Constant Pass-Through

Kiminori Matsuyama
Northwestern University, U.S.A.

Philip Ushchev
HSE University, St.Petersburg, Russia

Last Updated: 2021-09-24, 1:47

Introduction

Monopolistic competition (MC) under CES

- Strong restrictions on the pricing behavior:
o exogenously constant markup rate common across MC firms
- complete pass-through
- In multi-sector settings (with nested CES):
o markup rates can differ across sectors but not among MC firms within each sector
- pass-through rate $=1$ for every MC firm in every sector
- Various types of heterogeneity across MC firms isomorphic to each other

We propose and characterize parametric families, CoPaTh (and its special case, CoCoPaTh, and its special case, CPE)

- feature a constant pass-through rate as a parameter for each MC firm
- accommodate
- a single measure of "toughness of competition"
- endogenous markup rates/incomplete pass-through/strategic complementarity
- various types of heterogeneity across MC firms, not isomorphic to each other
- CoCoPaTh, with a constant pass-through rate, sector-specific parameter, common across MC firms within a sector - Tough competition
- has no effects on their relative prices (as the markup rates decline uniformly across all MC firms)
- reduces the relative revenue/profit of those with lower markup rates, not necessarily smaller or less productive.
- Retain much of tractability of CES, a useful building block for a wide range of MC models the average pass-through rate in the economy changes endogenously through sectoral composition!

Notes:

- Our goal is not to propose a model of an economy. Instead, it is to propose a building block, which we hope some find useful when they construct their models of an economy.
- In some ways, we are motivated by similar considerations that led Arrow-Chenery-Minhas-Solow (ACMS) to generalize Cobb-Douglas by proposing CES.
\(\left.$$
\begin{array}{|c|c|c|c|c|}\hline & \text { Expenditure share } & \begin{array}{c}\text { Elasticity of } \\
\text { Substitution }\end{array} & \begin{array}{c}\text { Price elasticity } \\
\text { under MC }\end{array} & \begin{array}{c}\text { Pass-through rate } \\
\text { under MC }\end{array} \\
\hline \text { Cobb-Douglas } & \text { constant } & \text { 1 } & \text { Not applicable } & \text { Not applicable } \\
\hline \text { CES } & \text { variable } & \begin{array}{c}\text { constant \& common } \\
\text { within sector } \\
\text { sector-specific } \\
\text { (with nested CES) }\end{array} & \begin{array}{c}\text { constant \& common } \\
\text { within sector } \\
\text { sector-specific } \\
\text { (with nested CES) }\end{array} & 1 \\
\hline \text { CPE } & \text { variable } & \text { variable } & \begin{array}{c}\text { constant } \\
\text { product-specific }\end{array} & \begin{array}{c}\text { variable }\end{array} \\
\hline \text { CoCoPaTh } & \text { variable } & \text { variable } & \begin{array}{c}\text { constant \& common } \\
\text { within sector } \\
\text { sector-specific }\end{array}
$$

(with nested CoCoPaTh)\end{array}\right]\)| constant |
| :---: |
| product-specific |

Three Families of CoPaTh

We characterize parametric families of

- Constant Price Elasticity (CPE)
- Common Constant Path-Through (CoCoPaTh)
- Constant Path Through(CoPaTh)

$\mathrm{CES} \subset \mathrm{CPE} \subset \mathrm{CoCoPaTh} \subset \mathrm{CoPaTh}$

within each of the 3 nonparametric classes of the demand systems:

- Homothetic with a Single Aggregator (H.S.A.)
- Homothetic Direct Implicit Additivity (HDIA)
- Homothetic Indirect Implicit Additivity (HIIA)
studied by Matsuyama-Ushchev (2017)

A Frequently Asked Question

In light of some empirical evidence (e.g., Amiti-Itskhoki-Konings, Berman-Martin-Meyer) that larger firms tend to have lower pass-through rates, how good is the assumption of CoCoPaTh (a constant \& common pass-through rate)?

- Large firms may have low PaTh rates due to oligopolistic behaviors (Atkeson-Burstein, Edmond-Midrigan-Xu)
- Even when you want to assume that all firms are MC,
- CoCoPaTh allow sector-specific PaTh rates; the average size of firms may differ across sectors.
$\circ \mathrm{CoCoPaTh}$ are better than homothetic translog, which implies higher PaTh rates among larger MC firms (if MC firms differ only in productivity).
- We do not believe PaTh rates are literally constant and common among MC firms even within a sector. But
- This assumption is no worse than the assumption that firms are heterogeneous only in productivity.
- CoCoPaTh provides a useful benchmark for those who believe that it is not endogenous markup rate heterogeneity but endogenous PaTh rate heterogeneity that is important for understanding the data.

