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Homothetic preferences: A general case

e Common across many fields of applied general equilibrium,
preferences are homothetic and technologies are CRS

o A preference = over R’ is called homothetic if any two
Indifference sets can be mapped one into the other by a uniform
rescaling

e The direct utility function u(x) is linear homogeneous

e The indirect utility V(p, h) can be represented as

h
V(p . h) = Qé%%c{u(X)le < h}= P(p)

O h IS consumer’s income
o P(p) is an ideal price index
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Homothetic demands and elasticities; A general case

e The demand system associated with P(p):

h
x; = —E&,.(P)
Cop P

e The inverse demand system associated with u(x):

h

l

e £,.(P) and &,,(u) are the elasticities defined by:

__ 0P p; _ Ou x;
Ep,(P) = I P Ex;(u) = FI
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Why are homothetic preferences and CRS
technologies important?

e Under identical homothetic preferences, aggregate consumption
behavior is derived from utility maximization of a representative
consumer, even though incomes may vary across households

e Perfect competition is valid only when the industry has CRS
technologies

e Simple behavior of budget shares:

O holding the prices constant, the budget share of each good (or factor) is independent
of the household expenditure (or the scale of operation by industries)

O this allows us to focus on the role of relative prices in the allocation of resources

e Ensure the existence of a balanced growth path in multi-sector growth
models
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CES and its restrictive features

In practice, most models assume that preferences/technologies also satisfy
constant-elasticity-of-substitution (CES) property, which implies that

e the price elasticity of demand for each good/factor is constant and identical
across goods/factors

¢ relative demand for any two goods/factors is independent of the prices of any
other goods/factors

e the marginal rate of substitution between any two goods is independent of the
consumption of any other goods

e in the case of gross substitutes (complements) all goods are inessential
(essential)

e in a monopolistically competitive setting, each firm sells its product at a
markup independent of the market environment
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Our paper

e In this paper, we characterize three alternative classes of flexible
homothetic demand systems

e In each of the three classes, the demand system only depends on
one or two price aggregators for any number of goods

e Each of these classes contains CES as a special case

e Yet, they offer three alternative ways of departing from CES,
because non-CES demand systems in these three classes do not
overlap

e Each of these three classes is flexible in the sense that they are
defined non-parametrically
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Homothetic preferences

°
Separable translog
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Homothetic demand systems

with a single aggregator (HSA)
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HSA demand systems

e Consider a mapping s(z) = (s1(z1), .. ,sn(zn))T from R% to R?,

e A homothetic demand system with a single aggregator (HSA) is
given by:

_h (Pi
Xi —

— S; 1=1...n
pi A(P))

where A(p) i1s a common price aggregator defined as a solution to
n

> -1

=1
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Example 1: Cobb-Douglas

e Set 5;(z;) = a;, where a4, ..., a;,, are positive constants such that

ai=l

n
=1

e In this case, we obtain the Cobb-Douglas demand system

 P(p) = cIIi-, p;", but A(p) is indeterminate
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Example 2: CES

e We obtain the CES demand system if we set s;(z;) = B;z; ~

e Here o > 0 Is the constant elasticity of substitution

e The price aggregator A(p) is proportional to the ideal price
Index:

A(p) = (2 ﬂm?"“) = cP(p).

e NB: this need not be true in general!

o

Page 11 of 37



©Kiminori Matsuyama and Philip Ushchev, Three Alternative Classes

Example 2: CES

The functions s;(z;) = B;z; ¢ are:
e increasing when O < o < 1 (the goods are gross complements)

e decreasing when o > 1 (the goods are gross substitutes)

e constant when o = 1 (the Cobb-Douglas case)

Page 12 of 37



©Kiminori Matsuyama and Philip Ushchev, Three Alternative Classes

Example 2: CES and its restrictive nature

Definition:

e Good i is essential (or indispensable) if x; = 0 implies u(x) =0
(or equivalently, if p; —» oo implies P(p) — ).

e Good i Is inessential (or dispensable), otherwise.

