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Abstract

In existing models of endogenous innovation cycles, market size alters the amplitude of
fluctuations without changing the nature of fluctuations. This is due to the ubiquitous assumption of
CES homothetic demand system, implying that monopolistically competitive firms sell their
products at an exogenous markup rate in spite of the empirical evidence for the procompetitive
effect of entry and market size. We extend the Judd model of endogenous innovation cycles to
allow for the procompetitive effect, using a more general homothetic demand system. We show
that a larger market size/innovation cost ratio, by reducing the markup rate through the
procompetitive effect, has destabilizing effects on the dynamics of innovation under two
complementary sets of sufficient conditions; i) when the price elasticity is “not too convex” in price;
and ii) when the demand system belongs to the two parametric families, “generalized translog”
and “constant pass-through,” each of which features the choke price and yet contains CES as a
limit case. Interestingly, the destabilizing effects become amplified as the demand system
approaches to the CES limit within each family. We also discuss some cross-sectional implications
in a multi-market extension. Because innovation/entry activities fluctuate more in larger markets,
they are not always higher in larger markets than smaller markets. Furthermore, the sale of each
product is more volatile in larger markets.
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Abstract: In existing models of endogenous innovation cycles, market size alters 
the amplitude of fluctuations without changing the nature of fluctuations. This is 
due to the ubiquitous assumption of CES homothetic demand system, implying 
that monopolistically competitive firms sell their products at an exogenous 
markup rate in spite of the empirical evidence for the procompetitive effect of 
entry and market size. We extend the Judd model of endogenous innovation 
cycles to allow for the procompetitive effect, using a more general homothetic 
demand system. We show that a larger market size/innovation cost ratio, by 
reducing the markup rate through the procompetitive effect, has destabilizing 
effects on the dynamics of innovation under two complementary sets of sufficient 
conditions; i) when the price elasticity is “not too convex” in price; and ii) when 
the demand system belongs to the two parametric families, “generalized translog” 
and “constant pass-through,” each of which features the choke price and yet 
contains CES as a limit case. Interestingly, the destabilizing effects become 
amplified as the demand system approaches to the CES limit within each family. 
We also discuss some cross-sectional implications in a multi-market extension. 
Because innovation/entry activities fluctuate more in larger markets, they are not 
always higher in larger markets than smaller markets. Furthermore, the sale of 
each product is more volatile in larger markets. 
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1. Introduction 

How does market size affect the dynamics of innovation? Many existing studies have 

already investigated the market size effect on innovation and long run growth.1 However, 

innovation is not only a source of long run growth. It is also a source of fluctuations because 

innovations tend to arrive in waves, as many have pointed out.2 Yet, little is known about the 

market size effect on the patterns of fluctuations in innovation and aggregate dynamics. In 

existing models of endogenous innovation cycles, market size merely affects the amplitude of 

fluctuations. Its potential effects on the patterns of fluctuations are muted by the ubiquitous 

assumption of the CES homothetic demand system for innovated products, which implies that 

monopolistically competitive firms sell their products at an exogenously constant markup rate, in 

spite of the empirical evidence of the procompetitive effect; see, e.g., Campbell and Hopenhayn 

(2005) and Feenstra and Weinstein (2017). That is, as more firms enter and compete against one 

another in a larger economy, they face more elastic demand for their products, which forces them 

to set their prices at lower markup rates. In the presence of such procompetitive effect, a larger 

market size relative to the innovation cost (or equivalently a smaller innovation cost relative to 

market size) and the resulting competitive pressures would make innovators more sensitive to 

changing market environments, thereby causing instability in the dynamics of innovation. 