In summary, we think

- Oligopoly models are better suited for explaining lower PaTh rates among larger firms within a sector.
- For any situation where you want to assume that some or all firms are MC, assuming a constant \& common PaTh rate among them within a sector is a small price to pay for the tractability.

General Setup

A Monopolistically Competitive (MC) Sector (as a Building Block)
A Production Sector consists of

- Competitive firms: produce a single good by assembling intermediate inputs $\omega \in \Omega$, using CRS technology

$$
\begin{array}{cl}
\text { CRS Production Function: } & X=X(\mathbf{x}) \equiv \min _{\mathbf{p}}\left\{\mathbf{p} \mathbf{x}=\int_{\Omega} p_{\omega} x_{\omega} d \omega \mid P(\mathbf{p}) \geq 1\right\} \\
\text { Unit Cost Function: } & P=P(\mathbf{p}) \equiv \min _{\mathbf{x}}\left\{\mathbf{p} \mathbf{x}=\int_{\Omega} p_{\omega} x_{\omega} d \omega \mid X(\mathbf{x}) \geq 1\right\}
\end{array}
$$

Duality Principle: Either $X=X(\mathbf{x})$ or $P=P(\mathbf{p})$ can be used as a primitive of the CRS technology, as long as linear homogeneity, monotonicity, and quasi-concavity are satisfied.

- A subset of intermediate inputs varieties, $\Omega^{M} \subset \Omega$, produced by profit-maximizing MC firms
Ω / Ω^{M}, may be supplied competitively, by oligopolists or by non-maximizing MC firms, etc.
We can also allow multi-product MC firms, as long as they do not produce a positive measure of products.

Demand Curve for ω

Inverse Demand Curve for ω

$$
x_{\omega}=X(\mathbf{x}) \frac{\partial P(\mathbf{p})}{\partial p_{\omega}}
$$

$$
p_{\omega}=P(\mathbf{p}) \frac{\partial X(\mathbf{x})}{\partial x_{\omega}}
$$

Market Size of the Sector

$$
\mathbf{p} \mathbf{x}=\int_{\Omega} p_{\omega} x_{\omega} d \omega=P(\mathbf{p}) X(\mathbf{x})
$$

Revenue Share of Firm ω,

$$
s_{\omega}=\frac{p_{\omega} x_{\omega}}{\mathbf{p} \mathbf{x}}=\frac{p_{\omega} x_{\omega}}{P(\mathbf{p}) X(\mathbf{x})}
$$

$$
s_{\omega}\left(p_{\omega}, \mathbf{p}\right)=\frac{\partial \ln P(\mathbf{p})}{\partial \ln p_{\omega}} ; s_{\omega}\left(x_{\omega}, \mathbf{x}\right)=\frac{\partial \ln X(\mathbf{x})}{\partial \ln x_{\omega}}
$$

Price Elasticity of ω :

$$
\zeta_{\omega}=-\frac{\partial \ln x_{\omega}}{\partial \ln p_{\omega}}
$$

$$
\zeta_{\omega}\left(p_{\omega}, \mathbf{p}\right)=1-\frac{\partial \ln \left(\frac{\partial \ln P(\mathbf{p})}{\partial \ln p_{\omega}}\right)}{\partial \ln p_{\omega}} ; \zeta_{\omega}\left(x_{\omega}, \mathbf{x}\right)=\left[1-\frac{\partial \ln \left(\frac{\partial \ln X(\mathbf{x})}{\partial \ln x_{\omega}}\right)}{\partial \ln x_{\omega}}\right]^{-1}
$$

For general CRS , little restrictions on ζ_{ω}, beyond the homogeneity of degree zero in $\left(p_{\omega}, \mathbf{p}\right)$ or in $\left(x_{\omega}, \mathbf{x}\right)$.

Three Classes of CRS Production Functions: from Matsuyama-Ushchev (2017)

Homothetic with a Single Aggregator (H.S.A.)

$$
\frac{P(\mathbf{p})}{c A(\mathbf{p})}=\exp \left[-\int_{\Omega}\left[\int_{p_{\omega} / A(\mathbf{p})}^{\bar{z}} \frac{s_{\omega}(\xi)}{\xi} d \xi\right] d \omega\right] \quad \Leftarrow s_{\omega}=s_{\omega}\left(\frac{p_{i}}{A(\mathbf{p})}\right), \quad \text { where } \int_{\Omega} s_{\omega}\left(\frac{p_{\omega}}{A(\mathbf{p})}\right) d \omega \equiv 1
$$

or

$$
\frac{X(\mathbf{x})}{c A^{*}(\mathbf{x})}=\exp \left[\int_{\Omega}\left[\int_{0}^{x_{\omega} / A^{*}(\mathbf{x})} \frac{s_{\omega}^{*}(\xi)}{\xi} d \xi\right] d \omega\right] \quad \rightleftharpoons s_{\omega}=s_{\omega}^{*}\left(\frac{x_{\omega}}{A^{*}(\mathbf{x})}\right), \quad \text { where } \int_{\Omega} s_{\omega}^{*}\left(\frac{x_{\omega}}{A^{*}(\mathbf{x})}\right) d \omega=1
$$

