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Examples of Strengths and
Weaknesses
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Case Selection
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Case Selection

1 Study the entire population.

2 Take a random sample.

3 Follow some rule for deliberate case

selection.
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Mill’s Methods
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Mill’s Methods

Method of Agreement
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Mill’s Methods

Method of Agreement
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Mill’s Methods

Method of Agreement

Method of Difference

Etc..
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Crucial Cases
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Crucial Cases

Theory assigns high likelihood to an

outcome in a particular case that, for (all,

or most, or a major) competing theory has

low likelihood.
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Regression Analysis

In a survey of 1000 articles in 10 leading

political science journals, 49% used

statistics (Bennett, Barth, and Rutherford

2003).

Presumably, most of them involve some
variant of regression.
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Regression Analysis

In a survey of 1000 articles in 10 leading

political science journals, 49% used

statistics (Bennett, Barth, and Rutherford

2003).

Presumably, most of them involve some
variant of regression.

A search in JStor for the word “regression”

finds 10,404 relevant articles.
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Regression Analysis

Almost no matter what you work on, you

will have to interact with regression-based

studies.
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Choosing Cases

Case-selection rules:
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Running Example
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Typical Cases

Typicalityi = −abs[yi − E(yi |x1,i , x2,i , . . . , xk ,i)] (1)
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Typical Cases
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Extreme Cases

Extremityi = |
xi − x̄

s
| (2)
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Deviant Cases

Deviantnessi = −Typicalityi (3)
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Influential Cases

Cook’s distance is a statistical measure of

how much the overall regression result

would change if a given case is deleted.
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Influential Cases

Cook’s distance is a statistical measure of

how much the overall regression result

would change if a given case is deleted.

A Cook’s distance score of 1 or more

usually is regarded as representing

substantial influence.
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Influential Cases
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Most-Similar Cases

Matching techniques are an automated way

of finding most similar cases.
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Measurement Error in Y

Y
∗
i = Yi + δY ,i
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Measurement Error in Y

Y
∗
i = Yi + δY ,i

Random Sampling
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Measurement Error in Y

Typical/Deviant Cases:

ei = Yi −Hi ,·Y + δY ,i
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Measurement Error in Y

Influential Cases Strategy:

Maximizes the product of the error term and the

weighted average distance of the right-hand-side

variables from their means.
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Measurement Error in Y

Extreme Cases:

Y
∗
i = Yi + δY ,i
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Measurement Error in Y

Most-Similar Cases
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Measurement Error in Y

Most-Similar Cases

Most-Different Cases
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Measurement Error in X

X
∗
i = Xi + δX ,i
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Measurement Error in X

X
∗
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Random Sampling
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Measurement Error in X

Typical/Deviant Cases:

ei = Yi − Xi β̂
∗ − δX ,i β̂

∗
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Measurement Error in X

Influential Cases Strategy:

Maximizes the product of the error term and the

weighted average distance of the right-hand-side

variables from their means.
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Measurement Error in X

Extreme Cases:

X
∗
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Measurement Error in X

Most-Similar Cases
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Measurement Error in X

Most-Similar Cases

Most-Different Cases
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Omitted Variables

ei = di + γZ̃i , where Z̃i = ZI − E(Zi |Xi)
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Omitted Variables

Influential Cases Strategy:

Maximizes the product of the error term and the

weighted average distance of the right-hand-side

variables from their means.
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Omitted Variables
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strategy.
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Omitted Variables

Extreme Cases:

For confounders, extreme on X may be a good

strategy.

Extreme on Y maximizes:

Ŷi + di + γZ̃i
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Omitted Variables

Most-Similar Cases
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Omitted Variables
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Pathway Variables

Wi = ν + µXi + ωi

Yi = α + τWi + σi
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Pathway Variables

Wi = ν + µXi + ωi

Yi = α + τWi + σi
Random Sampling
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Pathway Variables

Typical/Deviant Cases:

ei = τωi + σi
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Pathway Variables

Influential Cases Strategy:

Maximizes the product of the error term and the

weighted average distance of the right-hand-side

variables from their means.
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Pathway Variables

Most-Similar Cases
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Pathway Variables

Most-Similar Cases

Most-Different Cases
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Summary: Analytic Arguments

Deviant Influential Ext. X Ext. Y

Error in Y Good Mixed Poor Good

Error in X Mixed Mixed Good Poor

Confound Good Mixed Mixed Good

Pathway Good Mixed Good Mixed
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Monte Carlo for Case Selection

Simulate case selection for the same problem

10,000 times.
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Simulate case selection for the same problem

10,000 times.

Analysis of presidential vote shares and the

economy in Latin America, 1980-2000.
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Monte Carlo for Case Selection

Simulate case selection for the same problem

10,000 times.

Analysis of presidential vote shares and the

economy in Latin America, 1980-2000.

Add measurement error, omitted variables,

etc.

2 SD Rule
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Simulation Results

Random Typical Influential Deviant Extreme Y Extreme X Similar Different Contrast
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Figure: Case Selection for Finding Confounder.
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Figure: Case Selection for Other Causes.
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Simulation Results

Random Typical Influential Deviant Extreme Y Extreme X Similar Different Contrast
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Figure: Case Selection for Exploring Mechanisms.
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Simulation Results

Random Typical Influential Deviant Extreme Y Extreme X Similar Different Contrast
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Figure: Case Selection for Error in X .
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Simulation Results

Random Typical Influential Deviant Extreme Y Extreme X Similar Different Contrast
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Figure: Case Selection for Error in Y .
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Simulation Results

Random Typical Influential Deviant Extreme Y Extreme X Similar Different Contrast
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Figure: Case Selection for Estimating Overall Slope.
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Case-selection software in R
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Assignment

Implement each case-selection technique for a

data set of interest, or off my website. Be

prepared to discuss what kinds of cases you get,

and whether they seem on first glance to be

useful, tomorrow.
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