To capture this intuition, we extend the Judd (1985, section 4) model of endogenous 

innovation cycles to allow for the procompetitive effect.  The Judd model offers an ideal setting 

for our purpose. First, it generates endogenous fluctuations along the unique equilibrium 

trajectory, unlike some other models of endogenous innovation cycles, which rely on 

expectational indeterminacy and multiple equilibria. Second, it is analytically tractable. Starting 

from any initial condition, its unique equilibrium trajectory can be obtained by iterating a 

skewed-V map (i.e., piecewise linear with two branches, decreasing in the lower branch and 

increasing in the upper branch). This class of maps generates a wide range of fluctuating 

patterns, including chaotic fluctuations, and yet it is simple enough to be characterized 

completely. In particular, one could study its properties by looking at a single constant number, 

 
1See, e.g., Romer (1990), Rivera-Batiz and Romer (1991), and Grossman and Helpman (1993). Acemoglu (2008), 
Aghion and Howitt (2008) and Gancia and Zilibotti (2005, 2009) offer more textbook treatments. 
2The literature of endogenous innovation cycles, which captures this idea, includes Benhabib (2014), Deneckere and 
Judd (1992), Evans, Honkaponja and Romer (1998), Francois and Lloyd-Ellis (2003), Gale (1996), Gardini, Sushko, 
and Naimzada (2008), Iong and Irmen (2021), Jovanovic (2006), Jovanovic and Rob (1990), Judd (1985), 
Matsuyama (1999, 2001), Shleifer (1986), Stein (1997), and Wälde (2005). 
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𝜃𝜃, which we call the delayed impact of innovation. This constant number determines how much 

past innovations discourage current innovations; it is the key factor that generates incentives for 

innovators to synchronize their activities and creates temporal clustering of innovation in the 

model. Under CES, this number is a monotonically decreasing transformation of the 

(exogenously determined) constant markup rate and hence it is independent of any other 

parameters.  Yet, it captures the idea that greater competitive pressures lead to instability. This 

feature makes it possible to generate the destabilizing effects of market size by endogenizing the 

markup rate through the procompetitive effect of market size. 

We generalize the Judd model by extending its CES homothetic demand system to a 

more general homothetic demand system, H.S.A., which stands for Homothetic with a Single 

Aggregator. It is one of the classes of homothetic demand systems studied in Matsuyama and 

Ushchev (2017), to which we further impose symmetry and gross substitutability and define over 

a continuum of input varieties to make it applicable to monopolistic competition, as in 

Matsuyama and Ushchev (2020a, section 3). The key feature of monopolistic competition under 

H.S.A. is that the price elasticity of demand curve for each product is a function of its “relative 

price,” which is defined as its own price divided by the price aggregator, which is common 

across all products. This common price aggregator fully captures the cross-price effects in the 

demand system, thus competitive pressures each innovator faces.  

We have chosen this class of demand systems for the following reasons. First, they are 

homothetic. Although there have been many attempts to develop monopolistic competition 

models without CES, they have typically done so by making the demand system 

nonhomothetic.3  In order to isolate the procompetitive effect of a market size change, it is useful 

to avoid introducing the market size effect operating through nonhomotheticity.4 Furthermore, 

homotheticity makes it straightforward to extend it to multi-sector or multi-market settings. 

 
3For example, Dixit and Stiglitz (1977, Section II) extended their monopolistic competition model to a class of non-
CES demand systems, which have been further explored by Behrens and Murata (2007), Zhelobodko, Kokovin, 
Parenti, and Thisse (2012), Dhingra and Morrow (2019), Latzer, Matsuyama, and Parenti (2019), among others. 
Although Dixit and Stiglitz called this class, “Variable Elasticity Case,” the well-known Bergson’s Law states that, 
within the class of demand systems they considered, they are homothetic if and only if they are CES. In other words, 
any departure from CES within this class introduces nonhomotheticity. See Parenti, Thisse, and Ushchev (2017) and 
Thisse and Ushchev (2018) for more discussions on this issue with extensive references. 
4Indeed, how to measure market size is far from obvious under nonhomotheticity. For example, a change in the 
aggregate expenditure would generally have different effects, depending on whether it is caused by a change in the 
population or by a change in per capita expenditure. Homotheticity allows us to abstract from such demand 
composition effects. 
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Second, under the additional assumption that the price elasticity function is increasing (i.e., the 

price elasticity goes up as one moves up along the demand curve; the so-called Marshall’s 

second law of demand), H.S.A. exhibits the procompetitive effect.5 Third, H.S.A. contains as 

special cases both CES and homothetic translog, which has been used to introduce the 

procompetitive effect.6 Thus, H.S.A. allows us to perform robustness checks for these two 

demand systems.  Fourth, as the name suggests, H.S.A. features a single aggregator, which 

serves as the sufficient statistic to capture all the competitive pressures each firm faces caused 

whether by entry of new firms or by pricing of other firms. Due to this single aggregator 

property, the Judd model under H.S.A. remains equally tractable as the original Judd model 

under CES. Indeed, its dynamics are still characterized by a skewed-V map.7 The only difference 

from the case of CES is that both the markup rate as well as the delayed impact of innovation, 