Homothetic Direct Implicit Additivity (HDIA): X(x) implicitly additive \& linear homogeneous

$$
\int_{\Omega} \phi_{\omega}\left(\frac{x_{\omega}}{X(\mathbf{x})}\right) d \omega \equiv 1 \quad \Rightarrow s_{\omega}=\frac{x_{\omega}}{C^{*}(\mathbf{x})} \phi_{\omega}^{\prime}\left(\frac{x_{\omega}}{X(\mathbf{x})}\right), \text { where } \quad C^{*}(\mathbf{x}) \equiv \int_{\Omega} x_{\omega} \phi_{\omega}^{\prime}\left(\frac{x_{\omega}}{X(\mathbf{x})}\right) d \omega
$$

Homothetic Indirect Implicit Additivity (HIIA): $P(\mathbf{p})$ implicitly additive \& linear homogeneous

$$
\int_{\Omega} \theta_{\omega}\left(\frac{p_{\omega}}{P(\mathbf{p})}\right) d \omega \equiv 1 \quad \Rightarrow s_{\omega}=\frac{p_{\omega}}{C(\mathbf{p})} \theta_{\omega}^{\prime}\left(\frac{p_{\omega}}{P(\mathbf{p})}\right), \text { where } C(\mathbf{p}) \equiv \int_{\Omega} p_{\omega} \theta_{\omega}^{\prime}\left(\frac{p_{\omega}}{P(\mathbf{p})}\right) d \omega
$$

with some restrictions on $s_{\omega}(\cdot)$ or $s_{\omega}^{*}(\cdot), \phi_{\omega}(\cdot), \theta_{\omega}(\cdot)$ to ensure monotonicity and quasi-concavity $P(\mathbf{p})$ and $X(\mathbf{x})$ H.S.A., HDIA, HIIA are disjoint with the sole exception of CES.

Appealing Features of the 3 Classes when Applied to Monopolistic Competition

	$P(\mathbf{p})$ or $X(\mathbf{x})$	Revenue Share: S_{ω}	Price Elasticity: ζ_{ω}	For CES
H.S.A.	$\frac{P(\mathbf{p})}{c A(\mathbf{p})}=\exp \left[-\int_{\Omega}\left[\int_{p_{\omega} / A(\mathbf{p})}^{\bar{z}} \frac{s_{\omega}(\xi)}{\xi} d \xi\right] d \omega\right]$	$\begin{array}{r} s_{\omega}\left(\frac{p_{\omega}}{A(\mathbf{p})}\right) \\ \text { with } \int_{\Omega} s_{\omega}\left(\frac{p_{\omega}}{A(\mathbf{p})}\right) d \omega \equiv 1 \end{array}$	$\zeta_{\omega}\left(\frac{p_{\omega}}{A(\mathbf{p})}\right) \equiv 1-\left.\frac{z s_{\omega}^{\prime}(z)}{s_{\omega}(z)}\right\|_{z=\frac{p_{\omega}}{A(\mathbf{p})}}>1$	$\begin{aligned} & \frac{P(\mathbf{p})}{A(\mathbf{p})}=\frac{A^{*}(\mathbf{x})}{X(\mathbf{x})} \\ & =\text { const. } \\ & \Leftrightarrow s_{\omega}(\cdot) \text { or } s_{\omega}^{*}(\cdot) \text { is a } \\ & \text { power function } \end{aligned}$
	$\frac{X(\mathbf{x})}{c A^{*}(\mathbf{x})}=\exp \left[\int_{\Omega}\left[\int_{0}^{x_{\omega} / A^{*}(\mathbf{x})} \frac{s_{\omega}^{*}(\xi)}{\xi} d \xi\right] d \omega\right]$	$\begin{array}{r} s_{\omega}^{*}\left(\frac{x_{\omega}}{A^{*}(\mathbf{x})}\right) \\ \text { with } \int_{\Omega} s_{\omega}^{*}\left(\frac{x_{\omega}}{A^{*}(\mathbf{x})}\right) d \omega=1 \end{array}$	$\zeta_{\omega}^{*}\left(\frac{x_{\omega}}{A^{*}(\mathbf{x})}\right) \equiv\left[1-\left.\frac{y s_{\omega}^{* \prime}(y)}{S_{\omega}^{*}(y)}\right\|_{y=\frac{x_{\omega}^{*}}{A^{*}(\mathbf{x})}}\right]^{-1}>1$	
HDIA Kimball	$\int_{\Omega} \phi_{\omega}\left(\frac{x_{\omega}}{X(\mathbf{x})}\right) d \omega \equiv 1$	$\begin{gathered} \frac{x_{\omega}}{C^{*}(\mathbf{x})} \phi_{\omega}^{\prime}\left(\frac{x_{\omega}}{X(\mathbf{x})}\right) \\ \text { with } C^{*}(\mathbf{x}) \equiv \int_{\Omega} x_{\omega} \phi_{\omega}^{\prime}\left(\frac{x_{\omega}}{X(\mathbf{x})}\right) d \omega \end{gathered}$	$\zeta_{\omega}^{D}\left(\frac{x_{\omega}}{X(\mathbf{x})}\right) \equiv-\left.\frac{\phi_{\omega}^{\prime}(y)}{y \phi_{\omega}^{\prime \prime}(y)}\right\|_{y=\frac{x_{\omega}}{X(\mathbf{x})}}>1$	$\frac{C^{*}(\mathbf{x})}{X(\mathbf{x})}=\text { const }$ $\Leftrightarrow \phi_{\omega}(\cdot)$ is a power function.
HIIA	$\int_{\Omega} \theta_{\omega}\left(\frac{p_{\omega}}{P(\mathbf{p})}\right) d \omega \equiv 1$	$\begin{gathered} \frac{p_{\omega}}{C(\mathbf{p})} \theta_{\omega}^{\prime}\left(\frac{p_{\omega}}{P(\mathbf{p})}\right) \\ \text { with } C(\mathbf{p}) \equiv \int_{\Omega} p_{\omega} \theta_{\omega}^{\prime}\left(\frac{p_{\omega}}{P(\mathbf{p})}\right) d \omega \end{gathered}$	$\zeta_{\omega}^{I}\left(\frac{p_{\omega}}{P(\mathbf{p})}\right) \equiv-\left.\frac{z \theta_{\omega}^{\prime \prime}(z)}{\theta_{\omega}^{\prime}(z)}\right\|_{z=\frac{p_{\omega}}{P(\mathbf{p})}}>1$	$\frac{C(\mathbf{p})}{P(\mathbf{p})}=\text { const }$ $\Leftrightarrow \theta_{\omega}(\cdot)$ is a power function.

