
i (h

k
i )({v−i} ×B) = hk

i ({v−i} ×
[
φk−1
−i

]−1
(B)),

demonstrate that each kth-order belief for bidder i implicitly defines beliefs at lower orders
as well. A hierarchy is said to be coherent if these implicitly defined beliefs are consistent
with those explicitly defined at lower orders; i.e., φk

i (h
k
i ) = hk

i .

Recall (see footnote 7) that for any type ωi in any type space, it is possible to identify
the hierarchy of beliefs of ωi. Let hi(ωi) represent this hierarchy.

Lemma 4 There exists a type space Ω∗ such that for each player i, each value vi ∈ Vi and
each coherent infinite hierarchy of beliefs ĥi over V−i, there is a type ωi ∈ Ω∗

i such that
fi(ωi) = vi and hi(ωi) = ĥi. Moreover, each Ω∗

i is a compact topological space.

This lemma is a straightforward application of the results in MZ which we briefly sketch.
We take the space of basic uncertainty (what MZ call the parameter space) to be V . The
main theorem in MZ (Theorem 2.9) shows the existence of the “universal belief-space” Y

generated by V . Because all possible beliefs are included in Y, it allows for the possibility
that player i is not certain of which element of vi has been realized. Thus Y is too large for
our purposes. Instead, MZ’s remark 2.17 derives a compact belief-subspace C in which it is
common-knowledge that each player i knows his own value.

14It has been recently discovered that the MZ belief-hierarchies are limited in a certain sense: some
rationalizable and equilibrium behaviors can arise when modeled using a small type space but cannot be
captured in the universal type space. See for example Ely and P ↪eski (2006) and Dekel, Fudenberg, and
Morris (2006). To capture all possible assumptions that are relevant for Bayesian equilibrium behavior, the
universal type space would have to be enlarged. This issues can arise only in models with a common-value
element. They would not alter any of the results in our private-value setting.
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Formally, C is a compact space such that there exist for each i, spaces15 Ωi where Ωi ⊂
∆(V−i × Ω−i) such that

C ∼= V × Ω1 × . . .× ΩN

where ∼= denotes homeomorphism.16 Each Ωi is a set of possible beliefs for i about the
valuations and beliefs of the others. The hierarchies derived from C will have the property
that it is common-knowledge that each player knows his own valuation. Moreover, the MZ
construction of C (see remark 2.17 and property 6 in MZ) ensures that every profile of
hierarchies of beliefs satisfying this restriction is represented in C.

To obtain our setup, we take Ω∗
i = Vi × Ωi, and let f ∗i : Ω∗

i → Vi and g∗i : Ω∗
i → Ωi

be the projection mappings. Because Vi is finite and Ωi is compact, we have that Ω∗
i is

compact. Our universal type space (corresponding to the “private values” universal type
space of Heifetz and Neeman (2006)) is then Ω∗ = (Ω∗

i , f
∗
i , g∗i )i∈N .

Also, Lemma 1 is an immediate consequence of Property 5 from MZ when we note that
the non-redundancy condition of MZ is satisfied if the mapping ωi → (fi(ωi), hi(ωi)) is
one-to-one.

Appendix B: Proof of Theorem 1

In this section, we shall first review the properties of the optimal dominant strategy
mechanism design problem that will be used in the proof of Theorem 1. We use a version of
a standard argument to show that the dominant strategy incentive compatibility constraints
can be replaced by a monotonicity constraint on the allocation rule. We then show that
regularity implies that the monotonicity constraint is not binding in the optimal dominant
strategy mechanism design problem. This sets the stage for the proof of Theorem 1. The lat-
ter proceeds by constructing an assumption against which the optimal BIC mechanism design
problem reduces to the same objective function but without the monotonicity constraint. It
follows that the optimal values in the two problems are the same.

We can formulate the optimal dominant strategy mechanism design problem as follows:

max
p(·),t(·)

∑
vi∈V

ν(v)
N∑

i=1

ti(v) (4)

subject to: ∀ i = 1, . . . , N , ∀ m, l = 1, . . . ,M , ∀ v−i ∈ V−i,

pi(v
m, v−i)v

m − ti(v
m, v−i) ≥ 0, 〈DIRm

i 〉
pi(v

m, v−i)v
m − ti(v

m, v−i) ≥ pi(v
l, v−i)v

m − ti(v
l, v−i). 〈DICm→l

i 〉

We omit the proof of the following standard lemma which establishes that the constraints
in (4) can be replaced by a single monotonicity constraint on the allocation rule.

15MZ call these type spaces. Our use of that terminology is therefore slightly different, but follows standard
usage in mechanism design.

16The product structure of C is not explicitly noted in MZ, but it follows from the construction, see remark
2.17 and property 6 in MZ.
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Lemma 5 Say that an allocation rule p is dsIC if there exists a transfer rule t such that the
auction mechanism (p, t) satisfies the constraints in (4). A necessary and sufficient condition
for p to be dsIC is the following monotonicity condition: ∀i = 1, . . . , N ,

pi(v
m, v−i) ≥ pi(v

m−1, v−i), ∀ m = 2, . . . ,M, ∀ v−i ∈ V−i. 〈Mi〉

It follows from standard arguments that in an optimal dominant strategy mechanism,
the constraints 〈DIR1

i 〉 and 〈DICm→m−1
i 〉 are binding and (given that p is monotonic) all

other constraints can be ignored. Combining the resulting equalities, we see that when the
other bidders report valuation profile v−i, bidder i’s net utility (“rent”) will be

Ui(v
1, v−i) = 0

for type v1 and

Ui(v
m, v−i) = pi(v

m−1, v−i)(v
m − vm−1) + Ui(v

m−1, v−i) = γ
m−1∑
m′=1

pi(v
m′

, v−i)

for type vm, m > 1. By definition, the total transfer received by the auctioneer is the total
surplus generated by any sale of the object less the rent received by the bidders. Thus, an
equivalent formulation of the problem is to choose a dsIC (i.e., monotonic) allocation rule to
maximize the expected value of this difference.

max
p(·)

N∑
i=1

M∑
m=1

∑
v−i∈V−i

ν(vm, v−i)

[
pi(v

m, v−i)v
m − γ

m−1∑
m′=1

pi(v
m′

, v−i)

]
(5)

subject to 〈Mi〉, i = 1, . . . , N.