𝜃𝜃, become functions of the market size/innovation cost ratio. Thus, by investigating the 

properties of these functions, we can use the Judd model under H.S.A. as a simple way of 

studying how the market size/innovation cost ratio affects the patterns of fluctuations in 

innovation dynamics through its procompetitive effect.8 

In our analysis, we identify two complementary sets of sufficient conditions under which an 

increase in the market size/innovation cost ratio increases the delayed impact of innovation, 𝜃𝜃,  

through the procompetitive effect, and hence it has the destabilizing effects on the dynamics of 

innovation. The first set of the sufficient conditions is that the price elasticity as a function of its 

relative price, is not “too convex,” that is, the price elasticity goes up when moving up along the 

demand curve, but not in a too accelerating way. The second set of sufficient conditions deals 

with the cases where the above sufficient condition fails due to the presence of the choke price. 

They are two parametric families within H.S.A., which we call “generalized translog” and 

“constant pass-through.” These two parametric families feature the choke price and yet contain 

CES as the limit case, which allows us to check the robustness of the results under CES.  

 
5Marshall’s second law of demand is in general neither sufficient nor necessary for the procompetitive effect. 
6See, e.g., Feenstra (2003) and Feenstra and Weinstein (2017). 
7In contrast, under the two other classes of homothetic demand systems studied by Matsuyama and Ushchev 
(2020a), HDIA, which contains the Kimball demand system used by Baqaee and Fahri (2020), and HIIA, two 
aggregators are necessary to capture all the competitive pressures. As a result, the dynamics are characterized not by 
a piecewise linear map, but by a piecewise smooth map, which cannot be solved analytically. 
8In addition to its single aggregator property, there is another advantage of H.S.A. demand systems, as pointed out 
by Kasahara and Sugita (2020). That is, the market share (in revenue) functions are the primitive of H.S.A. hence it 
can be readily identified with the typical firm-level data, which contain revenue, but not the output. 



Page 5 of 48 
 

Interestingly, the destabilizing effects become amplified as the demand system approaches to 

CES. And the qualitative properties of the dynamics change discontinuously with an arbitrarily 

small departure from CES. This suggests that, even if an empirically estimated pass-through rate 

is close to one, using CES as an approximation could be misleading. We also discuss some cross-

sectional implications in a multi-market extension. For example, because innovation/entry 

activities fluctuate more in larger markets, they are not always higher in larger markets than 

smaller markets. Furthermore, the sale of each product, conditional on surviving idiosyncratic 

obsolescence shocks, is more volatile in larger markets. 

The rest of the paper is organized as follows. In Section 2, we revisit the Judd model 

under CES, derive a skewed-V map, which generates the equilibrium trajectory, and offer a full 

characterization of the properties. In doing so, we highlight its key features and explain the 

intuition why it generates endogenous fluctuations in innovation, why an increase in the 

(exogenous) constant elasticity of substitution between products has a destabilizing effect, and 

yet why it is independent of the market size/innovation cost ratio.  In Section 3, we formally 

introduce symmetric H.S.A. demand systems with gross substitutes defined over a continuum of 

products. Then, we derive the dynamical system for the Judd model under H.S.A., which still 

features a skewed-V map. In Section 4, we introduce another assumption on H.S.A., Marshall’s 

(weak and strong) 2nd law of demand, which generates the procompetitive effect under H.S.A. In 

Section 5, we present two propositions. Proposition 1 states that, under H.S.A. with the 

procompetitive effect, the delayed impact of innovation, 𝜃𝜃, can take the same range of values as 

under CES, even though it now depends on the market size/innovation cost ratio. Proposition 2 

and its Corollary state that the delayed impact of innovation, 𝜃𝜃, is strictly increasing in the 

market size/innovation cost ratio if the procompetitive effect is combined with the “not too 

convex” condition. In Section 6, we present two parametric families within H.S.A, “generalized 

translog” and “constant pass-through,” both of which feature the procompetitive effect, the choke 

price, and contain CES as a limit case. In both families, an explicit calculation allows us to show 

that an increase in the market size/innovation cost ratio increases the delayed impact of 

innovation, 𝜃𝜃, and hence has the destabilizing effects on the dynamics of innovation. 

