SUPPORTING INFORMATION
Appendix for “Varieties of Clientelism: Machine Politics During Elections”

Proofs of Propositions 1 - 3

We refer to opposing voters as OV; to supporting nonvoters as SNV; and to opposing nonvoters as ONV.

Also, for notational simplicity, let $h = g(c)f(x)dcdx$, $r = x - x^M$, and $s = -x - x^M$.

The proofs to Propositions 1 and 3 make use of the following lemma:

Lemma 1: For any allocation of budget B, a machine could buy more citizens if it had additional resources of any positive amount.

Proof. Let A be an allocation of budget B. Define $M(A)$ to be the set of citizens who vote for a machine given this allocation: $M(A) \equiv \{(x_i, c_i) : b_i \geq \bar{b}_i\}$, where b_i is the payment received by citizen i under allocation A and \bar{b}_i is the payment required to buy this citizen. Limited resources means that for any allocation A, a machine cannot afford to buy all citizens: $\int \int b_ih > B$. It follows that there exists a set $Q \notin M(A)$ of positive measure such that $\bar{b}_i > b_i$ for all $(x_i, c_i) \in Q$. Let (\hat{x}_i, \hat{c}_i) be any point on the interior of Q and select η sufficiently small such that $\Delta(\eta) \equiv [\hat{x}_i, \hat{x}_i + \eta] \times [\hat{c}_i, \hat{c}_i + \eta] \subset Q$. Let $\theta > 0$ represent some nonzero amount of resources. Then by the continuity of $f(x)$ and $g(c)$, there exists a $\eta_0 < \eta$ such that for any θ, a machine can afford to buy all citizens in $\Delta(\eta_0)$: $\int_{\Delta(\eta_0)} \bar{b}_i h \leq \theta$.

Proposition 1: In an optimal allocation of resources, a machine sets $b^{*}_{TB} = 2b^{*}_{TB} = 2b^{*}_{DP} = 2b^{*}_{AB}$.

Proof. We will show (i) $b^{*}_{TB} = b^{*}_{DP}$ and (ii) $b^{*}_{TB} = 2b^{*}_{TB}$. (The proof to $b^{*}_{TB} = b^{*}_{AB}$ follows identical logic).

(i) Let b^{*}_{TB} and b^{*}_{DP} be the upper bounds on a machine’s payments to SNV and ONV, respectively. For contradiction, assume A is an optimal allocation in which $b^{*}_{TB} \neq b^{*}_{DP}$. Without loss of generality, say $b^{*}_{TB} > b^{*}_{DP}$. We will show there exists an allocation A' that is affordable and produces a strictly greater number of net votes. Thus, A cannot be optimal.

Let S be a set with positive measure of SNV such that all citizens in set S have a required payment $\bar{b}_i = b^{*}_{TB}$. Let (\hat{x}, \hat{c}) be any point on the interior of S and take δ small enough such that $\Delta(\delta) \equiv [\hat{x}, \hat{x} + \delta] \times [\hat{c}, \hat{c} + \delta] \subset S$. Recall from Lemma 1 that Q is a set of citizens who remain unbought under allocation A. Let $R \subset Q$ be a set with positive measure of ONV such that all citizens in set R have a required payment $b^{*}_{TB} > \bar{b}_i > b^{*}_{DP}$. Let (\hat{x}, \hat{c}) be any point on the interior of R. Take μ small enough such that $\Delta(\mu) \equiv [\hat{x}, \hat{x} + \mu] \times [\hat{c}, \hat{c} + \mu] \subset R$. By the continuity of $f(x)$ and $g(c)$, there exists a $\delta_0 < \delta$ and a $\mu_0 < \mu$ such that $\int_{\Delta(\delta_0)} h = \int_{\Delta(\mu_0)} h$ (call this Equation A1). Observe that $\Delta(\delta_0)$ and $\Delta(\mu_0)$ have the same number of citizens, so buying either set produces the same net votes. Let $\theta = \int_{\Delta(\delta_0)} \bar{b}_ih - \int_{\Delta(\mu_0)} \bar{b}_ih$ and note $\theta > 0$ because citizens on $\Delta(\delta_0)$ are more expensive than those on $\Delta(\mu_0)$. Finally, let $\Delta(\eta_0)$ be a set of citizens
who are mutually exclusive of set $\Delta(\mu_0)$ and who do not receive rewards under allocation A. Formally, $\Delta(\eta_0) \subset Q$ and $\Delta(\mu_0) \cap \Delta(\eta_0) = \emptyset$.