A typical approach to solving a problem in this form is to first consider the unconstrained
maximization of (5), and check whether the solution satisfies the monotonicity constraint. In
the following proposition we show that this is guaranteed to be the case under the regularity
condition. The second part is Proposition 1 presented in the text.

Proposition 3

1. If ν is regular, then any solution to the unconstrained problem (5) also satisfies the
constraints 〈Mi〉.

2. If ν satisfies both the monotone hazard rate condition and affiliation, then ν is regular.

Proof: First, consider the relaxed problem ignoring the monotonicity constraint in (5). Fix
a valuation profile v and notice that the derivative of the maximand with respect to pi(v)
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is bidder i’s virtual valuation: vi − γ
∑

v̂i>vi
ν(v̂i, v−i)/ν(v). It will be optimal at valuation

profile v to award the object for sure to the bidder with the greatest non-negative virtual
valuation, with the object going unsold if all virtual valuations are negative.17 (In the event
that two or more bidders tie for the greatest non-negative virtual valuation, the tie can be
broken arbitrarily.)

For part 1, suppose that the virtual valuations satisfy the single-crossing condition, and
let p be an allocation rule that solves the unconstrained maximization of (5). Then pi(v) > 0
only if γi(v) ≥ maxj γj(v), and pi(v) = 1 if γi(v) > maxj 6=i γj(v). Fix v such that pi(v) > 0,
(so that γi(v) ≥ maxj γj(v)) and consider an increase in the valuation of bidder i to v̂i > vi.
By the single-crossing condition, γi(v) > maxj 6=i γj(v) and hence pi(v) = 1. This shows that
〈Mi〉 is satisfied.

For part 2, suppose that both affiliation and the monotone hazard rate condition are
satisfied and let v be a valuation profile at which γi(v) ≥ γj(v). Consider an increase in
the valuation of bidder i to v̂i > vi. Write v̂ = (v̂i, v−i). It is well-known that affiliation
implies that this “increases” the conditional distribution of other bidders’ valuations in the
sense of the monotone likelihood ratio ordering. That is, for any pair of valuations v′j > vj,
ν(v′j ,v̂−j)

ν(v̂)
≥ ν(v′j ,v−j)

ν(v)
.

The new virtual valuation for any bidder k is

γk(v̂i, v−i) = v̂k − γ
1− Fk(v̂)

ν(v̂)

By the monotone hazard rate condition γi(v̂) > γi(v). By affiliation, for each bidder j 6= i,

1− Fj(v̂)

ν(v̂)
=
∑

v′j>vj

ν(v′j, v̂−j)

ν(v̂)

≥
∑

v′j>vj

ν(v′j, v−j)

ν(v)

=
1− Fj(v)

ν(v)

and this implies γj(v̂) ≤ γj(v). And for the seller (j = 0), the latter inequality holds by
definition.

Combining these results we have γi(v̂) > γj(v̂). Since j was arbitrary, this proves that
the single crossing condition holds.

We are now in a position to prove Theorem 1. The structure of the proof is as follows.
We begin by supposing that ν is regular and satisfies an additional condition, called non-
singularity. We show that the maxmin foundation exists for dominant strategy mechanisms

17For related derivations, see Lopomo (2000) and Segal (2003).
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in this case. Next we show that we can find a sequence of such distributions to approach
any ν satisfying the hypotheses of the theorem. We then apply a limiting argument to show
that the maxmin foundation for dominant strategy mechanisms exists in this case as well.

Given ν, write νm
i for the marginal probability of valuation vi = vm, and write Gi(m) =∑M

m′=m νm′
i for the associated de-cumulative distribution function. Let σm

i = ν(·|vm) be the
conditional distribution over the valuations of bidders j 6= i conditional on bidder i having
valuation vm. Say that ν is non-singular if the collection of vectors {σm

i }M
m=1 is linearly

independent.

Say that a type space is simple if for each player i and valuation vi there is a unique type
for i with valuation vi; i.e., the mapping f is one-to-one.18 By Lemma 1, a simple type space
can be embedded via a mapping m into the universal type space. Say that an assumption µ
is simple if it concentrates on the image in Ω∗ of a simple type space. In this case, for any
mechanism (p, t) defined over Ω∗ we can consider the reduced mechanism (p̄, t̄) defined over
V , where

p̄i(v) = pi(m(f−1(v))), t̄i(v) = ti(m(f−1(v))).

A further notational simplification will be convenient. Let p̄m
i and t̄mi denote respectively the

vectors 〈p̄i(v
m
i , ·)〉v−i∈V−i

and 〈t̄i(vm
i , ·)〉v−i∈V−i

in RMN−1
.

Suppose ν is non-singular and regular. We begin by constructing a simple type space
which will then be embedded in the universal type space using Lemma 1. Let the set of
types for player i be equal to the set of possible valuations, i.e. Ω̂i = Vi. We take fi to be
the identity, and for notational ease we will write τm

i = gi(v
m) for the beliefs of type vm of

bidder i about the types of the other bidders.

