Constant Pass-Through

Kiminori Matsuyama Northwestern University, U.S.A. Philip Ushchev HSE University, St.Petersburg, Russia

Last Updated: 2021-09-24, 1:47

Introduction

Monopolistic competition (MC) under CES

- Strong restrictions on the pricing behavior:
 - o exogenously constant markup rate common across MC firms
 - complete pass-through
- In multi-sector settings (with nested CES):
 - o markup rates can differ across sectors but not among MC firms within each sector
 - \circ pass-through rate = 1 for every MC firm in every sector
- Various types of heterogeneity across MC firms isomorphic to each other

We propose and characterize *parametric families*, CoPaTh (and its special case, CoCoPaTh, and its special case, CPE)

- feature a *constant pass-through rate* as a parameter for each MC firm
- accommodate
 - \circ a single measure of "toughness of competition"
 - o endogenous markup rates/incomplete pass-through/strategic complementarity
 - o various types of heterogeneity across MC firms, not isomorphic to each other
- CoCoPaTh, with a constant pass-through rate, *sector-specific* parameter, *common* across MC firms within a sector
 - \circ Tough competition
 - *has no effects on their relative prices* (as the markup rates decline uniformly across all MC firms)
 - reduces the relative revenue/profit of those *with lower markup rates, not* necessarily smaller or less productive.
 - Retain much of tractability of CES, a useful building block for a wide range of MC models the average pass-through rate in the economy changes endogenously through sectoral composition!

Notes:

- Our goal is *not* to propose a model of an economy. Instead, it is to propose a building block, which we hope some find useful when they construct their models of an economy.
- In some ways, we are motivated by similar considerations that led Arrow-Chenery-Minhas-Solow (ACMS) to generalize Cobb-Douglas by proposing CES.

	Expenditure share	Elasticity of	Price elasticity	Pass-through rate
		Substitution	under MC	under MC
Cobb-Douglas	constant	1	Not applicable	Not applicable
CES	variable	constant & common	constant & common	1
		within sector	within sector	
		sector-specific	sector-specific	
		(with nested CES)	(with nested CES)	
СРЕ	variable	variable	constant	1
			product-specific	
CoCoPaTh	variable	variable	variable	constant & common
				within sector
				sector-specific
				(with nested CoCoPaTh)
CoPaTh	variable	variable	variable	constant
				product-specific

Three Families of CoPaTh

We characterize *parametric* families of

- Constant Price Elasticity (CPE)
- Common Constant Path-Through (CoCoPaTh)
- Constant Path Through(CoPaTh)

```
CES \subset CPE \subset CoCoPaTh \subset CoPaTh
```

within each of the 3 *nonparametric* classes of the demand systems:

- Homothetic with a Single Aggregator (H.S.A.)
- Homothetic Direct Implicit Additivity (HDIA)
- Homothetic Indirect Implicit Additivity (HIIA)

studied by Matsuyama-Ushchev (2017)

A Frequently Asked Question

In light of some empirical evidence (e.g., Amiti-Itskhoki-Konings, Berman-Martin-Meyer) that larger firms tend to have lower pass-through rates, how good is the assumption of CoCoPaTh (a constant & common pass-through rate)?

- Large firms may have low PaTh rates due to oligopolistic behaviors (Atkeson-Burstein, Edmond-Midrigan-Xu)
- Even when you want to assume that all firms are MC,

• CoCoPaTh allow sector-specific PaTh rates; the average size of firms may differ across sectors.

• CoCoPaTh are **better than homothetic translog**, which implies *higher* PaTh rates among larger MC firms (if MC firms differ only in productivity).

We do not believe PaTh rates are *literally* constant and common among MC firms even within a sector. But

This assumption is no worse than the assumption that firms are heterogeneous only in productivity.
CoCoPaTh provides a useful benchmark for those who believe that it is not endogenous markup rate heterogeneity but endogenous PaTh rate heterogeneity that is important for understanding the data.

In summary, we think

- Oligopoly models are better suited for explaining lower PaTh rates among larger firms within a sector.
- For any situation where you want to assume that some or all firms are MC, assuming a constant & common PaTh rate among them within a sector is a small price to pay for the tractability.