with further restrictions on $s_{\omega}(\cdot)$ or $s_{\omega}^{*}(\cdot), \phi_{\omega}(\cdot), \theta_{\omega}(\cdot)$ to ensure i) the gross substitutability and ii) the existence \& the uniqueness of the free-entry equilibrium.

- Revenue share depends on a single aggregator under H.S.A; on two aggregators under HDIA. \& HIIA.
- The price elasticity is a function of a single aggregator.
- A single aggregator captures the effect of competition on the markup rate.
- Comparative statics results dictated by the derivative of the price elasticity function.
\circ Marshall's $2^{\text {nd }}$ Law \Leftrightarrow Procompetitive effect \Leftrightarrow Strategic complementarity, not true in general.

Another Frequently Asked Question
What is the relative advantage of the three classes?
We believe that H.S.A. has advantage over HDIA and HIIA, because

- the revenue share functions, $s_{\omega}(\cdot)$, are the primitive of H.S.A. and hence it can be readily identified by typical firm level data, which has revenues but not output.
- With free-entry, easier to ensure the existence and uniqueness of equilibrium and characterize the equilibrium and conduct comparative statics under H.S.A., because
- Under H.S.A., one need to pin down the equilibrium value of only one aggregator in each sector.
- Under HDIA and HIIA, one need to pin down the equilibrium values of two aggregators in each sector.

MC Firm's pricing behavior; p_{ω} profit-maximizing price; ψ_{ω} : marginal cost
In all three classes,

FOC (Lerner Formula)

If LHS is monotone increasing in p_{ω}

Markup rate μ_{ω} for $\omega \in \Omega^{M}$

Pass-through rate ρ_{ω} for $\omega \in \Omega^{M}$

$$
\begin{aligned}
& p_{\omega}\left[1-\frac{1}{\zeta_{\omega}\left(p_{\omega} / \mathcal{A}(\mathbf{p})\right)}\right]=\psi_{\omega} ; \quad \zeta_{\omega}(\cdot)>1 \\
& \quad \Rightarrow \frac{p_{\omega}}{\mathcal{A}(\mathbf{p})}=\mathcal{G}_{\omega}\left(\frac{\psi_{\omega}}{\mathcal{A}(\mathbf{p})}\right) ; \quad \mathcal{G}_{\omega}^{\prime}(\cdot)>0
\end{aligned}
$$

$$
\mu_{\omega} \equiv \frac{p_{\omega}}{\psi_{\omega}}=\frac{\mathcal{G}_{\omega}\left(\psi_{\omega} / \mathcal{A}(\mathbf{p})\right)}{\psi_{\omega} / \mathcal{A}(\mathbf{p})}
$$

$$
\rho_{\omega} \equiv \frac{\partial \ln p_{\omega}}{\partial \ln \psi_{\omega}}=\frac{\partial \ln \mathcal{G}_{\omega}\left(\psi_{\omega} / \mathcal{A}(\mathbf{p})\right)}{\partial \ln \left(\psi_{\omega} / \mathcal{A}(\mathbf{p})\right)}=1+\frac{\partial \ln \mu_{\omega}}{\partial \ln \psi_{\omega}}
$$