These beliefs are defined as follows:

∀i,∀m, τm
i =

1

Gi(m)

M∑
m′=m

νm′

i σm′

i .

Thus, conditional on having valuation vm, bidder i’s belief over opponents’ valuations is the
average of the auctioneer’s beliefs conditional on i having valuation at least vm.19 Note that
the collection {τm

i }M
m=1 is linearly independent by the non-singularity of ν. The following

equivalent recursive definition of τm
i is useful:

τM
i = σM

i ,

τm
i =

1

Gi(m)

(
νm

i σm
i + Gi(m + 1)τm+1

i

)
, ∀m < M. (6)

Finally, because it is simple, the type space Ω̂ = (Ω̂i, fi, gi)i∈N can be embedded in the
universal type space by Lemma 1. Let Ωi ⊂ Ω∗

i be the image in the universal type space,

18The naive type space Ων is one example of simple type spaces.
19Thus, each bidder type has beliefs which are a distortion of those that would be derived from ν, except

for the highest valuation type, where there is “no distortion at the top.”
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and write ωm
i = mi(v

m
i ). Type ωm

i has valuation f ∗i (ωm
i ) = vm

i and belief g∗i (ω
m
i ) = τm

i (up
to the relabeling). We can now define the assumption µ∗ by setting µ∗(m(f−1(v))) = ν(v).
Clearly µ∗ ∈ M(ν). We will show that µ∗ is a rationalizing assumption.

Under the simple assumption µ∗, the optimal BIC auction design problem can be ex-
pressed as follows:

max
p(·),t(·)

N∑
i=1

∑
v∈V

ν(v)t̄i(v) (7)

subject to: ∀ i = 1, . . . , N , ∀ m = 1, . . . ,M , ∀ l = 1, . . . ,M,

τm
i · (p̄m

i vm − t̄mi ) ≥ 0, 〈IRm
i 〉

τm
i · (p̄m

i vm − t̄mi ) ≥ τm
i ·
(
p̄l

iv
m − t̄li

)
. 〈ICm→l

i 〉

We have used the inner product notation such as τm
i · t̄mi for expectations with respect

to the belief τm
i . Note that the IR and IC constraints for all types outside of the support of

µ∗ have been omitted.20

Say that an allocation rule p is BIC if there exists a transfer rule t such that the auction
mechanism (p, t) satisfies the constraints in (7). Because the beliefs of those types of each
bidder that appear in (7) are linearly independent, every allocation rule is BIC. Indeed, by
exploiting the differences in beliefs, the incentive compatibility and individual rationality
constraints can be satisfied by building into the transfer rule lotteries which have positive
expected value to the intended type and arbitrarily large negative expected values to the
other types. This kind of construction is due to Crémer and McLean (1985), and we shall
omit the details.

While the above argument shows that any allocation rule is implementable by some
appropriate choice of transfer rule, we can further sharpen the conclusion and argue that
certain constraints in (7) can be manipulated or even ignored without cost to the auctioneer.
To begin with, each “upward” incentive constraint (i.e., 〈ICm→l

i 〉 for m < l) can be ignored.
Indeed, because bidder i’s beliefs are linearly independent, there exists a lottery λ ∈ RMN−1

such that τm
i · λ = 0 for all m ≥ l and τm

i · λ < 0 for all m < l. Since by (6) σl
i is a linear

combination of τ l
i and τ l+1

i , we also have σl
i · λ = 0. By adding (some sufficiently large scale

of) λ to t̄li, each 〈ICm→l
i 〉 for m < l can be relaxed. No other constraints are affected and

the resulting change in the auctioneer’s revenue is σl
i · λ = 0.

We next show that for any auction mechanism (p, t) that satisfies the remaining con-
straints, there exists an auction mechanism (p′, t′) which satisfies the constraints 〈IRm

i 〉, for
m = 1, . . . ,M , and 〈ICm→m−1

i 〉, for m = 2, . . . ,M , with equality, and achieves at least as
high an µ∗-expected revenue as (p, t) does.

20More precisely, we are looking at the relaxed problem. The solution to the relaxed problem 7 provides
an upper bound for the auctioneer’s revenue that can be achieved by any mechanism under the assumption
µ∗.
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To prove this, fix any auction mechanism (p, t) that satisfies the remaining constraints.
Suppose 〈ICm→m−1

i 〉 holds with strict inequality. Let τ denote the matrix whose M rows
are the vectors {τm

i }M
m=1, and let (τ−m, σm−1

i ) be the matrix obtained by replacing the mth
row of τ with the vector σm−1

i . Note that the matrix (τ−m, σm−1
i ) has rank M . We can thus

solve the following equation for λ:

(τ−m, σm−1
i ) · λ = xm,

where xm denotes the mth elementary basis vector in RM . Note that because τm−1
i · λ =

0 < σm−1
i · λ, and because τm−1

i is a convex combination of σm−1
i and τm

i according to (6),
we have τm

i · λ < 0.

We will add the vector ελ to t̄m−1
i for some scalar ε > 0. Because τm′

i · λ = 0 for
m′ 6= m, no constraints for types ωm′

i are affected. As for type ωm
i , the constraint 〈IRm

i 〉
is unaffected. The only incentive constraint of type ωm

i that is affected is 〈ICm→m−1
i 〉, and

this constraint was slack by assumption. Let Sm
i > 0 be the slack in 〈ICm→m−1

i 〉, and choose
ε = −Sm

i /(τm
i · λ) > 0. Then, with the resulting transfer rule, 〈ICm→m−1

i 〉 holds with
equality. Finally, because εσm−1

i · λ > 0, the auctioneer profits from this modification.

We next show that each 〈IRm
i 〉 can be treated as an equality without loss of generality.