Consider an allocation A' in which a machine buys all citizens in $\Delta(\mu_0)$, reduces payments to citizens on $\Delta(\delta_0)$ to zero, and redistributes the savings to citizens in $\Delta(\eta_0)$. Recall from Lemma 1 that citizens on $\Delta(\eta_0)$ can be bought with resources θ. Formally, define $\Omega = [\underline{X}, \overline{X}] \times [0, \overline{C}] - (\Delta(\delta_0) \cup \Delta(\mu_0) \cup \Delta(\eta_0))$.

Let $A' = A$ for all (x_i, c_i) on Ω, $A' = 0$ for all (x_i, c_i) on $\Delta(\delta_0)$, and $A' = \tilde{b}_i$ for all (x_i, c_i) on $\Delta(\mu_0)$ and for all (x_i, c_i) on $\Delta(\eta_0)$. The cost of A' is \leq the cost of allocation A, and A' buys $\int_{\Delta(\eta_0)} h$ more citizens. Thus A cannot be an optimal allocation.

(ii) To show $b^*_V = 2b^*_T$ (or, equivalently, $b^*_V = 2b^*_D$ or $b^*_V = 2b^*_{AB}$), we repeat the proof that $b^*_T = b^*_D$, replacing Equation (A1) with $\int_{\Delta(\delta_0)} h = 2 \int_{\Delta(\mu_0)} h$, where $\Delta(\delta_0)$ is a subset of OV for whom $\tilde{b}_i = b^*_V > 2b^*_T$, and where $\Delta(\mu_0)$ is a subset of SNV for whom $\frac{1}{2}b^*_V > \tilde{b}_i > b^*_T$. \square

Proposition 2: If a machine engages in electoral clientelism, then optimally it allocates resources across all three strategies of vote buying, turnout buying, and double persuasion.

Proof. Let $b^*_V = b^*$ and $b^*_T = b^*_D = b^*_{AB} = b^*$. In an optimal allocation, the number of vote-buying recipients is $VB = N \int_{0}^{\underline{X}} \int_{\underline{C}}^{\overline{C}} h$ (Equation A2), the number turnout-buying recipients is $TB = N \int_{0}^{\overline{X}} \int_{\underline{C}}^{\overline{C}} h$ (Equation A3), the number of double-persuasion recipients is $DP = N \int_{\underline{X}}^{\overline{X}} \int_{\underline{C}}^{\overline{C}} h$ (Equation A4), and the number of abstention buying recipients is $AB = N \int_{\underline{X}}^{\overline{X}} \int_{\underline{C}}^{\overline{C}} h + N \int_{\overline{X}}^{\overline{X}} \int_{\underline{C}}^{\overline{C}} h$ (Equation A5). By Proposition 1, $b^* = 2b^*$, so $b^* > 0 \iff b^* > 0$. It then follows from equations A2, A3, A4, and A5 that $VB > 0 \iff TB > 0 \iff DP > 0 \iff AB > 0$. \square

Proposition 3: If $\tilde{b}_i^V \leq b^*$ and $c_i \leq x^O$, a machine pays \tilde{b}_i^V to a OV. If $\tilde{b}_i^{AB} \leq b^*$ and $c_i > x^O$, a machine pays \tilde{b}_i^{AB} to a OV. If $\tilde{b}_i^T \leq b^*$, a machine pays \tilde{b}_i^T to a SNV. If $\tilde{b}_i^D \leq b^*$, a machine pays \tilde{b}_i^D to a ONV. All other citizens receive no payment.

