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Abstract

This paper develops an infinitely-lived representative agent economy, in which the relative
contribution of the two engines of growth, investment and innovation, changes endogenously over
time. The balanced growth path of the economy loses its stability when its endogenously
determined growth rate is not sufficiently high, and the economy fluctuates, perpetually moving
back and forth between two phases. In one phase, there is no innovation and the market structure is
competitive, and the economy grows solely by capital accumulation, as in a neoclassical model. In
the other phase, new goods are introduced and the market structure is monopolistic, as in a neo-
Schumpetarian model. In the long run, both investment and innovation grow at the same rate, but
the economy alternates between the periods of high investment and the periods of higher
innovation.
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1. Introduction.

The neoclassical growth models focus on factor accumulation as an engine of growth. As
Solow (1956) showed, factor accumulation alone cannot sustain growth in the presence of
diminishing returns in capital. Recently, neo-Schumpetarian models of endogenous growth. such
as Romer (1987) and Rivera-Batiz & Romer (1991) among others, stressed the innovation of new
products, motivated by monopoly profits. as a way of avoiding diminishing returns. and of
sustaining growth indefinitely. They have shown that the equilibrium is characterized by a
balanced growth path, in which new products are innovated at a constant rate. and the economy
accumulates capital at the equal rate. One crucial feature of these models is that the monopoly
power enjoyved by the innovators is assumed to last forever.

This paper develops an endogenous growth model, in which the relative contribution of
these two engines of growth. investment and innovation. changes over time. Like other neo-
Schumpertarian models. the model has a unique balanced growth path. Unlike others, however, the
balanced growth path 1s unstable. when the growth rate is not sufficiently high. With the balanced
growth path being unstable, the economy fluctuates perpetually moving back and forth between two
phases. In one phase. there is no innovation and the market structure is competitive. and the
economy grows solely by capital accumulation, as in a neoclassical model. In the other phase. new
goods are introduced and the market structure is monopolistic. as in a neo-Schumpetarian model.

In the long run. both investment and innovation grow at the same rate. but the economy moves back
and forth between the periods of high investment and the periods of higher innovation. Both
investment and innovation are essential in sustaining growth indefinitely. and yet the only one of
them appears to play a dominant role in each phase.

The present model departs from the Rivera-Batiz & Romer (1991) model in that the
monopoly power enjoved by the innovators of new products is temporary. This assumption plays a
dual role in generating fluctuations. First. the degree of monopoly prevailing in the economy can
change over ume. Second, a potential innovator wants to enjoy its temporary monopoly power
when the degree of monopoly prevailing in the economy is higher. This is because the potential
innovator needs to enter when the market for its product is large enough to recover the cost of

innovation. The size of the market depends in part on how the products with which it competes



with are priced. This leads to a synchronization of innovative activities. If the innovator chooses to
introduce its product when others do. some of its competing products are monopolistically priced.
On the other hand. if the innovator enters after others have innovated. the market for its product
would be too small to recover the cost of innovation, because the competing products would
become more competitively priced, as their innovators lose their monopoly power. As a result. the
economy experiences the period of high innovation with a monopolistic market structure. followed
by the period of no innovation with a competitive market structure. Once innovation stops. the
output and investment growth go up, partially because the resources are now redirected from
innovative activities to manufacturing activities and partiallv because the competitive market
structure allocates the resources more efficiently among the existing products. And. as a result of
high investment growth, the economy will eventually build up enough of a resource base to enter
another period of innovative activities.

Matsuyama (1999) recently demonstrated essentially the same results obtained In this paper.
under an additional departure from the Rivera-Batiz & Romer model; instead of deriving capital
accumulation as a solution to the agent’s intertemporal optimization. it was simply assumed that the
economy maintains a constant capital/output ratio.! This assumption of a fixed saving rule greatly
simplifies the dynamics of the model. to the extent that the global analysis of the system can be
conducted. One might suspect that this assumption might not be innocuous: it might be
responsible for endogenous fluctuations. One’s intuition suggests that. if the economy is populated
by the infinitely-lived agent. intertemporal substitution would eliminate fluctuations. What this
paper shows 1s that introducing infinitely-lived agent in the model make little difference. In
particular, the critical level of growth rate below which the balanced growth path loses its stability
and the economy fluctuates endogenously is identical as in the case of a fixed saving rule. In this
sense, what was crucial in Matsuyama (1999) was the assumption of a temporary monopoly power,
not of a fixed saving rule.

