Beyond CES: Three Alternative Classes of Flexible Homothetic Demand Systems

Kiminori Matsuyama¹

Philip Ushchev²

December 19, 2017, Keio University December 20. 2017, University of Tokyo

¹ Department of Economics, Northwestern University, Evanston, USA. Email: <u>k-matsuyama@northwestern.edu</u>

² National Research University Higher School of Economics, Russian Federation. Email: <u>ph.ushchev@gmail.com</u>

Homothetic preferences: A general case

- Common across many fields of applied general equilibrium, preferences are *homothetic* and technologies are *CRS*
- A preference ≿ over ℝⁿ₊ is called *homothetic* if any two indifference sets can be mapped one into the other by a *uniform rescaling*
- The direct utility function $u(\mathbf{x})$ is *linear homogeneous*
- The indirect utility $V(\mathbf{p}, h)$ can be represented as

$$V(\mathbf{p}, h) \equiv \max_{\mathbf{x} \in \mathbb{R}^n_+} \{u(\mathbf{x}) | \mathbf{p}\mathbf{x} \le h\} = \frac{h}{P(\mathbf{p})}$$

 \circ *h* is consumer's income

 \circ *P*(**p**) is an *ideal price index*

Homothetic demands and elasticities; A general case

• The demand system associated with $P(\mathbf{p})$:

$$x_i = \frac{h}{p_i} \mathcal{E}_{p_i}(P)$$

• The inverse demand system associated with $u(\mathbf{x})$:

$$p_i = \frac{h}{x_i} \mathcal{E}_{x_i}(u)$$

• $\mathcal{E}_{p_i}(P)$ and $\mathcal{E}_{x_i}(u)$ are the elasticities defined by: $\mathcal{E}_{p_i}(P) \equiv \frac{\partial P}{\partial p_i} \frac{p_i}{P}, \quad \mathcal{E}_{x_i}(u) \equiv \frac{\partial u}{\partial x_i} \frac{x_i}{u}$

Why are homothetic preferences and CRS technologies important?

- Under identical homothetic preferences, aggregate consumption behavior is derived from utility maximization of a representative consumer, even though incomes may vary across households
- Perfect competition is valid only when the industry has CRS technologies
- Simple behavior of budget shares:
 O holding the prices constant, the budget share of each good (or factor) is independent of the household expenditure (or the scale of operation by industries)
 O this allows us to focus on the role of relative prices in the allocation of resources
- Ensure the existence of a balanced growth path in multi-sector growth models

CES and its restrictive features

In practice, most models assume that preferences/technologies also satisfy *constant-elasticity-of-substitution* (CES) property, which implies that

- the price elasticity of demand for each good/factor is *constant and identical* across goods/factors
- relative demand for any two goods/factors is *independent* of the prices of any other goods/factors
- the marginal rate of substitution between any two goods is *independent* of the consumption of any other goods
- in the case of *gross substitutes* (*complements*) all goods are *inessential* (*essential*)
- in a monopolistically competitive setting, each firm sells its product at a *markup independent of the market environment*

Our paper

- In this paper, we characterize three alternative classes of flexible homothetic demand systems
- In each of the three classes, the demand system only depends on one or two price aggregators for any number of goods
- Each of these classes contains CES as a special case
- Yet, they offer three *alternative* ways of departing from CES, because non-CES demand systems in these three classes do not overlap
- Each of these three classes is *flexible* in the sense that they are defined non-parametrically

Homothetic demand systems with a single aggregator (HSA)

HSA demand systems

- Consider a mapping $\mathbf{s}(\mathbf{z}) = (s_1(z_1), \dots, s_n(z_n))^T$ from \mathbb{R}^n_+ to \mathbb{R}^n_+ ,
- A *homothetic demand system with a single aggregator* (HSA) is given by:

$$x_i = \frac{h}{p_i} s_i \left(\frac{p_i}{A(\mathbf{p})} \right), \ i = 1, \dots, n$$

where $A(\mathbf{p})$ is a common price aggregator defined as a solution to $\sum_{i=1}^{n} s_i \left(\frac{p_i}{A}\right) = 1$

Example 1: Cobb-Douglas

• Set $s_i(z_i) = \alpha_i$, where $\alpha_1, \dots, \alpha_n$ are positive constants such that

$$\sum_{i=1}^{n} \alpha_i = 1$$

- In this case, we obtain the *Cobb-Douglas* demand system
- $P(\mathbf{p}) = c \prod_{i=1}^{n} p_i^{\alpha_i}$, but $A(\mathbf{p})$ is indeterminate

Example 2: CES

- We obtain the CES demand system if we set $s_i(z_i) = \beta_i z_i^{1-\sigma}$
- Here $\sigma > 0$ is the constant elasticity of substitution
- The price aggregator $A(\mathbf{p})$ is proportional to the ideal price index:

$$A(\mathbf{p}) = \left(\sum_{i=1}^{n} \beta_i p_i^{1-\sigma}\right)^{\frac{1}{1-\sigma}} = cP(\mathbf{p}).$$

• NB: this need not be true in general!