Define Sm
i = τm

i · (p̄m
i vm − t̄mi ) ≥ 0 to be the slack in 〈IRm

i 〉. Construct a lottery λ that
satisfies

τm
i · λ = Sm

i , m = 1, . . . ,M.

By the full-rank arguments such a lottery λ can be found. We will add λ to each t̄mi . No
constraint of the form 〈ICm→l

i 〉 will be affected, but now each constraint of the form 〈IRm
i 〉

holds with equality. Finally, we check that the auctioneer profits from this modification.
Indeed, the auctioneer nets

M∑
m=1

νm
i (σm

i · λ) =
M−1∑
m=1

(
Gi(m)τm

i −Gi(m + 1)τm+1
i

)
· λ + νM

i τM
i · λ

= Gi(1)τ
1
i · λ

= Gi(1)S1
i

≥ 0.

The proof for the non-singular case is now concluded as follows. Based on the preceding
arguments, we consider the modified program in which the constraints 〈IRm

i 〉 and 〈ICm→m−1
i 〉

are satisfied with equality. We will use these constraints to substitute out for the transfers in
the objective function and reduce the problem to an unconstrained optimization with the only
choice variable being the allocation rule (recall that any allocation rule is BIC). The resulting
objective function will be identical to the objective function (4) for the dsIC problem. Thus
the only difference between the two problems is the absence of any monotonicity constraint
in the BIC case. It then follows that (i) the modified problem and hence the original problem
(7) will have a solution, and (ii) this solution will be the same as the solution to the optimal
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dominant strategy mechanism design problem by Part 1 of Proposition 3. In particular,
equation (3) holds and µ∗ rationalizes the use of dominant strategy mechanisms.

We rewrite the objective function in (7) as below, and impose the constraints as equalities:

max
p(·),t(·)

N∑
i=1

M∑
m=1

νm
i σm

i · t̄mi (8)

subject to: ∀ i = 1, . . . , N , ∀ m = 1, . . . ,M,

τm
i · (p̄m

i vm − t̄mi ) = 0, 〈IR
m

i 〉

τm
i · (p̄m

i vm − t̄mi ) = τm
i ·
(
p̄m−1

i vm − t̄m−1
i

)
. 〈IC

m→m−1

i 〉

By definition, σM
i = τM

i , so 〈IR
M

i 〉 becomes σM
i · t̄Mi = vMσM

i · p̄M
i . Now, for arbitrary

m < M ,

σm
i · t̄mi =

1

νm
i

[
Gi(m)τm

i −Gi(m + 1)τm+1
i

]
· t̄mi

=
1

νm
i

{
Gi(m)vmτm

i · p̄m
i −Gi(m + 1)

[
τm+1
i · (p̄m

i − p̄m+1
i )vm+1 + τm+1

i · t̄m+1
i

]}
=

1

νm
i

[
Gi(m)vmτm

i · p̄m
i −Gi(m + 1)vm+1τm+1

i · p̄m
i

]
.

In the first line we used the recursive definition in (6), in the second line we used 〈IR
m

i 〉 and

〈IC
m+1→m

i 〉, and in the third line we used 〈IR
m+1

i 〉.
Substituting the constraints into the objective function, it becomes:

N∑
i=1

{
vMνM

i σM
i · p̄M

i +
M−1∑
m=1

[
vmGi(m)τm

i · p̄m
i − vm+1Gi(m + 1)τm+1

i · p̄m
i

]}

=
N∑

i=1

{
vMνM

i σM
i · p̄M

i +
M−1∑
m=1

[
vm
(
νm

i σm
i + Gi(m + 1)τm+1

i

)
· p̄m

i − vm+1Gi(m + 1)τm+1
i · p̄m

i

]}

=
N∑

i=1

[
M∑

m=1

vmνm
i σm

i · p̄m
i −

M∑
m=2

(vm − vm−1)Gi(m)τm
i · p̄m−1

i

]
.
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Applying the definition of τm
i , the objective function becomes:

N∑
i=1

[
M∑

m=1

vmνm
i σm

i · p̄m
i −

M∑
m=2

γ

(
M∑

m′=m

νm′

i σm′

i

)
· p̄m−1

i

]

=
N∑

i=1

[
M∑

m=1

vmνm
i σm

i · p̄m
i − γ

M∑
m=2

m∑
m′=2

νm
i σm

i · p̄m′−1
i

]

=
N∑

i=1

M∑
m=1

νm
i σm

i ·

[
vmp̄m

i − γ
m∑

m′=2

p̄m′−1
i

]

=
N∑

i=1

M∑
m=1

∑
v−i∈V−i

νi(v
m, v−i) ·

[
vmp̄i(v

m, v−i)− γ
m−1∑
m′=1

p̄i(v
m′

, v−i)

]
.

This is identical to the objective function in (5). We have thus shown that µ∗ is a
rationalizing assumption and that equation (3) is satisfied for any regular, non-singular ν.

Now consider an arbitrary regular ν, not necessarily non-singular. There exists a sequence
νn converging to ν such that each νn is non-singular. Moreover, for νn close enough to ν,
the strict inequalities in the definition of single-crossing will be preserved, and hence νn will
all be regular once n is large enough. For each such νn, construct the simple type space Ω̂n

exactly as in the first half of the proof. Let τm
i (n) denote the belief of type vm of bidder i in

the type space Ω̂n
i . Passing to a subsequence if necessary, take τm

i (n) → τm
i for each i and

m. Let Ω̂ be the “limit” type space where Ω̂i = Vi, fi is the identity, and gi(v
m) = τm

i . By
Lemma 1, each of these type spaces can be embedded in the universal type space. Let Ωn

and Ω be the corresponding images in Ω∗, and define the respective simple assumptions µ∗n
and µ∗ constructed as in the first part of the proof. In particular, each µ∗n rationalizes the
use of dominant strategy mechanisms.