CoPaTh Pricing formula $\omega \in \Omega^{M}$

$$
\frac{p_{\omega}}{\mathcal{A}(\mathbf{p}) \beta_{\omega}}=\left(\left(\frac{\sigma_{\omega}}{\sigma_{\omega}-1}\right) \frac{\psi_{\omega}}{\mathcal{A}(\mathbf{p}) \beta_{\omega}}\right)^{\rho_{\omega}} \Leftrightarrow \zeta_{\omega}\left(\frac{p_{\omega}}{\mathcal{A}(\mathbf{p})}\right)=\frac{1}{1-\left(1-\frac{1}{\sigma_{\omega}}\right)\left(\frac{p_{\omega}}{\mathcal{A}(\mathbf{p}) \beta_{\omega}}\right)^{\frac{1}{\rho_{\omega}}-1}}
$$

- Product-specific
- $\sigma_{\omega}>1$: markup (substitutability) shifter
- $\beta_{\omega}>0$: price (quality) shifter
- $\psi_{\omega}>0$: marginal cost (inverse of productivity)
- $\rho_{\omega} \leq 1$: pass-through rate
- $\gamma_{\omega}>0$: market-size shifter (does not appear in the pricing formula)
- Common across products within a sector
- $\mathcal{A}=\mathcal{A}(\mathbf{p})$: linear homogeneous in \mathbf{p}, common price aggregator capturing "toughness of competition'"

Complete pass-through case $\left(\rho_{\omega}=1\right)$

CoPaTh Pricing formula $\omega \in \Omega^{M}$

$$
\frac{p_{\omega}}{\mathcal{A}(\mathbf{p}) \beta_{\omega}}=\left(\frac{\sigma_{\omega}}{\sigma_{\omega}-1}\right) \frac{\psi_{\omega}}{\mathcal{A}(\mathbf{p}) \beta_{\omega}} \Rightarrow p_{\omega}=\frac{\sigma_{\omega}}{\sigma_{\omega}-1} \psi_{\omega}
$$

- CPE - Constant product-specific Price Elasticity
- Product-specific markup rate: depends solely on σ_{ω}, not on
- marginal cost ψ_{ω}
\circ price shifter β_{ω}
- common aggregator $\mathcal{A}=\mathcal{A}(\mathbf{p})$
- CES: special case of CPE with $\sigma_{\omega}=\sigma$

Incomplete pass-through case $\left(0<\rho_{\omega}<1\right)$
CoPaTh Pricing formula for $\omega \in \Omega^{M}$

$$
\frac{p_{\omega}}{\mathcal{A}(\mathbf{p}) \beta_{\omega}}=\left(\left(\frac{\sigma_{\omega}}{\sigma_{\omega}-1}\right) \frac{\psi_{\omega}}{\mathcal{A}(\mathbf{p}) \beta_{\omega}}\right)^{\rho_{\omega}} \Rightarrow \ln p_{\omega}=\left(1-\rho_{\omega}\right) \ln \bar{p}_{\omega}+\rho_{\omega} \ln \psi_{\omega}
$$

Choke price for $\omega \in \Omega^{M}$

$$
\bar{p}_{\omega} \equiv \bar{\beta}_{\omega}=\mathcal{A}(\mathbf{p}) \beta_{\omega}\left(\frac{\sigma_{\omega}}{\sigma_{\omega}-1}\right)^{\frac{\rho_{\omega}}{1-\rho_{\omega}}}<\infty
$$

where $\bar{\beta}_{\omega}=\beta_{\omega}\left(\frac{\sigma_{\omega}}{\sigma_{\omega}-1}\right)^{\frac{\rho_{\omega}}{1-\rho_{\omega}}}$ is the "relative" choke price. (Note $\bar{\beta}_{\omega} \rightarrow \infty$, as $\rho_{\omega} \nearrow 1$.)
Price of each product $\omega \in \Omega^{M}$
\circ strategic complementarity in pricing. $\mathcal{A}(\mathbf{p}) \uparrow \Rightarrow \bar{p}_{\omega} \uparrow \Rightarrow p_{\omega} \uparrow$
o sector-wide pass-through rate is one, if all firms/products are MC and hit by proportional cost shocks.