Example 2: CES

The functions $s_i(z_i) = \beta_i z_i^{1-\sigma}$ are:

- increasing when $0 < \sigma < 1$ (the goods are *gross complements*)
- decreasing when $\sigma > 1$ (the goods are *gross substitutes*)
- constant when $\sigma = 1$ (the Cobb-Douglas case)

Example 2: CES and its restrictive nature

Definition:

- Good *i* is *essential* (or *indispensable*) if $x_i = 0$ implies $u(\mathbf{x}) = 0$ (or equivalently, if $p_i \to \infty$ implies $P(\mathbf{p}) \to \infty$).
- Good *i* is *inessential* (or *dispensable*), otherwise.

Under CES

- Each good is inessential if $\sigma > 1$.
- A good is essential only if $\sigma \leq 1$
- CES cannot capture situations when only some goods are essential: *if one good is essential, all goods must be essential*
- The very distinction of a good being essential or inessential is *redundant*: gross complements (respectively, substitutes) are always essential (inessential) goods

Integrability Question

• What are the restrictions to be imposed on the functions $s_i(\cdot)$ for a "candidate" HSA demand system to be compatible with *rational consumer behavior*?

• The answer is given by the following Proposition

A characterization of HSA

Proposition 1. Consider a mapping $\mathbf{s}(\mathbf{z}) = (s_1(z_1), \dots, s_n(z_n))^T$ from \mathbb{R}^n_+ to \mathbb{R}^n_+ , which is normalized by $\sum_{k=1}^n s_k(1) = 1$ and satisfies the conditions:

$$z_i s'_i(z_i) < s_i(z_i), \quad s'_i(z_i) s'_j(z_j) \ge 0$$

Then:

- (i) there exists a unique monotone, convex, continuous and homothetic preference \gtrsim over \mathbb{R}^n_+ , such that the candidate HSA demand system associated with $\mathbf{s}(\mathbf{z})$ is generated by \geq
- (ii) the preference \gtrsim is described by the following ideal price index

$$\ln P(\mathbf{p}) = \ln A(\mathbf{p}) + \sum_{i=1}^{n} \int_{c_1}^{p_i/A(\mathbf{p})} \frac{s_i(\xi)}{\xi} d\xi$$

(iii) when $n \ge 3$, $A(\mathbf{p}) = cP(\mathbf{p})$ iff \gtrsim is a CES preference

Budget-share mapping as a primitive

- The budget-share mapping **s**(**z**) is the *primitive* of the HSA system
- *A*(**p**) itself cannot serve as a primitive (see Example 5 below)
- $A(\mathbf{p})$ need *not* be proportional to $P(\mathbf{p})$

 $\circ A(\mathbf{p})$ captures the *cross-price effects* in the demand system $\circ P(\mathbf{p})$ captures the *welfare consequences* of price changes

• The condition $n \ge 3$ is important, as under n = 2 *all* homothetic preferences are HSA

Self-duality of the HSA demand systems

- Consider a mapping $\mathbf{s}^*(\mathbf{y}) = (s_1^*(y_1), \dots, s_n^*(y_n))^T$ from \mathbb{R}^n_+ to \mathbb{R}^n_+ ,
- The inverse HSA demand system is given by

$$p_i = \frac{h}{x_i} s_i^* \left(\frac{x_i}{A^*(x)} \right), \ i = 1, ..., n$$

where $A^*(x)$ is a *common quantity aggregator* defined as a solution to

$$\sum_{i=1}^{n} s_i^* \left(\frac{x_i}{A^*}\right) = 1$$

• The two classes of HSA demand systems are *self-dual* to each other with a one-to-one correspondence between $\mathbf{s}(\mathbf{z})$ and $\mathbf{s}^*(\mathbf{y})$, defined by $s_i^* = s_i(s_i^*/y_i)$

Example 3a: Separable translog

• The translog ideal price index is given by

$$\ln P(\mathbf{p}) = \sum_{i=1}^{n} \delta_i \ln p_i - \frac{1}{2} \sum_{i,j=1}^{n} \gamma_{ij} \ln p_i \ln p_j - \ln c$$