General Setup

A Monopolistically Competitive (MC) Sector (as a Building Block)

A Production Sector consists of

• Competitive firms: produce a single good by assembling intermediate inputs $\omega \in \Omega$, using CRS technology

CRS Production Function:

$$X = X(\mathbf{x}) \equiv \min_{\mathbf{p}} \left\{ \mathbf{p}\mathbf{x} = \int_{\Omega} p_{\omega} x_{\omega} d\omega \middle| P(\mathbf{p}) \ge 1 \right\}$$
Unit Cost Function:

$$P = P(\mathbf{p}) \equiv \min_{\mathbf{x}} \left\{ \mathbf{p}\mathbf{x} = \int_{\Omega} p_{\omega} x_{\omega} d\omega \middle| X(\mathbf{x}) \ge 1 \right\}$$

Duality Principle: Either $X = X(\mathbf{x})$ or $P = P(\mathbf{p})$ can be used as a primitive of the CRS technology, as long as linear homogeneity, monotonicity, and quasi-concavity are satisfied.

• A subset of *intermediate inputs varieties*, $\Omega^M \subset \Omega$, produced by profit-maximizing MC firms

 Ω / Ω^M , may be supplied competitively, by oligopolists or by non-maximizing MC firms, etc.

We can also allow multi-product MC firms, as long as they do not produce a positive measure of products.

Constant Pass-Through

Demand Curve for
$$\omega$$

 $x_{\omega} = X(\mathbf{x}) \frac{\partial P(\mathbf{p})}{\partial p_{\omega}}$
Inverse Demand Curve for ω
 $p_{\omega} = P(\mathbf{p}) \frac{\partial X(\mathbf{x})}{\partial x_{\omega}}$
Market Size of the Sector
 $\mathbf{p}\mathbf{x} = \int_{\Omega} p_{\omega} x_{\omega} d\omega = P(\mathbf{p}) X(\mathbf{x})$
Revenue Share of Firm ω ,
 $s_{\omega} = \frac{p_{\omega} x_{\omega}}{\mathbf{p}\mathbf{x}} = \frac{p_{\omega} x_{\omega}}{P(\mathbf{p}) X(\mathbf{x})}$
 $s_{\omega}(p_{\omega}, \mathbf{p}) = \frac{\partial \ln P(\mathbf{p})}{\partial \ln p_{\omega}}; \ s_{\omega}(x_{\omega}, \mathbf{x}) = \frac{\partial \ln X(\mathbf{x})}{\partial \ln x_{\omega}}$
Price Elasticity of ω :
 $\zeta_{\omega} = -\frac{\partial \ln x_{\omega}}{\partial \ln p_{\omega}}$
 $\zeta_{\omega}(p_{\omega}, \mathbf{p}) = 1 - \frac{\partial \ln \left(\frac{\partial \ln P(\mathbf{p})}{\partial \ln p_{\omega}}\right)}{\partial \ln p_{\omega}}; \ \zeta_{\omega}(x_{\omega}, \mathbf{x}) = \left[1 - \frac{\partial \ln \left(\frac{\partial \ln X(\mathbf{x})}{\partial \ln x_{\omega}}\right)}{\partial \ln x_{\omega}}\right]$

For general CRS, little restrictions on ζ_{ω} , beyond the homogeneity of degree zero in (p_{ω}, \mathbf{p}) or in (x_{ω}, \mathbf{x}) .

-1

Three Classes of CRS Production Functions: from Matsuyama-Ushchev (2017) Homothetic with a Single Aggregator (H.S.A.)

$$\frac{P(\mathbf{p})}{cA(\mathbf{p})} = \exp\left[-\int_{\Omega} \left[\int_{p_{\omega}/A(\mathbf{p})}^{\bar{z}} \frac{s_{\omega}(\xi)}{\xi} d\xi\right] d\omega\right] \qquad \Leftarrow s_{\omega} = s_{\omega} \left(\frac{p_i}{A(\mathbf{p})}\right), \qquad \text{where } \int_{\Omega} s_{\omega} \left(\frac{p_{\omega}}{A(\mathbf{p})}\right) d\omega \equiv 1$$

or

$$\frac{X(\mathbf{x})}{cA^*(\mathbf{x})} = \exp\left[\int_{\Omega} \left[\int_{0}^{x_{\omega}/A^*(\mathbf{x})} \frac{s_{\omega}^*(\xi)}{\xi} d\xi\right] d\omega\right] \qquad \Leftarrow s_{\omega} = s_{\omega}^* \left(\frac{x_{\omega}}{A^*(\mathbf{x})}\right), \qquad \text{where } \int_{\Omega} s_{\omega}^* \left(\frac{x_{\omega}}{A^*(\mathbf{x})}\right) d\omega = 1$$