Let Γ = (p, t) be any mechanism in Ψ. As before, we denote by p̄m
i and t̄mi the vectors

p̄i(ω
m
i , ·) and t̄i(ω

m
i , ·) respectively, where each ω is an element of Ω, the image in Ω∗ of the

“limit” type space Ω̂. Since Γ ∈ Ψ, these vectors satisfy the constraints in (7). From the
vectors (p̄, t̄), we will construct a sequence of vectors (p̄, t̄(n)), each satisfying the constraints
in the νn-version of (7), as follows.

We will say that t̄(n) satisfies BIC(n) if the following incentive constraints hold:

τm
i (n) · (p̄m

i vm − t̄mi (n)) ≥ 0, 〈IRm
i (n)〉

τm
i (n) · (p̄m

i vm − t̄mi (n)) ≥ τm
i (n) ·

(
p̄l

iv
m − t̄li(n)

)
. 〈ICm→l

i (n)〉
For each i, m, and n, let

Sm
i (n) = max{0, τm

i (n) · (t̄mi − p̄m
i · vm)}

be the amount by which the 〈IRm
i (n)〉 constraint is violated by the transfers t̄mi for type

ωm
i (n). Because (p̄, t̄) satisfies the constraints in (7), and τm

i (n) → τm
i , we have Sm

i (n) → 0
for each i and m.
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Let t̃mi (n) be the sum of the vector t̄mi and the constant vector −Sm
i (n). Next, for each

i, m, l, and n, let

Lm→l
i (n) = max{0, τ l

i (n) · (p̄l
iv

m − t̃li(n))− τm
i (n) · (p̄m

i vm − t̃mi (n))}

be the amount by which 〈ICm→l
i (n)〉 is violated by the transfers t̃i(n). Note that Lm→m

i (n) =
0. Again, because (p̄, t̄) satisfies the constraints in (7), and because t̃(n) → t̄, we have
Lm→l

i (n) → 0 for each i, m, and l. For each n, we construct λl
i(n) to solve the system

τm
i (n) · λl

i(n) = Lm→l
i (n), ∀ i, m, l.

We can now define t̄(n) by setting

t̄mi (n) = t̄mi − Sm
i (n) + λm

i (n).

By construction, t̄(n) satisfies BIC(n), and together with p̄ satisfies the constraints in the
νn-version of (7). Because each νn is regular and non-singular, and each µ∗n is an assumption
that rationalizes the use of dominant strategy mechanisms, the first part of the proof implies
that ∑

i

∑
v

νn(v)t̄i(n)(v) ≤ ΠD(νn)

for each n.

Because the constraint set in the optimal dominant strategy mechanism design problem
(5) is compact, the maximum theorem implies

ΠD(νn) → ΠD(ν).

Hence,

ΠD(ν)−Rµ∗(Γ) = lim
n→∞

[
ΠD(νn)−Rµ∗(Γ)

]
≥

N∑
i=1

lim
n→∞

[Eνn t̄i(n)− Eν t̄i(n)]

=
N∑

i=1

lim
n→∞

[Eνn(t̄i(n)− t̄i) + Eνn t̄i − Eν t̄i]

=
N∑

i=1

lim
n→∞

[Eνn(t̄i(n)− t̄i)]

=
N∑

i=1

lim
n→∞

M∑
m=1

σm
i (n) · (Sm

i (n)− λm
i (n))

= 0.
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The last equality follows because Sm
i (n) → 0 for every m and τm

i (n) · λl
i(n) → 0 for each m

and l implies by (6) that σm
i (n) · λm

i (n) → 0 for each m.

This establishes that µ∗ rationalizes the use of dominant strategy mechanisms for the
distribution ν and thus concludes the proof.

Appendix C: An Example for Section 5

In Section 5, we claim that there exists a distribution ν that satisfies the regularity
condition, and such that there is no CPA-assumption µ under which equation (3) holds. We
shall provide an example of such a distribution here.

Consider the same example as in Section 3, where there are two bidders, and each bidder
has two possible valuations. The distribution of valuations is as depicted in Figure 3, and
the corresponding optimal dominant strategy mechanism is as depicted in Figure 4.

Suppose there exists an CPA-assumption µ ∈ M(ν) for which equation (3) holds. We
shall prove that there exists a detail-free mechanism that generates higher µ-expected revenue
than Γ does. This would contradict the supposition that equation (3) holds.

It suffices to work only with bidder 2’s first-order beliefs in order to complete this proof.
So, following the convention in Section 3, we shall continue to use a (b) to denote the
first-order belief of a high-valuation (low-valuation) type of bidder 2 that bidder 1 has high
valuation. Let b = sup{x ∈ [0, 1] : µ(b < x) = 0}.

First, observe that b ≥ 4/9. Suppose, on the contrary, b < 4/9. Then pick any number z
between b and 4/9, and consider the mechanism Γ(z) as depicted in Figure 8.

v1 = 4 v1 = 9
a ∈ [0, 1] α = 2, t1 = 0, t2 = 11 α = 2, t1 = 0, t2 = 11

b ≥ z α = 0, t1 = 0, t2 = 0 α = 1, t1 = 9, t2 = 0
b < z α = 1, t1 = 4, t2 = 0 α = 1, t1 = 4, t2 = 0

Figure 8: The mechanism Γ(z).