- Here $\delta_i > 0$, while (γ_{ij}) is symmetric and positive semidefinite
- The following normalizations hold for all i = 1, ..., n:

$$\sum_{j=1}^{n} \delta_j = 1, \quad \sum_{j=1}^{n} \gamma_{ij} = 0$$

Example 3a: Separable translog

- In general, the translog demand system is not HSA
- However, assume additionally the following separability:

$$\gamma_{ij} = \begin{cases} \gamma \beta_i (1 - \beta_i), i = j \\ -\gamma \beta_i \beta_j, i \neq j \end{cases} \qquad \sum_{i=1}^n \beta_i = 1 \end{cases}$$

• By setting
$$s_i(z_i) = \delta_i - \gamma \beta_i \ln z_i$$
, we get:

$$x_i = \frac{h}{p_i} s_i \left(\frac{p_i}{A(\boldsymbol{p})}\right) = \frac{h}{p_i} \left(\delta_i - \gamma \beta_i \ln \frac{p_i}{A(\boldsymbol{p})}\right)$$

Example 3a: Separable translog

• The price aggregator $A(\mathbf{p})$ is the weighted geometric mean of prices:

$$\ln A(\mathbf{p}) = \sum_{i=1}^{n} \beta_i \ln p_i$$

• The price index $P(\mathbf{p})$ differs from the price aggregator $A(\mathbf{p})$:

$$P(\mathbf{p}) = c \cdot \exp\left\{\sum_{i=1}^{n} \delta_{i} \ln p_{i} - \frac{\gamma}{2} \left[\sum_{i=1}^{n} \beta_{i} (\ln p_{i})^{2} - \left(\sum_{i=1}^{n} \beta_{i} \ln p_{i}\right)^{2}\right]\right\} \neq A(\mathbf{p})$$

Example 5: A Hybrid of Cobb-Douglas and CES

• Consider a convex combination of Cobb-Douglas budget shares and CES budget shares:

$$s_i(z) = \varepsilon \alpha_i + (1 - \varepsilon) \beta_i z^{1 - \sigma}$$

• Here $0 < \varepsilon < 1$, while α_i and β_i are such that

$$\alpha_i \ge 0, \ \beta_i > 0, \ \sum_{k=1}^n \alpha_k = \sum_{k=1}^n \beta_k = 1$$

Example 5: A Hybrid of Cobb-Douglas and CES

• The price aggregator $A(\mathbf{p})$ is independent of ε :

$$A(\mathbf{p}) = \left(\sum_{i=1}^{n} \beta_i p_i^{1-\sigma}\right)^{\frac{1}{1-\sigma}}$$

• The ideal price index is given by

$$P(\mathbf{p}) = c \left(\prod_{i=1}^{n} p_i^{\alpha_i}\right)^{\varepsilon} \left(\sum_{i=1}^{n} \beta_i p_i^{1-\sigma}\right)^{\frac{1-\varepsilon}{1-\sigma}}$$

Example 5: A Hybrid of Cobb-Douglas and CES

- When $\sigma > 1$, all goods are still gross substitutes, and yet, if $\alpha_i > 0$, good i is *essential*
- **Implication**: consider international trade between two countries, and suppose that some of the essential goods can be produced only in one country
- Trade elasticity is $\sigma > 1$. With a small ε , the demand system can be approximated by CES.
- Were the demand system CES ($\varepsilon = 0$), autarky would lead to a relatively small welfare loss
- But the welfare loss of autarky (measured by the price index change) is infinity for the country which cannot produce such essential goods

Implicitly additive homothetic preferences

HDIA preferences

 A preference ≿ over ℝⁿ₊ is said to be *homothetic with direct implicit additivity* (HDIA) if u(x) is implicitly defined as a solution to

$$\sum_{i=1}^{n} \phi_i\left(\frac{x_i}{u}\right) = 1$$

- Here the sufficiently differentiable functions $\phi_i \colon \mathbb{R}_+ \to \mathbb{R}$ are
 - either strictly increasing and strictly concave (goods are gross substitutes)
 - o or strictly decreasing and strictly convex (goods are gross complements)
- Moreover, $\phi_i(\cdot)$ are normalized as follows: $\sum_{i=1}^n \phi_i(1) = 1$

HDIA preferences

Proposition 2. Assume \geq is a HDIA preference. Then:

(i) the Marshallian demands are given by

$$x_i = \frac{h}{P(\mathbf{p})} (\phi_i')^{-1} \left(\frac{p_i}{B(\mathbf{p})}\right)_{i}$$

where P(p) is the ideal price index, while B(p) is another price aggregator:

$$\sum_{k=1}^{n} \phi_{k} \left((\phi_{k}')^{-1} \left(\frac{p_{k}}{B} \right) \right) = 1, \ P(p) = \sum_{k=1}^{n} p_{k} (\phi_{k}')^{-1} \left(\frac{p_{k}}{B(\mathbf{p})} \right);$$

(ii) when $n \ge 3$, we have $B(\mathbf{p}) = cP(\mathbf{p})$ iff \gtrsim is a CES preference.