Homothetic Direct Implicit Additivity (HDIA): X(x) *implicitly additive & linear homogeneous*

$$\int_{\Omega} \phi_{\omega} \left(\frac{x_{\omega}}{X(\mathbf{x})} \right) d\omega \equiv 1 \qquad \implies s_{\omega} = \frac{x_{\omega}}{C^*(\mathbf{x})} \phi'_{\omega} \left(\frac{x_{\omega}}{X(\mathbf{x})} \right), \text{ where } C^*(\mathbf{x}) \equiv \int_{\Omega} x_{\omega} \phi'_{\omega} \left(\frac{x_{\omega}}{X(\mathbf{x})} \right) d\omega$$

Homothetic Indirect Implicit Additivity (HIIA): *P*(**p**) *implicitly additive & linear homogeneous*

$$\int_{\Omega} \theta_{\omega} \left(\frac{p_{\omega}}{P(\mathbf{p})} \right) d\omega \equiv 1 \qquad \implies s_{\omega} = \frac{p_{\omega}}{C(\mathbf{p})} \theta_{\omega}' \left(\frac{p_{\omega}}{P(\mathbf{p})} \right), \text{ where } C(\mathbf{p}) \equiv \int_{\Omega} p_{\omega} \theta_{\omega}' \left(\frac{p_{\omega}}{P(\mathbf{p})} \right) d\omega$$

with some restrictions on $s_{\omega}(\cdot)$ or $s_{\omega}^{*}(\cdot)$, $\phi_{\omega}(\cdot)$, $\theta_{\omega}(\cdot)$ to ensure monotonicity and quasi-concavity $P(\mathbf{p})$ and $X(\mathbf{x})$ H.S.A., HDIA, HIIA are disjoint with the sole exception of CES.

Typeaning I catures of the o Classes when Applied to Monopolistic Competition								
	$P(\mathbf{p})$ or $X(\mathbf{x})$	Revenue Share: s_{ω}	Price Elasticity: ζ_{ω}	For CES				
H.S.A.	$\frac{P(\mathbf{p})}{cA(\mathbf{p})} = \exp\left[-\int_{\Omega} \left[\int_{p_{\omega}/A(\mathbf{p})}^{\bar{z}} \frac{s_{\omega}(\xi)}{\xi} d\xi\right] d\omega\right]$	$s_{\omega} \left(\frac{p_{\omega}}{A(\mathbf{p})} \right)$ with $\int_{\Omega} s_{\omega} \left(\frac{p_{\omega}}{A(\mathbf{p})} \right) d\omega \equiv 1$	$\zeta_{\omega}\left(\frac{p_{\omega}}{A(\mathbf{p})}\right) \equiv 1 - \frac{zs_{\omega}'(z)}{s_{\omega}(z)}\Big _{z=\frac{p_{\omega}}{A(\mathbf{p})}} > 1$	$\frac{P(\mathbf{p})}{A(\mathbf{p})} = \frac{A^*(\mathbf{x})}{X(\mathbf{x})}$ $= const.$ $\Leftrightarrow s_{\omega}(\cdot) \text{ or } s_{\omega}^*(\cdot) \text{ is a}$				
	$\frac{X(\mathbf{x})}{cA^*(\mathbf{x})} = \exp\left[\int_{\Omega} \left[\int_{0}^{x_{\omega}/A^*(\mathbf{x})} \frac{s_{\omega}^*(\xi)}{\xi} d\xi\right] d\omega\right]$	$s_{\omega}^{*}\left(\frac{x_{\omega}}{A^{*}(\mathbf{x})}\right)$ with $\int_{\Omega} s_{\omega}^{*}\left(\frac{x_{\omega}}{A^{*}(\mathbf{x})}\right) d\omega = 1$	$\zeta_{\omega}^{*}\left(\frac{x_{\omega}}{A^{*}(\mathbf{x})}\right) \equiv \left[1 - \frac{y s_{\omega}^{*'}(y)}{s_{\omega}^{*}(y)}\right]_{y=\frac{x_{\omega}}{A^{*}(\mathbf{x})}} = 1$	power function				
HDIA Kimball	$\int_{\Omega} \phi_{\omega}\left(\frac{x_{\omega}}{X(\mathbf{x})}\right) d\omega \equiv 1$	$\frac{x_{\omega}}{C^{*}(\mathbf{x})}\phi_{\omega}'\left(\frac{x_{\omega}}{X(\mathbf{x})}\right)$ with $C^{*}(\mathbf{x}) \equiv \int_{\Omega} x_{\omega}\phi_{\omega}'\left(\frac{x_{\omega}}{w(\mathbf{x})}\right)d\omega$	$\zeta_{\omega}^{D}\left(\frac{x_{\omega}}{X(\mathbf{x})}\right) \equiv -\frac{\phi_{\omega}'(y)}{y\phi_{\omega}''(y)}\Big _{y=\frac{x_{\omega}}{X(\mathbf{x})}} > 1$	$\frac{C^*(\mathbf{x})}{X(\mathbf{x})} = const.$ $\Leftrightarrow \phi_{\omega}(\cdot) \text{ is a power}$				
		() $() $ $() $ $() $ $() $ $()$		function.				
HIIA	$\int_{\Omega} \theta_{\omega} \left(\frac{p_{\omega}}{P(\mathbf{p})} \right) d\omega \equiv 1$	with $C(\mathbf{p}) = \int p_{\omega} \theta'_{\omega} \left(\frac{p_{\omega}}{P(\mathbf{p})}\right) d\omega$	$\zeta_{\omega}^{I}\left(\frac{p_{\omega}}{P(\mathbf{p})}\right) \equiv -\frac{z\theta_{\omega}^{\prime\prime}(z)}{\theta_{\omega}^{\prime}(z)}\Big _{z=\frac{p_{\omega}}{P(\mathbf{p})}} > 1$	$\frac{C(\mathbf{p})}{P(\mathbf{p})} = const.$ $\Leftrightarrow \theta_{u}(\cdot) \text{ is a power}$				
		with $C(\mathbf{p}) = J_{\Omega} p_{\omega} v_{\omega} (p(\mathbf{p})) d\omega$		function.				