This does not, however, mean that one’s intuition is faulty. A sufficiently high rate of

intertemporal substitution indeed restores the stability of the balanced growth path. This is not a

' A constant capital/output ratio can be justifed as the optimal choice of the agent. in a two-period-lived overlapping
generations eConomy.
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contradiction to the statement above. The reason is that the growth rate itself is endogenously
determined in this model. A high rate of intertemporal substitution increases the growth rate of the
economy, thereby pushing it above the critical level of the growth rate. Once the growth rate is
controlled for, the condition for the instability of the balanced growth path and for endogenous
fluctuations is the same, regardless of whether capital accumulation is determined by a fixed saving
rule or by the optimizing infinitely-lived agent.

This paper is also closely related to Deneckere and Judd (1992). who demonstrated that the
temporary monopoly power in dvnamic monopolistic competition models leads to endogenous
fluctuations. Their model does not have capital accumulation. so that it cannot capture the
asvnchronous movement of investment and innovation. In their model, there 1s no asset in the
economy that the agents could carry over from one period to another. As a result, the equilibrium 1s
independent of the rate of intertemporal substitution.

The rest of the paper 1s organized as follows. Section 2 develops the model and derives the
equilibrium condition. Section 3 conducts the local stability analysis of the steady state. Section 4

considers the existence of period-2 cvcles. and studies their properties.

2 The Model.

The time 1s discrete and extends from one to infinity: te T={123....}. Thereisa
competitively supplied final good. which can either be consumed or invested. For the notational
convenience, let K, denote the capital stock at the end of period t. i.e., the amount of the final good
left unconsumed in period t. and carried over to period t+1. Note that this means that the amount of
capital stock available for use in period t is denoted by Ky.;. The economy inherits a positive capital
stock. Ky > 0. 1n the first period.

The economy is populated by the infinitelv-lived representativeagent. In period t, the agent
earns the capital income, r; K,.,. and the labor income, w, L, and then consumes C, and carries over
K units of the final good to period t+1. The agent chooses a consumption path that maximizes the

following discounted utility,

o=yl 2
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or
U=Y"fIn(C,). y=1.
(0 < B < 11is the discount rate and v is the rate of intertemporal substitution). subject to the flow
budget constraint.
(D K =rK_ +wl-C,.
and the intertemporal solvency condition, which rules out a Ponzi-scheme.

K"

(2) Iim, __ 20.
I
As is well-known. the optimal consumption path is characterized by the Euler equation
3) L _ptaso
C C."

-1
and the binding intertemporal solvency condition, which can be written as

, K ,
(4) lim__ ——*—=lim,__J’ —K—,— =0.
H;:\ r.\ ' C: ’

There are two primary factors of production: capital (K) and labor (L). Labor goes directly
into the production of the final good. Capital is first converted into a variety of differentiated
intermediate products. These intermediates are aggregated into the composite by a symmetric CES,
which in turn 1s combined with labor by a Cobb-Douglas technology. More specifically, the

technology of the final goods producer 1s expressed as

5) ¥ = A [ )

where x,(z) is the amount of variety z employed in period t. G € (1.e0) is the direct partial elasticity
of substitution between every pair of intermediate products. and [O,N] represents the range of
intermediates available in the marketplace in period t. Some features of this specification deserve
comments. First. for a given availability of intermediate products, N,, the technology of the final
goods production satisfies the property of constant returns to scale, and hence it is consistent with
the competitiveness of the final goods industry. Second, the final goods producer’s demand for

each intermediate product has a constant price elasticity equal to 6. Third. the labor share of the



economy is equal to 1/0.

Prior to period t, the economy developed all the intermediate inputs in the range. [0.N].
with Ny > 0. These "old" intermediates are manufactured by converting a units of capital into one
unit of an intermediate. and sold competitively in period t. In addition. the intermediate inputs of
variety z € [N }.N] may be introduced and sold exclusively by their innovators in period t. These
"new"” intermediates require F units of capital to innovate. The process of manufacturing new
intermediates, just as old ones. requires a units of capital per output.