Proof. We prove the TB case; identical logic holds for other strategies. We show (i) if $\tilde{b}_i^T \leq b^*$, a machine pays \tilde{b}_i^T to a SNV; (ii) if $\tilde{b}_i^T > b^*$, a machine offers $b_i = 0$ to a SNV.

(i) Let b^* be the upper bound on payments a machine makes to SNV. Define $M(A)$ to be the set of SNV who vote for the machine given the payment allocation A. For contradiction, assume A is an optimal allocation in which the machine does not buy all SNV who are cheaper than b^*. Formally, there exists a set Z with positive measure of SNV receiving $b_i < \tilde{b}_i < b^*$. We will show there exists a A' that is affordable and produces a strictly greater number of net votes. Thus, A cannot be optimal.

Let (\tilde{x}, \tilde{c}) be any point on the interior of $M(A)$ and take δ small enough such that $\Delta(\delta) \equiv [\tilde{x}, \tilde{x} + \delta] \times [\tilde{c}, \tilde{c} + \delta] \subset M(A)$. Let $(\tilde{x}_i, \tilde{c}_i)$ be any point in Z and select μ sufficiently small such that $\Delta(\mu) \equiv [\tilde{x}_i, \tilde{x}_i + \mu] \times [\tilde{c}_i, \tilde{c}_i + \mu] \subset Z$. By the continuity of $f(x)$ and $g(c)$ there exists a $\delta_0 < \delta$ and $\mu_0 < \mu$ such that $\int_{\Delta(\delta_0)} h = \int_{\Delta(\mu_0)} h$. Observe that $\Delta(\delta_0)$ and $\Delta(\mu_0)$ have the same number of SNV, so buying either set
produces the same net votes. Let \(\theta = \int_{\Delta(\delta_0)} b_i \cdot h - \int_{\Delta(\mu_0)} \tilde{b}_i \cdot h \) and note that \(\theta > 0 \) because citizens in \(\Delta(\delta_0) \) are cheaper than those in \(\Delta(\mu_0) \). Consider an allocation \(A' \) in which a machine buys all citizens in \(\Delta(\mu_0) \), reduces payments to citizens in \(\Delta(\delta_0) \) to zero, and redistributes the savings to citizens in \(\Delta(\eta_0) \). Recall from Lemma 1 that \(\Delta(\eta_0) \) is a set of citizens who remain unbought under allocation \(A \), and who could be bought with resources \(\theta \). Formally, define \(\Omega \equiv [x, \bar{x}] \times [0, \bar{c}] - (\Delta(\delta_0) \cup \Delta(\mu_0) \cup \Delta(\eta_0)) \). Let \(A' = A \) for all \((x_i, c_i) \) on \(\Omega \), \(A' = 0 \) for all \((x_i, c_i) \) on \(\Delta(\delta_0) \), and \(A' = \tilde{b}_i \) for all \((x_i, c_i) \) on \(\Delta(\mu_0) \) and for all \((x_i, c_i) \) on \(\Delta(\eta_0) \). The cost of \(A' \) is less than or equal to the cost of allocation \(A \) and \(A' \) buys \(\int_{\Delta(\eta_0)} h \) more citizens. Thus \(A \) cannot be an optimal allocation.

(ii) Recall that \(b^* \) is the upper bound on payments a machine makes to SNV. Offering \(b^* \) to a citizen for whom \(\tilde{b}_i^{\text{TB}} > b^* \) is insufficient to induce turnout (i.e., it is an underpayment). Formally, underpayment can be defined as a set of positive measure \(P \) of SNV receiving rewards \(b_i \) such that \(\tilde{b}_i > b_i > 0 \). For contradiction, assume \(A \) is an optimal allocation in which a machine underpays some SNV. We show there exists an affordable allocation \(A'' \) that produces strictly more net votes than \(A \). Thus, \(A \) cannot be optimal.