Appealing Features of the 3 Classes when Applied to Monopolistic Competition

with further restrictions on $s_{\omega}(\cdot)$ or $s_{\omega}^{*}(\cdot)$, $\phi_{\omega}(\cdot)$, $\theta_{\omega}(\cdot)$ to ensure i) the gross substitutability and ii) the existence & the uniqueness of the free-entry equilibrium.

- Revenue share depends on a single aggregator under H.S.A; on two aggregators under HDIA. & HIIA.
- The price elasticity is a function of a single aggregator.
 - A single aggregator captures the effect of competition on the markup rate.
 - Comparative statics results dictated by the derivative of the price elasticity function.
 - \circ Marshall's 2nd Law \Leftrightarrow Procompetitive effect \Leftrightarrow Strategic complementarity, not true in general.

Another Frequently Asked Question

What is the relative advantage of the three classes?

We believe that H.S.A. has advantage over HDIA and HIIA, because

- the revenue share functions, $s_{\omega}(\cdot)$, are the primitive of H.S.A. and hence it can be readily identified by typical firm level data, which has revenues but not output.
- With free-entry, easier to ensure the existence and uniqueness of equilibrium and characterize the equilibrium and conduct comparative statics under H.S.A., because

• Under H.S.A., one need to pin down the equilibrium value of only one aggregator in each sector.

• Under HDIA and HIIA, one need to pin down the equilibrium values of two aggregators in each sector.

MC Firm's pricing behavior; p_{ω} profit-maximizing price; ψ_{ω} : marginal cost

In all three classes,

FOC (Lerner Formula)
$$p_{\omega} \left[1 - \frac{1}{\zeta_{\omega}(p_{\omega}/\mathcal{A}(\mathbf{p}))} \right] = \psi_{\omega}; \quad \zeta_{\omega}(\cdot) > 1$$
If LHS is monotone increasing in p_{ω} $\Rightarrow \frac{p_{\omega}}{\mathcal{A}(\mathbf{p})} = \mathcal{G}_{\omega} \left(\frac{\psi_{\omega}}{\mathcal{A}(\mathbf{p})} \right); \quad \mathcal{G}'_{\omega}(\cdot) > 0$

Markup rate
$$\mu_{\omega}$$
 for $\omega \in \Omega^{M}$
$$\mu_{\omega} \equiv \frac{p_{\omega}}{\psi_{\omega}} = \frac{\mathcal{G}_{\omega}(\psi_{\omega}/\mathcal{A}(\mathbf{p}))}{\psi_{\omega}/\mathcal{A}(\mathbf{p})}$$

Pass-through rate
$$\rho_{\omega}$$
 for $\omega \in \Omega^{M}$

$$\rho_{\omega} \equiv \frac{\partial \ln p_{\omega}}{\partial \ln \psi_{\omega}} = \frac{\partial \ln G_{\omega}(\psi_{\omega}/\mathcal{A}(\mathbf{p}))}{\partial \ln(\psi_{\omega}/\mathcal{A}(\mathbf{p}))} = 1 + \frac{\partial \ln \mu_{\omega}}{\partial \ln \psi_{\omega}}$$