The marginal cost of all the intermediates in period t is thus equal to ar,. The old ones are
supplied competitively and hence at the marginal cost; p(z) = p,” = ar, for z € [0.N(,]. All the new
products, if they exist. are sold at p(z) =p," = aor/(c—-1). where z € [N..|.N/], because of the
constant price elasticity, . Since all the intermediate products enter symmetrically in the
production function of the final goods, we have x(z) = x," for z € [0.Ny,]. and x((z) = x," forz €

[Ne1.N{. and they satisfy

(6) X p—1 = 1 -ir.

The one-period monopoly enjoved by the innovator provides an incentive for innovation,
and there 1s no barrier to entry for innovative activities. The period t monopoly profit, net of the
fixed cost. is 7, = p,"x,"—r(ax,"+F): it is negative if and only if x,” < (6—1)F/a. Thus, free entry
ensures that. in equilibrium,

(7) ax! <(0-DF.N. 2N, (ax] - (c-DF|(N, - N,_)=0.

This 1s. when potential innovators do not expect the sale of a new product to reach the break-even
point (i.e.. X, < (0—1)F/a), there is no incentive for innovating new products (i.e.. N, = N.;). When
innovation occurs and some new products are introduced (i.e.. N, > N;). the innovator cannot eamn
any excess profit and must operate at the break even point (i.e.. x," = (6—1)F/a).

The resource constraint on capital in period t is expressed as

K, =N_ax +(N -N_ )(ax,’" + F).

From egs. (6) and (7), the above resource constraint implies.
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(8) ax’ = a{l -iJ x" =6oF min{k,_,.1}.
(o}

and
N AY" :

9) _N—:max{l,l—r@(k,_l —-1)} =yk,_ ).
where

= K:

" (60F )N,
and

6= 1 1 —i}
e

which depends positively on ¢ and its value can range from 1 toe = 2.71828.... as one vanes ¢
from 1 to infinity. Since it is equal to (p x )/(p."x,"). 6 can be interpreted as the extent to which
each product expands its market size in goods in value when it becomes competitively priced.

From eq. (5). the total output is equal to
Y = "&(L)l/o [ATI—] (xi )]_”U + (N: -N )(xzm )1-1/0}.
Using egs. (7). (8). and (9), this can be rewritten as

(10) —1~<—Y—— = Amax{(k_ )" .1} = Ao(k_).

=1

where

‘Agéli aL }]/G.
a | 8oF

Egs. (9) and (10) summarize what takes place on the production side of the economy in

period t. If k,.; = K¢.1//66FN | <k = 1. the resource base of the economy. K. is too small relative to
the number of the products, N. and there 1s no innovation. All the products are competitively
produced, and the reduced form aggregate production function, given in eq. (10), has the standard
neoclassical properties, including the law of diminishing returns in capital. In this case, we shall
say that the economy 1s in the Solow regime. If k., = K,.;/606FN,.| > k. = 1. the resource base of the

economy 1s sufficiently large relative to the number of the existing products, and some new



products are introduced. Furthermore, the aggregate output 1s linear in capital. as in many
endogenous growth models. In this case. we shall say that the economy is in the Romer regime.
Note that k i1s normalized in such a way that k.. the critical level of k that separates the two regimes.
1s one.

In equilibrium. Y, = wL + 1K, and r,K.; = (1-1/6)Y, hold. Hence. by using egs. (1). (%

and (10). eq. (3) can be rewritten to

a1 wik ) _ Glok )}
‘ ' Am(kr—i )k!—l - krl//(k;-z ) A @(1\ )]\ - k!—'lw(k! )
where
[ N
Gz(ﬁtl—i EN
L o).

Eq.(11) can be viewed as a two-dimensional dynamical system. which maps (k..;. ko) to (k.
Ki-1). Therefore, 1t determines an entire trajectory. {k.: t € T} for each (kg, k;). and vet only ko 1s
given exogenously in the model. The restriction imposed by (4) is generally not strong enough to
determine the unique equilibrium path. This is one significant difference from the model of

Matsuyama (1999). which has a unique equilibrium path for any initial condition.

The Steady State: 1t is easy to verify that eq. (11) has a unique steady state. If G < 1. the
steady state is in the Solow regime. given by k. =k = G¥'<k = 1. Without innovation. all the
goods are competitively supplied and the economy does not grow. The steady state 1s thus a
neoclassical stationary state. Note also that in this steady state. eq. (4) is satisfied. Hence. if ko=
k. k,=k forall t> 0 is an equilibrium path. If G > 1, the steady state is in the Romer regime. given
byk =k =1+ (G-1)/8>k.= 1. Inthis steady state, new products are introduced steadily. and K
and N grow at the same rate. It is a balanced growth path. From (9) and (10).