Under CES

e Each good is inessential if o > 1.

e A goodisessentialonlyifo <1

e CES cannot capture situations when only some goods are
essential: if one good is essential, all goods must be essential

e The very distinction of a good being essential or inessential is
redundant: gross complements (respectively, substitutes) are
always essential (inessential) goods
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Integrability Question

e \What are the restrictions to be imposed on the functions s;(+) for
a “candidate” HSA demand system to be compatible with
rational consumer behavior?

e The answer is given by the following Proposition
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A characterization of HSA

Proposition 1. Consider a mapping s(z) = (s,(zy), ... ,sn(zn))T from
R%} to R%, which is normalized by Y ;_, s, (1) = 1 and satisfies the
conditions:

z;5i(z;) < si(z), si(z)sj(z;) =0
Then:
(i) there exists a unique monotone, convex, continuous and homothetic

preference = over R%, such that the candidate HSA demand system
associated with s(z) is generated by =

(i1) the preference = is described by the following ideal price index
n Pi/A(p)

InP(p) = In A(p) + Z f S‘(f)

(iii) whenn > 3, A(p) = cP(p) iff = isa CES preference
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Budget-share mapping as a primitive

e The budget-share mapping s(z) is the primitive of the HSA
system

e A(p) itself cannot serve as a primitive (see Example 5 below)

e A(p) need not be proportional to P(p)

0 A(p) captures the cross-price effects in the demand system
o P(p) captures the welfare consequences of price changes

e The condition n = 3 Is important, as under n = 2 all homothetic
preferences are HSA
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Self-duality of the HSA demand systems

e Consider a mapping s*(¥) = (s1(31), .. ,s,’;(yn))T from R to R%,

e The inverse HSA demand system is given by

_h *( Xi ) =1
pl_xiSi A*(x) y L= 4,..,1

where A*(x) I1s a common quantity aggregator defined as a

solution to
n

x.
2 S; (A—i) =1
i=1
e The two classes of HSA demand systems are self-dual to each
other with a one-to-one correspondence between s(z) and s*(y),
defined by s = s;(s; /y;)
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Example 3a: Separable translog

e The translog ideal prlce Index Is glven by

InP(p) = 2&- Inp; — 2 vijInp;Inp; —Inc
i=1

l]l

e Here 6; > 0O, while (y;;) Is symmetric and positive semidefinite

e The following normalizations hold foralli = 1,...,n

n n
261' =1, Eyl —
=1

j=1
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Example 3a: Separable translog
e In general, the translog demand system is not HSA

e However, assume additionally the following separability:
n

e By setting s;(z;) = §; — yB; In z;, we get:

& :ES‘ (36y) = ;1(5 ~vhiinzes)

tive Classes
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Example 3a: Separable translog

e The price aggregator A(p) is the weighted geometric mean of
prices:

InA(p) = 2 BiInp;
i=1

e The price index P(p) differs from the price aggregator A(p):

n [ n n 27]
P(p) = c-exp {2 6;Inp; —g Eﬁi(lnpi)z — (2 ,Bilnpi> } + A(p)
i—1 i—1 _

i=1
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Example 5: A Hybrid of Cobb-Douglas and CES

e Consider a convex combination of Cobb-Douglas budget shares
and CES budget shares:

si(z) = ea; + (L —e)piz'™°

e Here 0 < £ < 1, while a; and f3; are such that

n n
@20, >0 Y =) f=1
k=1 k=1
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Example 5: A Hybrid of Cobb-Douglas and CES

e The price aggregator A(p) is independent of &:
1

A(p) = (i ﬂm?"“)m

e The ideal price index is given by
8

P(p)=c<ljpf‘> (Eﬁm ) -
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Example 5: A Hybrid of Cobb-Douglas and CES

e When o > 1, all goods are still gross substitutes, and yet, if a; > 0O,
good 1 is essential

e Implication: consider international trade between two countries, and
suppose that some of the essential goods can be produced only in one
country

e Trade elasticity is o > 1. With a small &, the demand system can be
approximated by CES.