CoPaTh Pricing formula $\omega \in \Omega^M$

$$\frac{p_{\omega}}{\mathcal{A}(\mathbf{p})\beta_{\omega}} = \left(\left(\frac{\sigma_{\omega}}{\sigma_{\omega} - 1} \right) \frac{\psi_{\omega}}{\mathcal{A}(\mathbf{p})\beta_{\omega}} \right)^{\rho_{\omega}} \Leftrightarrow \zeta_{\omega} \left(\frac{p_{\omega}}{\mathcal{A}(\mathbf{p})} \right) = \frac{1}{1 - \left(1 - \frac{1}{\sigma_{\omega}} \right) \left(\frac{p_{\omega}}{\mathcal{A}(\mathbf{p})\beta_{\omega}} \right)^{\frac{1}{\rho_{\omega}} - 1}}$$

• Product-specific

- $\circ \sigma_{\omega} > 1$: markup (substitutability) shifter
- $\circ \beta_{\omega} > 0$: price (quality) shifter
- $\psi_{\omega} > 0$: marginal cost (inverse of productivity)
- $\circ \rho_{\omega} \leq 1$: pass-through rate
- $\circ \gamma_{\omega} > 0$: market-size shifter (does not appear in the pricing formula)

• Common across products within a sector

 $\circ \mathcal{A} = \mathcal{A}(\mathbf{p})$: linear homogeneous in **p**, common price aggregator capturing ``toughness of competition''

K. Matsuyama & P.Ushchev

Complete pass-through case ($\rho_{\omega} = 1$)

CoPaTh Pricing formula $\omega \in \Omega^M$

$$\frac{p_{\omega}}{\mathcal{A}(\mathbf{p})\beta_{\omega}} = \left(\frac{\sigma_{\omega}}{\sigma_{\omega}-1}\right) \frac{\psi_{\omega}}{\mathcal{A}(\mathbf{p})\beta_{\omega}} \Longrightarrow p_{\omega} = \frac{\sigma_{\omega}}{\sigma_{\omega}-1}\psi_{\omega}$$

- **CPE C**onstant product-specific Price Elasticity
- Product-specific markup rate: depends solely on σ_{ω} , not on
 - $\begin{array}{l} \circ \text{ marginal cost } \psi_{\omega} \\ \circ \text{ price shifter } \beta_{\omega} \end{array}$
 - \circ common aggregator $\mathcal{A} = \mathcal{A}(\mathbf{p})$
- **CES:** special case of CPE with $\sigma_{\omega} = \sigma$

Incomplete pass-through case $(0 < \rho_{\omega} < 1)$

CoPaTh Pricing formula for $\omega \in \Omega^M$

$$\frac{p_{\omega}}{\mathcal{A}(\mathbf{p})\beta_{\omega}} = \left(\left(\frac{\sigma_{\omega}}{\sigma_{\omega} - 1} \right) \frac{\psi_{\omega}}{\mathcal{A}(\mathbf{p})\beta_{\omega}} \right)^{\rho_{\omega}} \implies \ln p_{\omega} = (1 - \rho_{\omega}) \ln \bar{p}_{\omega} + \rho_{\omega} \ln \psi_{\omega}$$

Choke price for $\omega \in \Omega^M$

$$\bar{p}_{\omega} \equiv \bar{\beta}_{\omega} = \mathcal{A}(\mathbf{p})\beta_{\omega} \left(\frac{\sigma_{\omega}}{\sigma_{\omega} - 1}\right)^{\frac{\rho_{\omega}}{1 - \rho_{\omega}}} < \infty$$

where $\bar{\beta}_{\omega} = \beta_{\omega} \left(\frac{\sigma_{\omega}}{\sigma_{\omega} - 1} \right)^{\frac{\rho_{\omega}}{1 - \rho_{\omega}}}$ is the "relative" choke price. (Note $\bar{\beta}_{\omega} \to \infty$, as $\rho_{\omega} \nearrow 1$.)