It is obvious that Γ(z) is BIC for the universal type space. The only difference between
Γ(z) and Γ is in the (µ-non-null) event of b < z, in which case Γ(z) generates µ-expected
revenue of 4, whereas Γ only generates µ-expected revenue of 9µ(v1 = 9|b < z) < 9z <
9(4/9) = 4, where the first inequality comes from the fact that µ is an CPA-assumption.
Since this would have contradicted the supposition that equation (3) holds, we must have
b ≥ 4/9.

Then, consider the mechanism Γ′′ as depicted in Figure 9.
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v1 = 4 v1 = 9
a ∈ [0, 1] α = 2, t1 = 0, t2 = 11 α = 1, t1 = 9, t2 = −15/2
b ≥ 4/9 α = 2, t1 = 0, t2 = 11 α = 1, t1 = 9, t2 = −15/2
b < 4/9 α = 0, t1 = 0, t2 = 0 α = 0, t1 = 0, t2 = 0

Figure 9: The mechanism Γ′′.

To see that Γ′′ is BIC for the universal type space, it suffices to observe that, for low-
valuation types of bidder 2 with b ≥ 4/9, truth-telling gives them a non-negative rent of
(5− 11)(1− b) + (15/2)b ≥ (−6)(5/9) + (15/2)(4/9) = 0.

Since b < 4/9 is a µ-null event, Γ′′ generates µ-expected revenue of 9(4/10) + 11(6/10)−
(15/2)(4/10) = 72/10, whereas Γ only generates µ-expected revenue of 9(3/10)+11(4/10) =
71/10. This proves that equation (3) does not hold, a contradiction.

Appendix D: Proof of Proposition 2

We shall first prove a weaker version of Proposition 2.

Proposition 4 For the distribution ν depicted in Figure 6, the optimal dominant strategy
mechanism Γ depicted in Figure 7 cannot be rationalized by any element in M(ν); i.e.,
∀µ ∈ M(ν),

sup
Γ′∈Ψ

Rµ(Γ′) > V D(ν).

Proposition 2 further strengthens Proposition 4 by asserting that supΓ′∈Ψ Rµ(Γ′) is uni-
formly bounded away from V D(ν) for all µ ∈ M(ν). This second result will be proved after
we have proved Proposition 4

We prove Proposition 4 by way of contradiction. Fix any element µ in M(ν) that ra-
tionalizes the optimal dominant strategy mechanism Γ, we shall prove that there exists a
mechanism in Ψ that generates higher µ-expected revenue than Γ does. This would contra-
dict the assumption that µ rationalizes Γ and complete the proof.

The proof proceeds by a sequence of lemmas. In each we derive conditions that must be
satisfied by µ. Finally we show that no µ can satisfy them all.

For the purpose of this proof, it suffices to work only with bidder 2’s first-order beliefs
in order to arrive at a contradiction. So we shall maintain the notational convention used in
the example of Section 3 and summarize bidder 2’s belief by his first-order belief that bidder
1 has high valuation. The belief of a type with high (resp. low) valuation is denoted a (b.)
Now because there may be many types in the support of µ∗ with the same valuation, we
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need some notation to refer to different sets of types. For any (measurable) subset A ⊂ [0, 1],
we shall use “a ∈ A” to denote the event that 2 has high valuation and believes with some
probability in A that 1 has a high valuation. Likewise b ∈ B is the event that 2 has low
valuation and believes with some probability in B that 1 has high valuation.21

The first lemma says that, conditional on any µ-non-null subset of low-valuation types
of bidder 2, the µ-conditional-probability that bidder 1 has high valuation cannot be too
low, otherwise the auctioneer can improve upon Γ by selling to some low-valuation types of
bidder 1.22

Lemma 6 For any x ∈ (0, 1] such that µ(b = x) = 0, if µ(b < x) > 0, then µ(v1 = 10|b <
x) ≥ 3/8.

Proof: Suppose there exists x ∈ (0, 1] such that µ(b < x) = µ(b ≤ x) > 0, and yet
µ(v1 = 10|b < x) < 3/8. Consider the mechanism Γ(x) as depicted in Figure 10.

v1 = 5 v1 = 10
a ∈ [0, 1] α = 2, t1 = 0, t2 = 2 α = 1, t1 = 10, t2 = 0

b ≥ x α = 2, t1 = 0, t2 = 2 α = 1, t1 = 10, t2 = 0
b < x α = 1, t1 = 5, t2 = 0 α = 1, t1 = 5, t2 = 0

Figure 10: The mechanism Γ(x).

To see that Γ(x) is BIC for the universal type space, note that (i) truth-telling continues
to be a dominant strategy of bidder 1, (ii) low-valuation types of bidder 2 always have zero
rent regardless of what they announce, and (iii) high-valuation types of bidder 2 would not
announce the (newly added) message “b < x” as that gives them zero rent.

The only difference between Γ(x) and Γ is in the (µ-non-null) event of b < x, in which
case Γ(x) generates µ-expected revenue of 5µ(v1 = 5|b < x) + 5µ(v1 = 10|b < x) = 5,
whereas Γ only generates µ-expected revenue of 2µ(v1 = 5|b < x) + 10µ(v1 = 10|b < x) <
2(5/8) + 10(3/8) = 5, contradicting the assumption that µ rationalizes Γ.

The second lemma says that for any low-valuation type of bidder 2 that is possible under
µ∗, the first-order belief b also cannot be too low, otherwise his belief would be too different
from the auctioneer’s belief, so much so that the auctioneer can improve upon Γ by betting
against him.

Lemma 7 µ(b < 3/13) = 0.

21 Formally, for any type ω2 of bidder 2, if f∗2 (ω2) = 4 (i.e., if v2 = 4), a denotes g∗2(ω2)[(f∗1 )−1(10)] and
a ∈ A denotes the event {ω : f∗2 (ω2) = 4, g∗2(ω2)[(f∗1 )−1(10)] ∈ A}.