Interestingly, the destabilizing effects become amplified as the demand system approaches to the 

CES limit within each family. In Section 7, we discuss some cross-sectional implications in a 
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multi-market extension. We conclude in Section 8. Appendices A through E offer some 

relatively more technical materials. 

 

2. Innovation cycles under CES: Revisiting Judd (1985) 

In his seminal work, Judd (1985) developed dynamic extensions of the Dixit-Stiglitz 

monopolistic competitive model, in which innovators pay a one-time fixed cost of innovation to 

introduce a new (horizontally differentiated) product, but they hold onto their monopoly power 

over their own products only for a limited time. Thus, each product is sold initially at the 

monopoly price, and later at the competitive price. This creates a temporal clustering of 

innovation activities. Because of free entry to innovation activities, any potential innovator needs 

to enter when the market for its product is large enough to recover the cost of innovation. The 

size of the market depends in part on how the products with which it competes are priced. If this 

innovator chooses to enter when others do, some of its competing products are monopolistically 

priced. If this innovator enters after others have innovated, on the other hand, the market for its 

product would be too small to recover the cost of innovation, because competing products are 

more competitively priced as their innovators lose their monopoly power; the market is too 

saturated with competitively priced products. So, this innovator would rather enter the market 

when others do, so that he enjoys his temporary monopoly power while they still hold monopoly, 

instead of waiting and entering the market after they have lost their monopoly. Or to put it 

differently, the full impact of aggregate innovations on the competitive pressures occurs with a 

delay, which each innovator wants to avoid. This creates strategic complementarity in the timing 

of innovation, creating a synchronization of innovation activities and aggregate fluctuations.9   

 
9It is important to stress that, in the Judd model, the monopoly profit, an incentive to innovate, would be lower if  
more innovations would take place in the same period, so that contemporaneous innovations are discouraging to 
innovators. This means that no strategic complementarity exists in innovation. What causes a temporal clustering in 
the Judd model is that, even though contemporaneous innovations are discouraging, they are less so than past 
innovations, which creates strategic complementarity in timing of innovation. In contrast, in the implementation 
cycle model of Shleifer (1986), temporal clustering occurs due to expectational indeterminacy. This is because an 
incentive to innovate would be higher if more innovations take place in the same period, so that contemporaneous 
innovations are encouraging to innovators; such strategic complementarity in innovation creates multiple equilibria, 
which generates a coordination problem among innovators; if everyone anticipates that everyone else would wait 
until the next period to innovate, they all wait; if everyone anticipates that everyone else would innovate 
immediately, they all innovate immediately. Shleifer (1986, footnote 3) explained these differences succinctly, as 
“Judd’s mechanism is almost opposite of mine: innovations in his model repel rather than attract other innovations.” 
The Judd model also differs from the creative destruction model of Aghion-Howitt (1992), which also generates 
cycles as shown by Benhabib (2004), because innovators are discouraged by future rather than past innovations in 
their model. 
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Judd (1985) developed two models to capture this idea, of which we use the one, 

sketched by Judd (1985, section 4), and later examined in some detail by Deneckere and Judd 

(1992), for the analytical tractability. What makes this model particularly tractable is the 

additional assumptions that time is discrete, and that innovators can enjoy their monopoly for 

only one period, the same period in which they pay the innovation cost.  Under this assumption, 

the equilibrium path can be described by a one-dimensional dynamical system.  This is because 

the state of the economy in each period is summarized by a single variable, how many products 

the economy has inherited from past innovations, which determines how saturated the market is, 

and with no possibility of earning future profits, the entry decision of innovators is reduced to a 

static problem.10  In this section, we will revisit this version of the Judd model, highlighting the 

key features of the model, offering a full characterization, and explaining the intuition. 