Price of each product $\omega \in \Omega^M$

∘ strategic complementarity in pricing. $\mathcal{A}(\mathbf{p})$ ↑ ⇒ \bar{p}_{ω} ↑ ⇒ p_{ω} ↑

- o sector-wide pass-through rate is one, if all firms/products are MC and hit by proportional cost shocks.
- o log-linear in marginal cost and choke price
 - Under CoCoPaTh ($0 < \rho_{\omega} = \rho < 1$), common coefficients across all products in Ω^{M} , as in the standard pass-through regression (Gopinath-Rigobon 2008; Nakamura-Zerom 2010)

Under CoCoPaTh $(0 < \rho_{\omega} = \rho < 1)$

Price and markup ratios for $\omega_1, \omega_2 \in \Omega^M$

• **Price ratio** for $\omega_1, \omega_2 \in \Omega^M$

$$\frac{p_{\omega_1}}{p_{\omega_2}} = \left(\frac{\beta_{\omega_1}}{\beta_{\omega_2}}\right)^{1-\rho} \left(\frac{\sigma_{\omega_1}/(\sigma_{\omega_1}-1)}{\sigma_{\omega_2}/(\sigma_{\omega_2}-1)}\frac{\psi_{\omega_1}}{\psi_{\omega_2}}\right)^{\rho}$$

• Markup ratio for $\omega_1, \omega_2 \in \Omega^M$

$$\frac{\mu_{\omega_1}}{\mu_{\omega_2}} = \left(\frac{\sigma_{\omega_1}/(\sigma_{\omega_1}-1)}{\sigma_{\omega_2}/(\sigma_{\omega_2}-1)}\right)^{\rho} \left(\frac{\beta_{\omega_1}/\psi_{\omega_1}}{\beta_{\omega_2}/\psi_{\omega_2}}\right)^{1-\rho}$$

Note: both independent of $\mathcal{A}(\mathbf{p})$

- A great advantage when studying the GE effects of shocks that change the relative cost across MC firms (e.g., the exchange rate, the tariffs, the energy prices).
- Under CoCoPaTh, the impact of such shocks on the markup rates and relative prices can be calculated without worrying about the general equilibrium feedback effect.

Under CoCoPaTh $(0 < \rho_{\omega} = \rho < 1)$

Sales ratio for $\omega_1, \omega_2 \in \Omega^M$

 γ_{ω} = quantity shifter or *market size for* $\omega \in \Omega$

• Incomplete pass-through case $(\mathbf{0} < \boldsymbol{\rho} < \mathbf{1})$ for $\omega_1, \omega_2 \in \Omega^M$

$$\frac{p_{\omega_{1}}x_{\omega_{1}}}{p_{\omega_{2}}x_{\omega_{2}}} = \frac{\gamma_{\omega_{1}}\bar{\beta}_{\omega_{1}}}{\gamma_{\omega_{2}}\bar{\beta}_{\omega_{2}}} \left(\frac{\sigma_{\omega_{1}}-1}{\sigma_{\omega_{2}}-1}\right)^{\frac{\rho}{1-\rho}} \left[\frac{1-\left(\psi_{\omega_{1}}/\mathcal{A}(\mathbf{p})\bar{\beta}_{\omega_{1}}\right)^{1-\rho}}{1-\left(\psi_{\omega_{1}}/\mathcal{A}(\mathbf{p})\bar{\beta}_{\omega_{1}}\right)^{1-\rho}}\right]^{\frac{\rho}{1-\rho}}$$

• Complete pass-through case $(\rho \rightarrow 1)$ for $\omega_1, \omega_2 \in \Omega^M$:

$$\frac{p_{\omega_1} x_{\omega_1}}{p_{\omega_2} x_{\omega_2}} = \frac{\gamma_{\omega_1} \beta_{\omega_1} \left(\frac{\sigma_{\omega_1}}{\sigma_{\omega_1} - 1} \frac{\psi_{\omega_1}}{\mathcal{A}(\mathbf{p}) \beta_{\omega_1}} \right)^{1 - \sigma_{\omega_1}}}{\gamma_{\omega_2} \beta_{\omega_2} \left(\frac{\sigma_{\omega_2}}{\sigma_{\omega_2} - 1} \frac{\psi_{\omega_2}}{\mathcal{A}(\mathbf{p}) \beta_{\omega_2}} \right)^{1 - \sigma_{\omega_2}}} \propto [\mathcal{A}(\mathbf{p})]^{\sigma_{\omega_1} - \sigma_{\omega_2}}$$

Note: both are increasing with $\mathcal{A}(\mathbf{p}) \Leftrightarrow \mu_{\omega_1} < \mu_{\omega_2}$

MC firms with lower markups (not necessarily smaller firms) suffer more from tougher competition.