Define \(\theta = \int_P b_i h \) as the resources the machine devotes to citizens in set \(P \). In allocation \(A, \theta > 0 \). Observe that since the machine underpays these citizens, it receives 0 net votes in return. Recall from Lemma 1 that a machine can purchase all citizens on set \(\Delta(\eta_0) \) for resources \(\theta \), where \(\Delta(\eta_0) \) are citizens who remain unbought under allocation \(A \). Consider an allocation \(A'' \) in which a machine reduces payments to citizens on set \(P \) to 0 and uses the savings to purchase citizens on set \(\Delta(\eta_0) \). Formally, define \(\Omega \equiv [x, \bar{x}] \times [0, \bar{c}] - (P \cup \Delta(\eta_0)) \). Let \(A'' = A \) for all \((x_i, c_i) \) on \(\Omega \), \(A'' = 0 \) for all \((x_i, c_i) \) on \(P \), and \(A'' = \bar{b}_i \) for all \((x_i, c_i) \) on \(\Delta(\eta_0) \). Then the costs of \(A'' \) are \(\leq \) the costs of \(A \), and \(A'' \) buys \(\int_{\Delta(\eta_0)} h \) more citizens. Thus \(A \) cannot be an optimal allocation.

Comparative Statics

For analysis of comparative statics, we assume \(f \) and \(g \) are distributed uniformly. The machine’s constrained optimization problem, where \(\lambda \) is the Lagrangian multiplier, is: \[\max_{a_{TB}, b_{DP}, b_{VB}, b_{AB}} V^M - V^O - \lambda (E - B) \]

The machine maximizes the difference between its votes (\(V^M \)) and opposition votes (\(V^O \)), given that total expenditures (\(E \)) must be less than or equal to its budget \(B \). Note that \(V^O = \int_{x} f^{\text{VB}} \int_{c} f^{\text{O}} h \) and \(V^M = V_B + T_B + D_P + S \), where: Vote Buying (VB) = \(\int_{0}^{\bar{b}_V} \int_{\bar{c}}^{\bar{O}} f^{\text{O}} \), Turnout Buying (TB) = \(\int_{0}^{\bar{b}_T} \int_{\bar{c}}^{\bar{T}} h \), Double Persuasion (DP) = \(\int_{0}^{\bar{b}_D} \int_{\bar{c}}^{\bar{D}} h \), and Supporters (S) = \(\int_{0}^{X} \int_{0}^{h} h \). Total expenditures for the machine party are \(E = E_{VB} + E_{TB} + E_{DP} + E_{AB} \), where: VB Expenditures (\(E_{VB} \)) = \(\int_{0}^{\bar{b}_V} \int_{\bar{c}}^{\bar{O}} f^{\text{O}} \), Turnout Buying (TB) = \(\int_{0}^{\bar{b}_T} \int_{\bar{c}}^{\bar{T}} \), DP Expenditures (\(E_{DP} \)) = \(\int_{0}^{\bar{b}_D} \int_{\bar{c}}^{\bar{D}} h \), and AB Expenditures (\(E_{AB} \)) = \(\int_{0}^{X} \int_{\bar{c}}^{\bar{A}} B_{i}^{\text{AB}} h \). Solving the problem yields four first order conditions. Solving all first order conditions for \(\lambda \) yields the results from Proposition 1: \(b_{VB}^* = 2b_{TB}^* = \)
Compulsory Voting: Substitute $b^* = \frac{1}{2}b^{**}$ from the FOCs into the budget constraint. Implicit differentiation yields:

$$\frac{\partial b^{**}}{\partial a} = \frac{\partial b^*}{\partial a} = \frac{1}{8(a+X-x^M-C)} - b^{**} < 0.$$

Substitute $b^{**} = 2b^*$ into the budget constraint.