2.1. Representative Household: Time is discrete and denoted by 𝑡𝑡 ∈  {0, 1,2, … }. The 

representative household of the economy supplies L units of labor, the only primary factor of 

production and taken as the numeraire, and consumes the single consumption good, 𝐶𝐶𝑡𝑡, each 

period. The household has a well-defined intertemporal utility function, 𝑈𝑈(𝐶𝐶0,𝐶𝐶1,𝐶𝐶2, … ), but we 

could leave it unspecified. This is because, in the Judd model as well as in our extension, there 

exists no aggregate means to save11. Hence, the interest rate adjusts endogenously in such a way 

the representative household spends its income each period, 𝑃𝑃𝑡𝑡𝐶𝐶𝑡𝑡 = 𝐿𝐿. 

2.2. Production of the Final (Consumption) Good: The competitive industry produces the 

single consumption good by assembling a continuum of differentiated intermediate inputs, using 

the CRS technology, 

𝐶𝐶𝑡𝑡 = 𝑌𝑌𝑡𝑡 = 𝐹𝐹(𝐱𝐱𝒕𝒕),  

 
10In the other model presented in Judd (1985; sec.3), time is continuous, and monopoly lasts for 0 <  𝑇𝑇 < ∞, and its 
equilibrium conditions are described by a system of delayed differential equations.  In other words, the equilibrium 
path is described by a dynamical system with an infinite dimensional state space. Although not analytically 
tractable, Judd showed that there exists a minimum length of the monopoly power, 𝑇𝑇𝑐𝑐  >  0, such that for 𝑇𝑇𝑐𝑐 <  𝑇𝑇 <
∞, the dynamics of innovation exhibit persistent fluctuations along the equilibrium trajectory for almost all initial 
conditions.  Thus, the discrete time assumption in Judd (1985, section 4) as well as in our extension is not crucial for 
generating fluctuations.  
11In this model, there is no asset other than the ownership of the innovating firms, whose market value is equal to 
zero, because the innovators have to pay the fixed cost of innovation in the same period they earn the monopoly 
profit, and there is free entry to innovation activities. Introducing other assets into this model, such as physical 
capital, as in Matsuyama (1999, 2001), or allowing for the innovators to retain the monopoly power more than one 
period, as in Judd (1985, section 3), would substantially complicate the analysis without adding much insight on the 
question addressed in this paper. 
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where 𝐱𝐱𝒕𝒕 = {𝑥𝑥𝑡𝑡(𝜔𝜔);  𝜔𝜔 ∈ Ω𝑡𝑡} is a vector of the intermediate inputs, with Ω𝑡𝑡 being the 

(endogenously determined) set of input varieties available for use in 𝑡𝑡, and 𝐹𝐹(𝐱𝐱𝒕𝒕) is strictly 

increasing, strictly quasi-concave in the interior, and linear homogeneous in 𝐱𝐱𝒕𝒕 for a given Ω𝑡𝑡. Its 

unit cost function is 

𝑃𝑃𝑡𝑡 = 𝑃𝑃(𝐩𝐩𝒕𝒕) ≡ min
{𝑥𝑥𝑡𝑡(𝜔𝜔); 𝜔𝜔∈Ω𝑡𝑡}

�∫ 𝑝𝑝𝑡𝑡(𝜔𝜔)𝑥𝑥𝑡𝑡(𝜔𝜔)𝑑𝑑𝜔𝜔Ω𝑡𝑡
�𝐹𝐹(𝐱𝐱𝒕𝒕) ≥ 1�, 

where 𝐩𝐩𝒕𝒕 = {𝑝𝑝𝑡𝑡(𝜔𝜔);  𝜔𝜔 ∈ Ω𝑡𝑡} is a vector of the input prices, and 𝑃𝑃(𝐩𝐩𝒕𝒕) is strictly increasing, 

quasi-concave, and linear homogeneous in 𝐩𝐩𝒕𝒕 for a given Ω𝑡𝑡.  From the unit cost function, one 

could also recover the CRS production function, as follows:  

𝐹𝐹(𝐱𝐱𝒕𝒕) ≡ min
{𝑝𝑝𝑡𝑡(𝜔𝜔); 𝜔𝜔∈Ω𝑡𝑡}

�∫ 𝑝𝑝𝑡𝑡(𝜔𝜔)𝑥𝑥𝑡𝑡(𝜔𝜔)𝑑𝑑𝜔𝜔Ω𝑡𝑡
�𝑃𝑃(𝐩𝐩𝒕𝒕) ≥ 1�. 