Y. K N o
L= L = : :U/(k ]:G>l.
Y. K. N. 5

=1 T 1=

so that G is equal to the gross rate of growth. In order for this steady state to be an equilibrium path
forko=k .eq. (4) needs to be satisfied. which implies that. if G > 1. the following condition must

hold:
(12) ,BGH"7<1.



Otherwise, the discounted sum of the utility would be infinite, hence the consumer’s maximization
problem is ill-defined. In what follows. (12) is assumed to hold.”

Note that G 1s the key parameter determining the growth potential of the economy. When G
> 1, 1t is equal to the (gross) growth rate of the economy along the balanced growth path. which
goes up with a higher §, 6, A. and v.

Before proceeding, it 1s worth pointing out the difference between the present model and the
existing models in the literature. Unlike Rivera-Batiz and Romer (1991), the monopoly power of
the innovators is temporary. Unlike Deneckere and Judd (1992), it has capital accumulation.
Unlike Matsuyama (1999). capital accumulation is derived from intertemporal optimization of the

infinitelv-lived agent.

3. The Local Stability Analvsis.

This section studies the local stability of the unique steady state along the equilibrium path.
That 1s. when the initial condition, K. is sufficiently close to the steady state. is there an equilibrium
path. along which the economy stays close to the steady state and converges to it? (The stability
here should not be confused with the stability of the steady state in a two-dimensional dynamical
svstem. eq.(11).)

Suppose G< 1, ork = G < 1, so that the neoclassical stationary state is in the interior of
the Solow regime. Since &(k) = k''° and y(k) =1 in a neighborhood of k', eq. (11) becomes

ko= Ak =Gk Al )~k .

Linearizing around kX~ = G®” yields the following second-order difference equation in Dk, = k—k

Dk, ~ 1 1+—7—\r+1—1 k,+ka,_,,:O_
B o-1) o Jit :

whose two characteristic roots are both positive: one of them is greater than one. and the other
smaller than one. Thus. k_ is a saddle of the dynamical system, (11), and has a one-dimensional
locally stable manifold. If the initial condition, k. is in a neighborhood, there exists a unique

trajectory that remains in the neighborhood and converges to k- monotonically. This trajectory is an

= Since G > 1. eq. (12) does not imply any additional restriction, if y<1. If y> 1. the balanced growth path exists if and



equilibrium trajectory, since eq. (4) is satisfied by any sequence converging to the stationary state.
Now. suppose G > 1. so that the balanced growth path. kX~ = 1 + (G—1)/8. is in the interior
of the Romer regime. Since o(k) =1 and y(k) = 1 + 8(k—1) in a neighborhood of k. eq. (11)

becomes

AGk 1
k. =|(A+G)k, -

1+6(k,_, - |1+6(k -1

Linearization around k~ yields the second-order difference equation in Dk, = k—k

-6+ -0)A
Dk, , — -6+ 4 Dk + (1 ?’) Dk, =0
o G ' G-
whose characteristic roots are
1-6 A AR
<0 and —= ,BGM(I——| >1,
G o

where the use has been made of (12). If 1 <« G < 8 — 1. the absolute values of the two roots are both
greater than one. hence k__ is a source of the dynamical system, (11). Hence. the equilibrium
trajectory. If it starts in a neighborhood. will not stay in the neighborhood. If 6 — 1 < G. then the
negative root has the absolute value smaller than one, while the positive root is greater than one. In
other words. k™ is a saddle. and has a one-dimensional locally stable manifold. If the initial
condiuon, ky. 18 1n a neighborhood. there exists a unique trajectory that stays in the neighborhood
and converges to k~ oscillatorily. This converging path is an equilibrium path, because it also
satisfies eq. (4), under eq. (12).
By virtue of the Local Manifold Theorem. one can translate the above findings into the
following form.
Proposition 1.
(1) If G < 1. the neoclassical stationary state, k . is locally stable in that there exists a
neighborhood of k', U. such that. if ky € U. there exists an equilibrium path, whose entire
trajectory stays in U. and along which the economy converges monotonically to k : lim_..

k =k

onlv if 1 < B(1-1/o)A < B



(i1) If 1 <G <0 - 1. the balanced growth path, k. is locally unstable in that there exists a
neighborhood of k™, U, such that. if ko € U, there exists some t such that k; € U. along anv
equilibrium path. That 1s. when the economy starts close to the balanced growth path. it
will move away from it.