Implicit differentiation yields:

$$\frac{\partial b^*}{\partial a} = \frac{1}{4(4a+X-x^M-C)} - b^* < 0.$$

Comparative statics follow: (1)

$$\frac{\partial V_B}{\partial a} = \frac{\Gamma}{4} \left[2b^* + (2a - x^M - C) + b^* \right] - b^* \frac{\partial b^*}{\partial a} - b^* \frac{\partial b^*}{\partial a} =$$

$$= \frac{\Gamma}{4} \left[2b^* - 2b^{**} \left(\frac{4(a-x^M-C)+2b^{**}}{8(a+X-x^M-C)} - b^* \right) - b^* \frac{\partial b^*}{\partial a} - b^* \frac{\partial b^*}{\partial a} > 0. \right.$$

$$\frac{\partial b^{**}}{\partial a} = \frac{\Gamma}{4} \left[b^* \frac{\partial b^*}{\partial a} + (4X + b^*) \frac{\partial b^*}{\partial a} \right] = \frac{\Gamma}{4} \left[\frac{\partial b^*}{\partial a} - \frac{\partial b^*}{\partial a} \right] < 0.$$

(4) Let $b_{TB} = \frac{1}{2}b^*$ and substitute

$$\frac{\partial b^*}{\partial a} = \frac{\partial b^*}{\partial a} \text{ and implicit differentiation yields:}$$

$$\frac{\partial b^{**}}{\partial a} = \frac{\partial b^*}{\partial a} = \frac{1}{2}b^* \text{ and implicit differentiation yields:}$$

$$\frac{\partial b^{**}}{\partial a} = \frac{\partial b^*}{\partial a} = \frac{1}{2}b^* \text{ and implicit differentiation yields:}$$

$$\frac{\partial b^{**}}{\partial a} = \frac{\partial b^*}{\partial a} = \frac{1}{2}b^*, \text{ and } \frac{\partial b^{**}}{\partial a} = \frac{1}{2}b^*,$$

Ballot Secrecy: In the constrained optimization problem above, replace E_{VB} with βE_{VB} and E_{DP} with βE_{DP}. The FOCs become $\beta b^*_B = 2\beta b^*_D = 2\beta b^*_TB = 2\beta b^*_AB$. Substitute $b^*_D = \frac{1}{2}b^*_B$ and $b^*_TB = b^*_AB = \frac{1}{2}b^*_B$ from the FOCs into the budget constraint. Implicit differentiation yields:

$$\frac{\partial b^{**}}{\partial a} = \frac{b^*}{3(4a+X-x^M-C)} - b^{**} < 0.$$

Comparative statics follow: (1)

$$\frac{\partial V_B}{\partial a} = \frac{\Gamma}{4} \left[(b^*_B - 2b^*(M+C)) \frac{\partial b^*}{\partial a} - \frac{\partial b^*}{\partial a} - b^* \frac{\partial b^*}{\partial a} - b^* \frac{\partial b^*}{\partial a} \right] =$$

$$= \frac{\Gamma}{4} \left[(b^*_B - 2b^*(M+C)) \frac{\partial b^*}{\partial a} - \frac{\partial b^*}{\partial a} - b^* \left(b^*_B + \beta b^*_B \right) \right] < 0.$$

(4) Let $b_{TB} = \beta b^*_B$ and substitute

$$\frac{\partial b^{**}}{\partial a} = \frac{\partial b^*}{\partial a} = \frac{1}{2}b^* \text{ and implicit differentiation yields:}$$

$$\frac{\partial b^{**}}{\partial a} = \frac{\partial b^*}{\partial a} = \frac{1}{2}b^*, \text{ and implicit differentiation yields:}$$

$$\frac{\partial b^{**}}{\partial a} = \frac{\partial b^*}{\partial a} = \frac{1}{2}b^*, \text{ and implicit differentiation yields:}$$

$$\frac{\partial b^{**}}{\partial a} = \frac{\partial b^*}{\partial a} = \frac{1}{2}b^*, \text{ and implicit differentiation yields:}$$

Salience of Political Preferences: Substituting FOCs into the budget constraint and implicitly

$$\text{differentiating yields: } (1) \frac{\partial b^{**}}{\partial a} = \frac{b^*}{3(4a+X-x^M-C)} - b^{**} > 0 \text{ and } (2) \frac{\partial b^*}{\partial a} = \frac{b^*}{3(4a+X-x^M-C)} - b^* > 0.$$