- log-linear in marginal cost and choke price
- Under CoCoPaTh $\left(0<\rho_{\omega}=\rho<1\right)$, common coefficients across all products in Ω^{M}, as in the standard pass-through regression (Gopinath-Rigobon 2008; Nakamura-Zerom 2010)

Under CoCoPaTh $\left(0<\rho_{\omega}=\rho<1\right)$

Price and markup ratios for $\omega_{1}, \omega_{2} \in \Omega^{M}$

- Price ratio for $\omega_{1}, \omega_{2} \in \Omega^{M}$

$$
\frac{p_{\omega_{1}}}{p_{\omega_{2}}}=\left(\frac{\beta_{\omega_{1}}}{\beta_{\omega_{2}}}\right)^{1-\rho}\left(\frac{\sigma_{\omega_{1}} /\left(\sigma_{\omega_{1}}-1\right)}{\sigma_{\omega_{2}} /\left(\sigma_{\omega_{2}}-1\right)} \frac{\psi_{\omega_{1}}}{\psi_{\omega_{2}}}\right)^{\rho}
$$

- Markup ratio for $\omega_{1}, \omega_{2} \in \Omega^{M}$

$$
\frac{\mu_{\omega_{1}}}{\mu_{\omega_{2}}}=\left(\frac{\sigma_{\omega_{1}} /\left(\sigma_{\omega_{1}}-1\right)}{\sigma_{\omega_{2}} /\left(\sigma_{\omega_{2}}-1\right)}\right)^{\rho}\left(\frac{\beta_{\omega_{1}} / \psi_{\omega_{1}}}{\beta_{\omega_{2}} / \psi_{\omega_{2}}}\right)^{1-\rho}
$$

Note: both independent of $\mathcal{A}(\mathbf{p})$

- A great advantage when studying the GE effects of shocks that change the relative cost across MC firms (e.g., the exchange rate, the tariffs, the energy prices).
- Under CoCoPaTh, the impact of such shocks on the markup rates and relative prices can be calculated without worrying about the general equilibrium feedback effect.

Under CoCoPaTh $\left(0<\rho_{\omega}=\rho<1\right)$
Sales ratio for $\omega_{1}, \omega_{2} \in \Omega^{M}$
$\gamma_{\omega}=$ quantity shifter or market size for $\omega \in \Omega$

- Incomplete pass-through case $(\mathbf{0}<\boldsymbol{\rho}<\mathbf{1})$ for $\omega_{1}, \omega_{2} \in \Omega^{M}$

$$
\frac{p_{\omega_{1}} x_{\omega_{1}}}{p_{\omega_{2}} x_{\omega_{2}}}=\frac{\gamma_{\omega_{1}}}{\gamma_{\omega_{2}}} \frac{\bar{\beta}_{\omega_{1}}}{\bar{\beta}_{\omega_{2}}}\left(\frac{\sigma_{\omega_{1}}-1}{\sigma_{\omega_{2}}-1}\right)^{\frac{\rho}{1-\rho}}\left[\frac{1-\left(\psi_{\omega_{1}} / \mathcal{A}(\mathbf{p}) \bar{\beta}_{\omega_{1}}\right)^{1-\rho}}{1-\left(\psi_{\omega_{1}} / \mathcal{A}(\mathbf{p}) \bar{\beta}_{\omega_{1}}\right)^{1-\rho}}\right]^{\frac{\rho}{1-\rho}}
$$

- Complete pass-through case $(\boldsymbol{\rho} \rightarrow \mathbf{1})$ for $\omega_{1}, \omega_{2} \in \Omega^{M}$:

$$
\frac{p_{\omega_{1}} x_{\omega_{1}}}{p_{\omega_{2}} x_{\omega_{2}}}=\frac{\gamma_{\omega_{1}} \beta_{\omega_{1}}\left(\frac{\sigma_{\omega_{1}}}{\sigma_{\omega_{1}}-1} \frac{\psi_{\omega_{1}}}{\mathcal{A}(\mathbf{p}) \beta_{\omega_{1}}}\right)^{1-\sigma_{\omega_{1}}}}{\gamma_{\omega_{2}} \beta_{\omega_{2}}\left(\frac{\sigma_{\omega_{2}}}{\sigma_{\omega_{2}}-1} \frac{\psi_{\omega_{2}}}{\mathcal{A}(\mathbf{p}) \beta_{\omega_{2}}}\right)^{1-\sigma_{\omega_{2}}}} \propto[\mathcal{A}(\mathbf{p})]^{\sigma_{\omega_{1}}-\sigma_{\omega_{2}}}
$$

Note: both are increasing with $\mathcal{A}(\mathbf{p}) \Leftrightarrow \mu_{\omega_{1}}<\mu_{\omega_{2}}$
MC firms with lower markups (not necessarily smaller firms) suffer more from tougher competition.