HIIA preferences

A preference ≿ over ℝⁿ₊ is said to be homothetic with indirect implicit additivity (HIIA) if P(**p**) is implicitly defined as a solution to

$$\sum_{i=1}^{n} \theta_i \left(\frac{p_i}{P}\right) = 1$$

- Here the sufficiently differentiable functions $\theta_i \colon \mathbb{R}_+ \to \mathbb{R}$ are
 - o either strictly decreasing and strictly convex (goods are gross substitutes)
 - o or strictly increasing and strictly concave (goods are gross complements)
- Moreover, $\theta_i(\cdot)$ are normalized as follows: $\sum_{i=1}^n \theta_i(1) = 1$

HIIA preferences

Proposition 3. Assume a preference \geq is HIIA. Then:

(i) the Marshallian demands are given by

$$x_{i} = \frac{h}{C(\boldsymbol{p})} \theta_{i}^{\prime} \left(\frac{p_{i}}{P(\boldsymbol{p})}\right)^{\prime}$$

where $P(\mathbf{p})$ is the ideal price index, while $C(\mathbf{p})$ is another price aggregator:

$$C(\boldsymbol{p}) \equiv \sum_{k=1}^{n} p_k \theta'_k \left(\frac{p_k}{P(\boldsymbol{p})} \right);$$

(ii) when $n \ge 3$, we have $C(\mathbf{p}) = cP(\mathbf{p})$ iff \gtrsim is a CES preference.

©Kiminori Matsuyama and Philip Ushchev, Three Alternative Classes

Comparing HSA, HDIA, and HIIA

Three alternative ways of departure from CES

Proposition 4. *Assume that* $n \ge 3$. *Then*:

- (i) HDIA \cap HSA = CES;
- (ii) HIIA \cap HSA = CES;
- (iii) HDIA \cap HIIA = CES.

©Kiminori Matsuyama and Philip Ushchev, Three Alternative Classes

Thank you for your attention!

HSA are GAS

- HSA demand systems are the homothetic restriction of what Pollak (1972) refers to as *generalized additively separable* (GAS) demand systems
- We prefer to call HSA instead of *homothetic generalized additively separable*, because it does not nest the demand systems generated by additively separable preferences.
- We provide sufficient conditions for the "candidate" HSA demand system to *actually* be a demand system generated by some *continuous and convex homothetic* preference

Example 3b: Modified translog

- Separable translog is incompatible with gross complementarity
- To overcome this, consider the following modification:

$$s_i(z_i) = \max\{\delta_i + \gamma \beta_i \ln z_i, \gamma \beta_i\}$$

• Here δ_i and β_i are all positive and such that

$$\sum_{k=1}^{n} \beta_k = \sum_{k=1}^{n} \delta_k = 1, \quad 0 < \gamma < \min_{k=1,\dots,n} \left\{ \frac{\delta_k}{\beta_k} \right\}$$

Example 3b: Modified translog

• The price aggregator A(**p**) has *the same form* as under the separable translog:

$$\ln A(\mathbf{p}) = \sum_{i=1}^{n} \beta_i \ln p_i$$

• The price index $P(\mathbf{p})$ is given by:

$$P(\mathbf{p}) = c \cdot \exp\left\{\sum_{i=1}^{n} \delta_{i} \ln p_{i} + \frac{\gamma}{2} \left[\sum_{i=1}^{n} \beta_{i} (\ln p_{i})^{2} - \left(\sum_{i=1}^{n} \beta_{i} \ln p_{i}\right)^{2}\right]\right\} \neq A(\mathbf{p})$$

Example 4: Linear expenditure shares

• Another natural extension of Cobb-Douglas is a demand system with *linear expenditure shares*:

$$s_i(z_i) = \max\{(1 - \delta)\alpha_i + \delta\beta_i z_{i'}, 0\}$$

- Here $\delta < 1, \alpha_i > 0, \beta_i > 0$, and $\sum_{i=1}^n \alpha_i = \sum_{i=1}^n \beta_i = 1$
- The goods are

 \circ gross complements when $0 < \delta < 1$ \circ gross substitutes when $\delta < 0$

Example 4: Linear expenditure shares

• The price aggregator $A(\mathbf{p})$ is the weighted arithmetic mean of prices:

$$A(\mathbf{p}) = \sum_{i=1}^{n} \beta_i p_i$$

• The ideal price index is given by

$$P(\mathbf{p}) = c[A(\mathbf{p})]^{\delta} \left(\prod_{i=1}^{n} p_i^{\alpha_i}\right)^{1-\delta} \neq A(\mathbf{p})$$