22In Lemma 6 (and similarly in Lemmas 7-9), the seemingly redundant requirement of µ(b = x) = 0 is a
null-boundary property used only in the proof of Proposition 2.
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Proof: Suppose not. Then pick x < 3/13 such that µ(b < x) > 0 and µ(b = x) = 0,23 and
consider the mechanism Γ′(x) as depicted in Figure 11.

v1 = 5 v1 = 10
a ∈ [0, 1] α = 2, t1 = 0, t2 = 2 α = 1, t1 = 10, t2 = 0

b ≥ x α = 2, t1 = 0, t2 = 2 α = 1, t1 = 10, t2 = 0
b < x α = 0, t1 = 0, t2 = −2 α = 1, t1 = 10, t2 = 2(1− x)/x

Figure 11: The mechanism Γ′(x).

To see that Γ′(x) is BIC for the universal type space, note that (i) truth-telling continues
to be a dominant strategy of bidder 1, (ii) low-valuation types of bidder 2 would have strict
incentive to announce the (newly added) message “b < x” if and only if the resulting rent of
2(1− b)− [2(1−x)/x]b = 2(1− b/x) is positive, or equivalently if and only if b < x, and (iii)
high-valuation types of bidder 2 would not announce the (newly added) message “b < x” as
that gives them rent of 2(1− a)− [2(1− x)/x]a = 2(1− a/x), which is lower than the rent
of 2(1− a) if they tell the truth.

The only difference between Γ′(x) and Γ is in the (µ-non-null) event of b < x, in which
case Γ′(x) collects from bidder 2 an µ-expected amount of

(−2)µ(v1 = 5|b < x) + [2(1− x)/x]µ(v1 = 10|b < x)

≥ (−2)(5/8) + [2(1− x)/x](3/8)

= 3/(4x)− 2

> [3/4(3/13)]− 2

= 5/4

(where the first inequality follows from Lemma 6), whereas Γ only collects from bidders 2 an
µ-expected amount of 2µ(v1 = 5|b < x) ≤ 2(5/8) = 5/4, contradicting the assumption that
µ rationalizes Γ.

The third lemma says that the first-order belief a of high-valuation types of bidder 2
cannot be too low. Otherwise beliefs held by high- and low-valuation types of bidder 2 would
be too different, and this would enable the auctioneer to improve upon Γ by introducing
Crémer and McLean (1985) bets to separate these types and relax incentive compatibility
constraints.

Lemma 8 µ(a < 1/11) = 0.

23It is always possible to pick such an x, as any distribution over [0, 1] can have at most countably many
mass points.
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Proof: If not then let y < 1/11 such that µ(a = y) = 0 and µ(a < y) > 0. Notice that
y < 1/11 implies y < 3y/(2y+1) < 3/13, and hence we can also choose x between 3y/(2y+1)
and 3/13 such that µ(b = x) = 0. Consider the mechanism Γ(x, y) as depicted in Figure 12.

v1 = 5 v1 = 10
a < y α = 1, t1 = 5, t2 = −2x(1− y)/(x− y) α = 1, t1 = 5, t2 = 2(1− x)(1− y)/(x− y)
a ≥ y α = 2, t1 = 0, t2 = 2 α = 1, t1 = 10, t2 = 0
b < x α = 1, t1 = 5, t2 = −2x(1− y)/(x− y) α = 1, t1 = 5, t2 = 2(1− x)(1− y)/(x− y)
b ≥ x α = 2, t1 = 0, t2 = 2 α = 1, t1 = 10, t2 = 0

Figure 12: The mechanism Γ(x, y).

To see that Γ(x, y) is BIC for the universal type space, note that (i) truth-telling continues
to be a dominant strategy of bidder 1, (ii) low-valuation types of bidder 2 would have strict
incentive to announce the (newly added) message “b < x” if and only if the resulting rent of
[2x(1− y)/(x− y)](1− b)− [2(1−x)(1− y)/(x− y)]b = 2(1− y)(x− b)/(x− y) is positive, or
equivalently if and only if b < x, and (iii) high-valuation types of bidder 2 would have strict
incentive to announce the (newly added) message “a < y” if and only if the resulting rent of
[2x(1− y)/(x− y)](1− a)− [2(1− x)(1− y)/(x− y)]a = 2(1− y)(x− a)/(x− y) is strictly
higher than the truth-telling rent of 2(1− a), or equivalently if and only if a < y.

Since the event of b < x is a µ-null event by Lemma 7, the only real difference between
Γ(x, y) and Γ is in the (µ-non-null) event of a < y, in which case Γ(x, y) generates µ-expected
revenue of

5− 2x(1− y)/(x− y)

= 5− 2(x− y + y)(1− y)/(x− y)

= 5− 2(1− y)− 2y(1− y)/(x− y)

> 5− 2(1− y)− 2y(1− y)(2y + 1)/[3y − y(2y + 1)]

= 5− 2(1− y)− 2y(1− y)(2y + 1)/[2y(1− y)]

= 2,

whereas Γ only generates µ-expected revenue of 2, contradicting the assumption that µ
rationalizes Γ.

Finally, the fourth lemma says that the first-order belief a of high-valuation types of
bidder 2 cannot be too high. Otherwise the beliefs of such types would be too different from
the auctioneer’s subjective belief, and this would enable the auctioneer to profit by offering
an incentive compatible and individually rational bet. Obviously lemmas 8 and 9 deliver the
contradiction and thus prove Proposition 4.