Under CoCoPaTh $\left(0<\rho_{\omega}=\rho<1\right)$
Profit ratio for $\omega_{1}, \omega_{2} \in \Omega^{M}$
$\gamma_{\omega}=$ quantity shifter or market size for $\omega \in \Omega$

- Incomplete pass-through case $(0<\rho<1)$:

$$
\frac{\pi_{\omega_{1}}}{\pi_{\omega_{2}}}=\frac{\gamma_{\omega_{1}}}{\gamma_{\omega_{2}}} \frac{\bar{\beta}_{\omega_{1}}}{\bar{\beta}_{\omega_{2}}}\left(\frac{\sigma_{\omega_{1}}-1}{\sigma_{\omega_{2}}-1}\right)^{\frac{\rho}{1-\rho}}\left[\frac{1-\left(\psi_{\omega_{1}} / \mathcal{A}(\mathbf{p}) \bar{\beta}_{\omega_{1}}\right)^{1-\rho}}{1-\left(\psi_{\omega_{1}} / \mathcal{A}(\mathbf{p}) \bar{\beta}_{\omega_{1}}\right)^{1-\rho}}\right]^{\frac{1}{1-\rho}}
$$

- Complete pass-through case $(\rho \rightarrow 1)$:

$$
\frac{\pi_{\omega_{1}}}{\pi_{\omega_{2}}}=\frac{\frac{\gamma_{\omega_{1}} \beta_{\omega_{1}}}{\sigma_{\omega_{1}}}\left(\frac{\sigma_{\omega_{1}}}{\sigma_{\omega_{1}}-1} \frac{\psi_{\omega_{1}}}{\mathcal{A}(\mathbf{p}) \beta_{\omega_{1}}}\right)^{1-\sigma_{\omega_{1}}}}{\frac{\gamma_{\omega_{2}} \beta_{\omega_{2}}}{\sigma_{\omega_{2}}}\left(\frac{\sigma_{\omega_{2}}}{\sigma_{\omega_{2}}-1} \frac{\psi_{\omega_{2}}}{\mathcal{A}(\mathbf{p}) \beta_{\omega_{2}}}\right)^{1-\sigma_{\omega_{2}}}} \propto[\mathcal{A}(\mathbf{p})]^{\sigma_{\omega_{1}-\sigma_{\omega_{2}}}}
$$

Note: both are increasing with $\mathcal{A}(\mathbf{p}) \Leftrightarrow \mu_{\omega_{1}}<\mu_{\omega_{2}}$
MC firms with lower markups (not necessarily smaller firms) suffer more from tougher competition.

CoPaTh: Three Classes

The Three Families of CoPaTh Demand Systems

Homothetic Demand with a Single Aggregator (H.S.A.); $\mathcal{A}(\mathbf{p})=A(\mathbf{p}) \neq \boldsymbol{c} P(\mathbf{p})$

$$
\int_{\Omega} s_{\omega}\left(\frac{p_{\omega}}{A(\mathbf{p})}\right) d \omega \equiv 1 \Rightarrow \zeta_{\omega}\left(\frac{p_{\omega}}{A(\mathbf{p})}\right) \equiv 1-\left.\frac{z s_{\omega}^{\prime}(z)}{s_{\omega}(z)}\right|_{z=\frac{p_{\omega}}{A(\mathbf{p})}}
$$

CoPaTh under H.S.A.

$$
\begin{gathered}
s_{\omega}(z)=\gamma_{\omega} \beta_{\omega}\left[\sigma_{\omega}-\left(\sigma_{\omega}-1\right)\left(\frac{z}{\beta_{\omega}}\right)^{\frac{1-\rho_{\omega}}{\rho_{\omega}}}\right]^{\frac{\rho_{\omega}}{1-\rho_{\omega}}}=\gamma_{\omega} \bar{\beta}_{\omega}\left(\sigma_{\omega}-1\right)^{\frac{\rho_{\omega}}{1-\rho_{\omega}}}\left[1-\left(\frac{z}{\bar{\beta}_{\omega}}\right)^{\frac{1-\rho_{\omega}}{\rho_{\omega}}}\right]^{\frac{\rho_{\omega}}{1-\rho_{\omega}}} \\
\zeta_{\omega}(z) \equiv 1-\frac{z s_{\omega}^{\prime}(z)}{s_{\omega}(z)}=\frac{1}{1-\left(1-\frac{1}{\sigma_{\omega}}\right)\left(\frac{z}{\beta_{\omega}}\right)^{\frac{1-\rho_{\omega}}{\rho_{\omega}}}}=\frac{1}{1-\left(\frac{z}{\bar{\beta}_{\omega}}\right)^{\frac{1-\rho_{\omega}}{\rho_{\omega}}}}
\end{gathered}
$$

Notes:

- CPE is obtained as $\rho_{\omega} \rightarrow 1$, holding β_{ω} fixed, which causes $\bar{\beta}_{\omega} \rightarrow \infty$.
- These expressions hold for $\varepsilon<z<\bar{\beta}_{\omega}$ where $\varepsilon>0$ is arbitrarily small!