(i)  If8—1<G. the balanced growth path. k. is locally stable in that there exists a
neighborhood of k. U. such that if ko € U. there exists an equilibrium path, whose entire
trajectory stays in U, and along which the economy converges oscillatorily to k™ : lim,_... k,

-
xx

=k -

Compare this result with Proposition 1 of Matsuvama (1999). It shows that the local stability
properties of the steady state do not change by introducing the infinitelv-lived representative
consumer. It should be pointed out, however, that the above result 1s weaker, and needs to be
interpreted with great caution. First. the above proposition is concerned only with the existence of
an equilibrium trajectory converging asymptotically to the steady state. Unlike in Matsuvama
(1999), the equilibrium of this model may not be unique. and hence the above result does not say
much about what cannot happen. In particular. the existence of a convergent equilibrium trajectory
in the cases of G < 1 and of G > 6 —1 does not necessarily rule out the existence of another
equilibrium trajectory. which may not be convergent. This may be so even if the economy starts
close to the steady state. Second. this proposition deals only with the local dynamics. so that it does
not tell us whether the economy converges to the neoclassical stationary state (the balanced growth
path) for an arbitrary initial condition, in the case of G< 1 (G>6-1). Forthecaseof 1 <G <8 —
1. however. the following statement about the global dynamics can be made as a corollary of the

above Proposition.

Corollary. If 1 < G <8 — 1, the economy fluctuates forever, for kg € R.\D. where D is at most
countable subset of R..

Proof. If 1 <G <8 ~ 1. its unique steady state, (k .k ), is a source of the two-dimensional

*For 6 - 1<G. the convergent equilibrium trajectorv is given by k= Gk, /(1+6(k.,—1)).
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dynamical system, (11). Hence, a trajectory cannot approach (k- .k~ ) asymptotically. Therefore.
the economy converges to (k“, k) along an equilibrium path. only if (ke. k) 1S mapped to kK
in finite steps. The result thus follows from the fact that eq. (11). viewed as the two-dimensional

dynamical system, is continuous, and has a finite number of pre-images. Q.ED.

Therefore, the equilibrium dyvnamics of the economy exhibits endogenous fluctuations for almost
all initial conditions. if 1 <G <6 - 1.}

The instability of the balanced growth path and the emergence of cyclical behavior are due
to the complementarity in the timing of entrv/innovation decisions. The timing matters 11 this
model. because innovators could enjoy only a temporary monopoly power. Innovations take place
only when the market for a new product is sufficiently large that the innovator can reach the break-
even level of the output. The size of the market partially depends on how the products with which
1t competes are priced. If the innovator enters when other firms also enter. some of the products are
monopolistically priced. If it enters in the following period. then these products become
competitively priced. as their innovators lose the monopoly power. This consideration gives an
incentive for firms to enter when other firms also enter. This effect 1s stronger when different
products are highly substitutable, 1.e.. when 6 1s high. At the same time. a growing resource base
gives an offsetting force of spreading innovative and entry activities, whose effect 1s stronger when
G i1s high. When the former effect dominates the latter. there is a bunching of the entry activity. and
the economy moves back and forth between the Romer regime (the period of innovation) and the
Solow regime (the period of no innovation).

The main result of this section is that the unique steady state loses its stability and the

economy fluctuates endogenously between the Romer and the Solow regimes, 1f 1 <G < 6 - 1.

“Because the system is discrete. the equilibrium dvnamics may converge o the steady state even if it is a source for a
countable set (hence with measure zero) of mitial conditions. For example. simple algebra can verify that, not only for
ke=K > 1. but also for ko= (k"/G)™* " < 1. k,= k" for all t 2 1 is an equilibrium path. even if 1 < G <6 — 1. One
apen question 1s the existence of a homoclinic orbit. which starts 1n the neighborhood of the steady state and wanders
away from the neighborhood. and comes back 1o the steady state. The existence of such an orbit is of special interest as
It suggests the existence of a chaotic equilibrium path. The recent discovery by Miwa (1999) that the model of
Matsuvama (1999) has a chaotic equilibrium path under additional parameter restrictions strongly suggests that the
existence of sucn a path in this model as well.