Under CoCoPaTh $(0 < \rho_{\omega} = \rho < 1)$

Profit ratio for $\omega_1, \omega_2 \in \Omega^M$

 γ_{ω} = quantity shifter or *market size for* $\omega \in \Omega$

• Incomplete pass-through case $(0 < \rho < 1)$:

$$\frac{\pi_{\omega_1}}{\pi_{\omega_2}} = \frac{\gamma_{\omega_1}}{\gamma_{\omega_2}} \frac{\bar{\beta}_{\omega_1}}{\bar{\beta}_{\omega_2}} \left(\frac{\sigma_{\omega_1}-1}{\sigma_{\omega_2}-1}\right)^{\frac{\rho}{1-\rho}} \left[\frac{1-\left(\psi_{\omega_1}/\mathcal{A}(\mathbf{p})\bar{\beta}_{\omega_1}\right)^{1-\rho}}{1-\left(\psi_{\omega_1}/\mathcal{A}(\mathbf{p})\bar{\beta}_{\omega_1}\right)^{1-\rho}}\right]^{\frac{1}{1-\rho}}$$

• Complete pass-through case $(\rho \rightarrow 1)$:

$$\frac{\pi_{\omega_1}}{\pi_{\omega_2}} = \frac{\frac{\gamma_{\omega_1}\beta_{\omega_1}}{\sigma_{\omega_1}} \left(\frac{\sigma_{\omega_1}}{\sigma_{\omega_1}-1}\frac{\psi_{\omega_1}}{\mathcal{A}(\mathbf{p})\beta_{\omega_1}}\right)^{1-\sigma_{\omega_1}}}{\frac{\gamma_{\omega_2}\beta_{\omega_2}}{\sigma_{\omega_2}} \left(\frac{\sigma_{\omega_2}}{\sigma_{\omega_2}-1}\frac{\psi_{\omega_2}}{\mathcal{A}(\mathbf{p})\beta_{\omega_2}}\right)^{1-\sigma_{\omega_2}}} \propto [\mathcal{A}(\mathbf{p})]^{\sigma_{\omega_1}-\sigma_{\omega_2}}$$

Note: both are increasing with $\mathcal{A}(\mathbf{p}) \Leftrightarrow \mu_{\omega_1} < \mu_{\omega_2}$

MC firms with lower markups (not necessarily smaller firms) suffer more from tougher competition.

CoPaTh: Three Classes

The Three Families of CoPaTh Demand Systems

Homothetic Demand with a Single Aggregator (H.S.A.); $A(\mathbf{p}) = A(\mathbf{p}) \neq cP(\mathbf{p})$

$$\int_{\Omega} s_{\omega} \left(\frac{p_{\omega}}{A(\mathbf{p})} \right) d\omega \equiv 1 \implies \zeta_{\omega} \left(\frac{p_{\omega}}{A(\mathbf{p})} \right) \equiv 1 - \frac{z s_{\omega}'(z)}{s_{\omega}(z)} \Big|_{z = \frac{p_{\omega}}{A(\mathbf{p})}}$$

CoPaTh under H.S.A.

$$s_{\omega}(z) = \gamma_{\omega}\beta_{\omega} \left[\sigma_{\omega} - (\sigma_{\omega} - 1)\left(\frac{z}{\beta_{\omega}}\right)^{\frac{1-\rho_{\omega}}{\rho_{\omega}}}\right]^{\frac{\rho_{\omega}}{1-\rho_{\omega}}} = \gamma_{\omega}\bar{\beta}_{\omega}(\sigma_{\omega} - 1)^{\frac{\rho_{\omega}}{1-\rho_{\omega}}} \left[1 - \left(\frac{z}{\bar{\beta}_{\omega}}\right)^{\frac{1-\rho_{\omega}}{\rho_{\omega}}}\right]^{\frac{\rho_{\omega}}{1-\rho_{\omega}}}$$

$$\zeta_{\omega}(z) \equiv 1 - \frac{z s_{\omega}'(z)}{s_{\omega}(z)} = \frac{1}{1 - \left(1 - \frac{1}{\sigma_{\omega}}\right) \left(\frac{z}{\beta_{\omega}}\right)^{\frac{1 - \rho_{\omega}}{\rho_{\omega}}}} = \frac{1}{1 - \left(\frac{z}{\bar{\beta}_{\omega}}\right)^{\frac{1 - \rho_{\omega}}{\rho_{\omega}}}}$$

Notes:

• CPE is obtained as $\rho_{\omega} \to 1$, holding β_{ω} fixed, which causes $\bar{\beta}_{\omega} \to \infty$.

• These expressions hold for $\varepsilon < z < \overline{\beta}_{\omega}$ where $\varepsilon > 0$ is arbitrarily small!