Lemma 9 µ(a < 1/11) > 0.
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Proof: Suppose µ(a < 1/11) = 0. Consider the mechanism Γ′ as depicted in Figure 13.

v1 = 5 v1 = 10
a ≥ 1/12 α = 2, t1 = 0, t2 = 123/61 α = 2, t1 = 0, t2 = 233/61
a < 1/12 α = 2, t1 = 0, t2 = 2 α = 1, t1 = 10, t2 = 0
b ∈ [0, 1] α = 2, t1 = 0, t2 = 2 α = 1, t1 = 10, t2 = 0

Figure 13: The mechanism Γ′.

To see that Γ′ is BIC for the universal type space, note that (i) truth-telling continues to
be a dominant strategy of bidder 1, (ii) low-valuation types of bidder 2 would not announce
the (newly added) message “a ≥ 1/12” as that gives them strictly negative rent regardless
of what bidder 1 announces, and (iii) high-valuation types of bidder 2 would have weak
incentive to announce the (newly added) message “a ≥ 1/12” if and only if the resulting rent
of (4− 123/61)(1− a) + (4− 233/61)a is weakly higher than their original rent of 2(1− a),
or equivalently if and only if a ≥ 1/12.

Since the event a < 1/12 < 1/11 is a µ-null event by assumption, the only real difference
between Γ′ and Γ is in the (µ-non-null) event of a ≥ 1/12, in which case Γ′ generates µ-
expected revenue of 123/61 > 2, whereas Γ only generates µ-expected revenue of 2. This
proves that µ does not rationalize Γ.

This completes the proof of Proposition 4. We now prove the remaining part Proposition 2
through two lemmas.

Lemma 10 Suppose K is a compact topological space and that F is a family of real-valued
functions on K such that, for each x ∈ K, there is some fx ∈ F which is continuous at x
and satisfies fx(x) > 0. Then we have infx∈K supf∈F f(z) > 0.

Proof: For each x ∈ K, there exists an open neighborhood Ux such that, for each y ∈ Ux,
we have fx(y) > fx(x)/2. The collection {Ux : x ∈ K} forms an open covering of the
compact space K, and hence there exists a finite sub-covering. Let {Ux1 , . . . , Uxn} be a finite
sub-covering and let ε = min{fx1(x1), . . . , fxk

(xn)} > 0. For each x ∈ K, we have x ∈ Uxl

for some l = 1, . . . , n so that supf∈F f(x) ≥ fxl
(x) > fxl

(xl)/2 ≥ ε/2 > 0.

Lemma 11 Suppose O1, . . . ,On are disjoint open subsets of Ω∗ such that µ(∪Ol) = 1, and
t : Ω∗ → R is a bounded real function that is constant on each Ol. Then the mapping

µ′ →
∫

Ω∗
t µ′(dω)

is continuous at the point µ.
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Proof: Fix any ε > 0. Let t̄ > 0 be an upper bound for |t|. The function µ′ → µ′(Oi) is
lower semi-continuous (see Aliprantis and Border (1999)), hence we can set

δ =
ε

t̄n2

and find a neighborhood U of µ such that, for all µ′ ∈ U , µ′(Ol) > µ(Ol)− δ for l = 1, . . . , n.
Since µ(∪Ol) = 1, it follows that µ′(Ol) < µ(Ol)+ (n− 1)δ and µ′(Ω∗ \∪Ol) < µ(Ω∗ \∪Ol)+
nδ = nδ.

We can write ∫
Ω∗

t dµ′ =
n∑

l=1

µ′(Ol)t(Ol) +

∫
Ω∗\∪Ol

t(ω) dµ′,

so that
n∑

l=1

µ′(Ol)t(Ol)− µ(Ω∗ \ ∪Ol)t̄ ≤
∫

Ω∗
t µ′(dω) ≤

n∑
l=1

µ′(Ol)t(Ol) + µ′(Ω∗ \ ∪Ol)t̄

=⇒
n∑

l=1

[µ(Ol)− δ]t(Ol)− nδt̄ <

∫
Ω∗

t µ′(dω) <
n∑

l=1

[µ(Ol) + (n− 1)δ]t(Ol) + nδt̄

=⇒ −δ
n∑

l=1

t(Ol)− nδt̄ <

∫
Ω∗

t µ′(dω)−
∫

Ω∗
t µ(dω) < (n− 1)δ

n∑
l=1

t(Ol) + nδt̄

=⇒ −2nδt̄ <

∫
Ω∗

t µ′(dω)−
∫

Ω∗
t µ(dω) < n2δt̄.

This proves that
∣∣∫

Ω∗ t µ′(dω)−
∫

Ω∗ t µ(dω)
∣∣ < max {2nδt̄, n2δt̄} = ε.

Proof of Proposition 2 Notice that, for each of the mechanisms used in the proof of
Proposition 4, the total transfer (t1 + t2)(ω) satisfies the conditions of Lemma 11. For
example, consider the mechanism Γ(x) in Lemma 6. For any (v1, v2), the set of universal
type profiles in which the valuation pair is (v1, v2) is open in the product topology with
µ-null boundary. Moreover, since µ(b = x) = 0, the event b < x is also open in the product
topology with µ-null boundary. Therefore, we can take O1, . . . ,O6 to be the interiors of the
sets represented by the cells of the table in Figure 10. These open sets are disjoint, have
µ-null boundaries, and have total µ-measure equal to 1 as required.

Thus, for any µ ∈ M(ν), there exists a mechanism Γ(µ) ∈ Ψ such that Rµ(Γ(µ)) −
ΠD(ν) > 0, and the mapping µ′ → Rµ′(Γ(µ))−ΠD(ν) is continuous at the point µ′ = µ. We
can hence apply Lemma 10, taking K = M(ν) and F = {R(·)(Γ)− ΠD(ν) : Γ ∈ Ψ}.
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