Homothetic Direct Implicit Additivity (HDIA); $\mathcal{A}(\mathbf{p})=B(\mathbf{p}) \neq \boldsymbol{c} P(\mathbf{p})$

$$
\int_{\Omega} \phi_{\omega}\left(\frac{x_{\omega}}{X(\mathbf{x})}\right) d \omega \equiv 1 \Rightarrow \zeta_{\omega}^{D}\left(\frac{x_{\omega}}{X(\mathbf{x})}\right)=\zeta_{\omega}^{D}\left(\left(\phi_{\omega}^{\prime}\right)^{-1}\left(\frac{p_{\omega}}{B(\mathbf{p})}\right)\right) \equiv-\left.\frac{\phi_{\omega}^{\prime}(y)}{y \phi_{\omega}^{\prime \prime}(y)}\right|_{y=\frac{x_{\omega}}{X(\mathbf{x})}=\left(\phi_{\omega}^{\prime}\right)^{-1}\left(\frac{p_{\omega}}{B(\mathbf{p})}\right)}
$$

where

$$
\frac{x_{\omega}}{X(\mathbf{x})}=\left(\phi_{\omega}^{\prime}\right)^{-1}\left(\frac{p_{\omega}}{B(\mathbf{p})}\right) ; \int_{\Omega} \phi_{\omega}\left(\left(\phi_{\omega}^{\prime}\right)^{-1}\left(\frac{p_{\omega}}{B(\mathbf{p})}\right)\right) d \omega \equiv 1
$$

CoPaTh under HDIA

$$
\begin{aligned}
& \phi_{\omega}(y)=\bar{\beta}_{\omega} \int_{0}^{y}\left(1+\frac{1}{\sigma_{\omega}-1}\left(\frac{\xi}{\gamma_{\omega}}\right)^{\frac{1-\rho_{\omega}}{\rho_{\omega}}}\right)^{-\frac{\rho_{\omega}}{1-\rho_{\omega}}} d \xi \\
& \zeta_{\omega}^{D}(y) \equiv-\frac{\phi_{\omega}^{\prime}(y)}{y \phi_{\omega}^{\prime \prime}(y)}=1+\left(\sigma_{\omega}-1\right)\left(\frac{y}{\gamma_{\omega}}\right)^{-\frac{\rho_{\omega}}{1-\rho_{\omega}}}>1
\end{aligned}
$$

Notes:

- CPE is obtained as $\rho_{\omega} \rightarrow 1$, holding β_{ω} fixed, which causes $\bar{\beta}_{\omega} \rightarrow \infty$.
- These expressions hold for all $y>0$!

Homothetic Indirect Implicit Additivity (HIIA); $\mathcal{A}(\mathbf{p})=P(\mathbf{p})$

$$
\int_{\Omega} \theta_{\omega}\left(\frac{p_{\omega}}{P(\mathbf{p})}\right) d \omega \equiv 1 \Rightarrow \zeta_{\omega}^{I}\left(\frac{p_{\omega}}{P(\mathbf{p})}\right) \equiv-\left.\frac{z \theta_{\omega}^{\prime \prime}(z)}{\theta_{\omega}^{\prime}(z)}\right|_{z=\frac{p_{\omega}}{P(\mathbf{p})}}
$$

CoPaTh under HIIA

$$
\begin{gathered}
\theta_{\omega}(z)=\gamma_{\omega}\left(\sigma_{\omega}-1\right)^{\frac{\rho_{\omega}}{1-\rho_{\omega}}} \int_{z}^{\bar{\beta}_{\omega}}\left(\left(\frac{\xi}{\bar{\beta}_{\omega}}\right)^{-\frac{1-\rho_{\omega}}{\rho_{\omega}}}-1\right)^{\frac{\rho_{\omega}}{1-\rho_{\omega}}} d \xi \\
\zeta_{\omega}^{I}(z) \equiv-\frac{z \theta_{\omega}^{\prime \prime}(z)}{\theta_{\omega}^{\prime}(z)}=\frac{1}{1-\left(1-\frac{1}{\sigma_{\omega}}\right)\left(\frac{z}{\beta_{\omega}}\right)^{\frac{1-\rho_{\omega}}{\rho_{\omega}}}}=\frac{1}{1-\left(\frac{z}{\bar{\beta}_{\omega}}\right)^{\frac{1-\rho_{\omega}}{\rho_{\omega}}}}
\end{gathered}
$$

Notes:

- CPE is obtained as $\rho_{\omega} \rightarrow 1$, holding β_{ω} fixed, which causes $\bar{\beta}_{\omega} \rightarrow \infty$.
- These expressions hold for $0<z<\bar{\beta}_{\omega}$!