Comparative statics follow: (1)

$$\frac{\partial V_B}{\partial a} = -\frac{\Gamma}{8a} \left[b^* (b^* - 2C) + 2\kappa (2a + \kappa x^M + C) + b^* - \kappa b^* \right] \frac{\partial b^*}{\partial a},$$

(2)

$$\frac{\partial V_B}{\partial a} = \frac{\Gamma}{8a} \left[b^* (b^* - 2C) + 2\kappa (2a + \kappa x^M + C) + b^* - \kappa b^* \right] \frac{\partial b^*}{\partial a} > 0.$$

Political Polarization: Note that by the assumption of symmetric party platforms, $x^M = x^O = 2x^M$.

Substitute $b^* = \frac{1}{2}b^{**}$ from the FOCs into the budget constraint. Implicit differentiation yields:

$$\frac{\partial b^*}{\partial x^M} = \frac{1}{8a} \left[\frac{b^*}{4a+X-x^M-C} - b^{**} > 0 \right. \text{ and } (2) \frac{\partial b^*}{\partial x^M} = \frac{1}{4a} \left[\frac{b^*}{4a+X-x^M-C} - b^{**} > 0 \right.$$

$$\text{Comparative statics then follow: (1) }$$

$$\frac{\partial V_B}{\partial a} = \frac{\Gamma}{8} \left[-\left(2b^{**} + (2a + \kappa x^M + C) + b^* \right) \frac{\partial b^*}{\partial x^M} \right] - b^* \frac{\partial b^*}{\partial x^M} + b^* \frac{\partial b^*}{\partial x^M} = \frac{\Gamma}{8} \left[-\left(2b^{**} + (2a + \kappa x^M + C) + b^* \right) \frac{\partial b^*}{\partial x^M} \right] < 0.$$
\[\frac{\partial TB}{\partial x} = \Gamma \left[X \left(\frac{\partial b^*}{\partial x} \right) \right] > 0. \] (3) \[\frac{\partial DP}{\partial x} = \frac{\Gamma}{2} \left[b^* \frac{\partial b^*}{\partial x} \right] > 0. \] (4)

\[\frac{\partial AB}{\partial x} = -\frac{\Gamma}{2} \left[b^* \frac{\partial b^*}{\partial x} + (4X + b^*) \frac{\partial b^*}{\partial x} \right] = -\frac{\Gamma}{2} \left[b^* \frac{\partial b^*}{\partial x} + 2X \frac{\partial b^*}{\partial x} \right] > 0 \] (recall that \(X < 0 \) and that under an optimal allocation of resources, \(b^* = \frac{1}{2} b^{**} \) and \(\frac{\partial b^*}{\partial x} = \frac{1}{2} \frac{\partial b^{**}}{\partial x} \)).

Machine Support: Substituting FOCs into the budget constraint and implicitly differentiating yields:

\[\frac{\partial b^*}{\partial x} = \frac{\partial b^*}{\partial x} = 0. \] Comparative statics follow: (1) \[\frac{\partial VB}{\partial x} = -\frac{\Gamma}{4} \left[(2(x^M + C) - b^* + b^*) \frac{\partial b^*}{\partial x} + b^* \frac{\partial b^*}{\partial x} \right] = 0. \] (2)

\[\frac{\partial TB}{\partial x} = \Gamma \left[b^* + (X + x) \frac{\partial b^*}{\partial x} \right] = \Gamma b^* > 0. \] (3) \[\frac{\partial DP}{\partial x} = \frac{\Gamma}{2} \left[b^* \frac{\partial b^*}{\partial x} \right] = 0. \] (4)

\[\frac{\partial AB}{\partial x} = -\frac{\Gamma}{4} \left[b^* (4 + \frac{\partial b^*}{\partial x}) + (4(X + x) + b^*) \frac{\partial b^*}{\partial x} \right] = -\Gamma b^* < 0. \]