11



This condition is identical in the model of Matsuyama (1999). where it was simply assumed that the
economy maintains a constant capital-output ratio. In other words, introducing infinitely-lived
agent makes little difference. In particular. the discussion of the empirically plausibility of
endogenous fluctuations, given in Matsuyama (1999. section 4). does not need to be changed. This
may seem counterintuitive: one’s intuition might suggest that intertemporal substitution should
have some stabilizing effects. The intuition is actually consistent with the result here. The reason
1s that, in this model. the growth rate is determined endogenously. A higher v increases G.
whenever G > 1. As long as 3(1-1/6)A > 1. a sufficiently high y makes G > 6 — 1. thereby
restoring the stability of the balanced growth path. Once the growth rate is controlled for, the
condition for the stability is the same whether capital accumulation is determined by a fixed saving

rule or by the intertemporal optimization by the infinitely-lived agent.

4. Period-2 Cvcles.

Characterizing the equilibrium dvnamics for an arbitrary initial condition is bevond the
scope of this paper. Nevertheless. one can obtain some ideas about the global equilibrium
dynamics. by studying period-2 cvcles.

Suppose that the economy alternates between the Solow regime and the Romer regime over
the period-2 cycles. such that kF<1landk™> 1. Setting k.; = k" k,=k' and ke = kM in eq. (11)

vields

>0

(13) wik?) ekt
‘ ART —kty(k®) Aolkt )kt - k7

Likewise. setting k;.; = kL, k, = k" and kol = k- in eq. (11) vields

(14) L\l, — = G >0.
ARkt -k ARY —k (k)

Multiplying each side of (13) and (14) vields

(15) wl(k* )=Glolk* )]

from which the average growth rate of the economy over the period-2 cycles is equal to

V!

\/ wlk L\)l//(.k # ) = \/y/<kH ) = G[e’)(k L)] "> G. Therefore, the condition (4) is satisfied along the

12



period-2 cvcles if

(=¥ 20

(16) BG7 (k) <1

The period-2 cycles exist if there exist k™ > 1 > k" satisfving egs. (14), (15). and (16).
In what follows, we focus on the case where Y= 1. Then. (16) becomes 3 < 1. and the

other conditions can be rewntten to

(17) kY =Golk' Kt
and
.
(18) kt= GkH _
wk™)

These equations are illustrated by the two curves in Figure 1. Simple algebra venfies that they have
a unique intersection in the range, k" > 1 > k" . if and only if 1 <G <8~ 1. The following

proposition summarizes the main properties of the period-2 cvcles.

Proposition 2. Lety=1. Then. a unique pair of the period-2 cycles. k"> 1> k" . exists if and only

if 1 <G <8 - 1. Furthermore,

(a) gy =8x=8&y = \/U/(kH } = G\/IO(A’L ) >G over the cycles,
(b) g, =1<G<Golk")=g, =g, inthe Solow regime,
(c) gx = w(k")>G= gy = g, in the Romer regime.

where gx be the gross growth rate of variable X.

Proof: The existence has been established above. Let k,» = k™. k., = k', k, = k™. Then. from (9).
N/Nei =1 and N /N = (k™). Hence. K/K, = (KKNNNG) = kP& and Koo /K, =

KK (NL/ND = KA Dwk™). From (10). YYo= okOkhwk™yk, and Yo/, = kKokbkt
Inserting eqgs. (17) and (18) into these expressions and taking into account (15) vields (a), (b). and

(c). Q.ED.

Period-2 cvcles thus exist whenever the balanced growth path 1s unstable. These cycles are growth-

enhancing: they allow the economy to grow even faster than along the balanced growth path.

13



Furthermore, both the output and the investment grow faster in the Solow regime, when there 1s no
innovation, then in the Romer regime, when innovation takes place. Although the innovation of
new goods is a crucial way of avoiding the diminishing returns and of sustaining growth
indefinitely, the economy actually experiences a lower growth in the output and in the investment
during the period of innovation. Only after the innovation stops, and when the market structure
becomes competitive, the economy enjoys much of the benefits of the innovation. This
proposition, by comparing Proposition 2 in Matsuyama (1999), shows that the fixed saving rule

assumption made in that paper was not essential.
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