e \Were the demand system CES (¢ = 0), autarky would lead to a
relatively small welfare loss

e But the welfare loss of autarky (measured by the price index change) is
Infinity for the country which cannot produce such essential goods
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Implicitly additive homothetic

preferences
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HDIA preferences

o A preference = over R} Is said to be homothetic with direct
implicit additivity (HDIA) if u(x) is implicitly defined as a

solution to
n
Xi _
2. 4()=1
i=1

e Here the sufficiently differentiable functions ¢;: R, — R are

o either strictly increasing and strictly concave (goods are gross
substitutes)

o or strictly decreasing and strictly convex (goods are gross
complements)

« Moreover, ¢; () are normalized as follows: i, ¢;(1) =1
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HDIA preferences

Proposition 2. Assume = Is a HDIA preference. Then:

(i) the Marshallian demands are given by

Pi
=5 (607 ()
=55 @0 (5

where P(p) is the ideal price index, while B(p) is another price

aggregator
Ecpk((cpk) (”"))—1 P(p)—Epk(qsk) ESi

(i) when n = 3, we have B(p) = cP(p) Iff = is a CES preference.
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HIIA preferences

e A preference = over R} Is said to be homothetic with indirect
implicit additivity (HIIA) if P(p) is implicitly defined as a

solution to
n
Pi\
2 ; (F) =1
=1

e Here the sufficiently differentiable functions 8;: R, — R are

o either strictly decreasing and strictly convex (goods are gross
substitutes)

o or strictly increasing and strictly concave (goods are gross
complements)

e Moreover, 6;(+) are normalized as follows: )}, 6;(1) =1
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HIIA preferences

Proposition 3. Assume a preference = is HIIA. Then:

(1) the Marshallian demands are given by

0 o)

where P(p) is the ideal price index, while C(p) is another price

aggregator:
C(p) = 2 ACES]

(i) when n = 3, we have C(p) = cP(p) iff = is a CES preference.
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Comparing HSA, HDIA, and HIIA
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Three alternative ways of departure from CES

Proposition 4. Assume that n > 3. Then:
(i) HDIA n HSA = CES;
(i) HIIA n HSA = CES;

(iii) HDIA n HIIA = CES.
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Homothetic preferences

HSA

°
Separable translog
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Thank you for your attention!
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HSA are GAS

e HSA demand systems are the homothetic restriction of what
Pollak (1972) refers to as generalized additively separable
(GAS) demand systems

e We prefer to call HSA instead of homothetic generalized
additively separable, because it does not nest the demand
systems generated by additively separable preferences.

e \We provide sufficient conditions for the “candidate” HSA
demand system to actually be a demand system generated by
some continuous and convex homothetic preference
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Example 3b: Modified translog

e Separable translog is incompatible with gross complementarity

e To overcome this, consider the following modification:
si(z;) = max{s; + yB;Inz;,y B}

e Here §; and f; are all positive and such that

n n
. (Ok
Sh=Sn=1 osr<,mn (3
k=1,.n ﬁk

k=1 k=1
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Example 3b: Modified translog

e The price aggregator A(p) has the same form as under the

separable translog:

InA(p) = 2 BiInp;
e The price index P(p) is given by

n
P(p) =c-exp {2 §;Inp; + g
i=1

Zn: Bi(Inp;)? — (Zn: .Bilnpi>
[ 1=1 i=1

-
} + A(p)
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Example 4: Linear expenditure shares

e Another natural extension of Cobb-Douglas is a demand system
with linear expenditure shares:

si(z;) = max{(1 — §)a; + 6p;z;, 0}
eHere §<1,0;>0,6;>0,and ¥ a; =¥ _ Bi =1
e The goods are

o gross complements when0 <6 <1
O gross substitutes when 6 < 0

Page 36 of 37



©Kiminori Matsuyama and Philip Ushchev, Three Alternative Classes

Example 4: Linear expenditure shares

e The price aggregator A(p) is the weighted arithmetic mean of
prices:

A(p) = zn: Bipi
i=1

e The ideal price index is given by

1-6

P(p) = c[A(p)]° (1_[ pf”) # A(p)
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