Homothetic Direct Implicit Additivity (HDIA); $\mathcal{A}(\mathbf{p}) = B(\mathbf{p}) \neq cP(\mathbf{p})$

$$\int_{\Omega} \phi_{\omega} \left(\frac{x_{\omega}}{X(\mathbf{x})} \right) d\omega \equiv 1 \quad \Rightarrow \quad \zeta_{\omega}^{D} \left(\frac{x_{\omega}}{X(\mathbf{x})} \right) = \zeta_{\omega}^{D} \left((\phi_{\omega}')^{-1} \left(\frac{p_{\omega}}{B(\mathbf{p})} \right) \right) \equiv -\frac{\phi_{\omega}'(y)}{y \phi_{\omega}''(y)} \Big|_{y = \frac{x_{\omega}}{X(\mathbf{x})} = (\phi_{\omega}')^{-1} \left(\frac{p_{\omega}}{B(\mathbf{p})} \right)}$$

where

$$\frac{x_{\omega}}{X(\mathbf{x})} = (\phi'_{\omega})^{-1} \left(\frac{p_{\omega}}{B(\mathbf{p})}\right); \int_{\Omega} \phi_{\omega} \left((\phi'_{\omega})^{-1} \left(\frac{p_{\omega}}{B(\mathbf{p})}\right)\right) d\omega \equiv 1.$$

CoPaTh under HDIA

$$\begin{split} \phi_{\omega}(\boldsymbol{y}) &= \bar{\beta}_{\omega} \int_{0}^{\boldsymbol{y}} \left(1 + \frac{1}{\sigma_{\omega} - 1} \left(\frac{\boldsymbol{\xi}}{\boldsymbol{\gamma}_{\omega}} \right)^{\frac{1 - \rho_{\omega}}{\rho_{\omega}}} \right)^{-\frac{\rho_{\omega}}{1 - \rho_{\omega}}} d\boldsymbol{\xi} \\ \boldsymbol{\zeta}_{\omega}^{D}(\boldsymbol{y}) &\equiv -\frac{\phi_{\omega}'(\boldsymbol{y})}{\boldsymbol{y}\phi_{\omega}''(\boldsymbol{y})} = 1 + (\sigma_{\omega} - 1) \left(\frac{\boldsymbol{y}}{\boldsymbol{\gamma}_{\omega}} \right)^{-\frac{\rho_{\omega}}{1 - \rho_{\omega}}} > 1 \end{split}$$

Notes:

- CPE is obtained as $\rho_{\omega} \to 1$, holding β_{ω} fixed, which causes $\bar{\beta}_{\omega} \to \infty$.
- These expressions hold for all $\psi > 0!$

Homothetic Indirect Implicit Additivity (HIIA); $A(\mathbf{p}) = P(\mathbf{p})$

$$\int_{\Omega} \theta_{\omega} \left(\frac{p_{\omega}}{P(\mathbf{p})} \right) d\omega \equiv 1 \quad \Longrightarrow \quad \zeta_{\omega}^{I} \left(\frac{p_{\omega}}{P(\mathbf{p})} \right) \equiv -\frac{z \theta_{\omega}^{\prime\prime}(z)}{\theta_{\omega}^{\prime}(z)} \bigg|_{z = \frac{p_{\omega}}{P(\mathbf{p})}}$$

CoPaTh under HIIA

$$\theta_{\omega}(z) = \gamma_{\omega}(\sigma_{\omega} - 1)^{\frac{\rho_{\omega}}{1 - \rho_{\omega}}} \int_{z}^{\overline{\beta}_{\omega}} \left(\left(\frac{\xi}{\overline{\beta}_{\omega}}\right)^{-\frac{1 - \rho_{\omega}}{\rho_{\omega}}} - 1 \right)^{\frac{\rho_{\omega}}{1 - \rho_{\omega}}} d\xi$$

$$\zeta_{\omega}^{I}(z) \equiv -\frac{z\theta_{\omega}^{\prime\prime}(z)}{\theta_{\omega}^{\prime}(z)} = \frac{1}{1 - \left(1 - \frac{1}{\sigma_{\omega}}\right)\left(\frac{z}{\beta_{\omega}}\right)^{\frac{1 - \rho_{\omega}}{\rho_{\omega}}}} = \frac{1}{1 - \left(\frac{z}{\bar{\beta}_{\omega}}\right)^{\frac{1 - \rho_{\omega}}{\rho_{\omega}}}}$$

Notes:

- CPE is obtained as $\rho_{\omega} \to 1$, holding β_{ω} fixed, which causes $\bar{\beta}_{\omega} \to \infty$.
- These expressions hold for $0 < z < \bar{\beta}_{\omega}!$