Thus either 𝐹𝐹(𝐱𝐱𝒕𝒕) or 𝑃𝑃(𝐩𝐩𝒕𝒕) can be used as a primitive of the CRS technology, as long as they 

satisfy the linear homogeneity, monotonicity, and strict quasi-concavity.  

From the Shephard’s Lemma, the demand curve for each input can be written as: 

 
𝑥𝑥𝑡𝑡(𝜔𝜔) =

𝜕𝜕𝑃𝑃(𝐩𝐩𝒕𝒕)
𝜕𝜕𝑝𝑝𝑡𝑡(𝜔𝜔)𝑌𝑌𝑡𝑡, 

(1) 

which can be rewritten to show that the market share of each input is equal to the elasticity of 

𝑃𝑃(𝐩𝐩𝒕𝒕) with respect to its price. 

 𝑝𝑝𝑡𝑡(𝜔𝜔)𝑥𝑥𝑡𝑡(𝜔𝜔)
𝑃𝑃𝑡𝑡𝑌𝑌𝑡𝑡

=
𝑝𝑝𝑡𝑡(𝜔𝜔)
𝑃𝑃(𝐩𝐩𝒕𝒕)

𝜕𝜕𝑃𝑃(𝐩𝐩𝒕𝒕)
𝜕𝜕𝑝𝑝𝑡𝑡(𝜔𝜔). 

(2) 

Judd (1985) considers the case where this CRS technology is symmetric CES, following 

Dixit and Stiglitz (1977; section I), as follows: 

 
 𝐶𝐶𝑡𝑡 = 𝑌𝑌𝑡𝑡 = 𝐹𝐹(𝐱𝐱𝒕𝒕) = 𝑍𝑍 �� [𝑥𝑥𝑡𝑡(𝜔𝜔)]1−

1
𝜎𝜎𝑑𝑑𝜔𝜔

Ω𝑡𝑡
�

𝜎𝜎
𝜎𝜎−1

 
(3) 

with 𝜎𝜎 > 1, the (constant) elasticity of substitution, and 𝑍𝑍 > 0 a productivity parameter. The 

corresponding unit cost function is: 

 
𝑃𝑃𝑡𝑡 = 𝑃𝑃(𝐩𝐩𝒕𝒕) =

1
𝑍𝑍
�� [𝑝𝑝𝑡𝑡(𝜔𝜔)]1−𝜎𝜎𝑑𝑑𝜔𝜔
Ω𝑡𝑡

�

1
1−𝜎𝜎

. 
(4) 

Hence, eq.(1), the demand curve for each input, becomes 

 
𝑥𝑥𝑡𝑡(𝜔𝜔) =

1
𝑍𝑍
�
𝑝𝑝𝑡𝑡(𝜔𝜔)
𝑍𝑍𝑃𝑃(𝐩𝐩𝒕𝒕)

�
−𝜎𝜎

𝑌𝑌𝑡𝑡 =
[𝑝𝑝𝑡𝑡(𝜔𝜔)]−𝜎𝜎𝐿𝐿
[𝑍𝑍𝑃𝑃(𝐩𝐩𝒕𝒕)]1−𝜎𝜎 =

[𝑝𝑝𝑡𝑡(𝜔𝜔)]−𝜎𝜎𝐿𝐿

∫ [𝑝𝑝𝑡𝑡(𝜔𝜔)]1−𝜎𝜎𝑑𝑑𝜔𝜔Ω𝑡𝑡

 
(5) 
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so that the price elasticity of demand for each input is exogenously constant and equal to 𝜎𝜎 > 1.  

And eq.(2), the market share of each input, becomes: 

 𝑝𝑝𝑡𝑡(𝜔𝜔)𝑥𝑥𝑡𝑡(𝜔𝜔)
𝑃𝑃𝑡𝑡𝑌𝑌𝑡𝑡

=
𝑝𝑝𝑡𝑡(𝜔𝜔)
𝑃𝑃(𝐩𝐩𝒕𝒕)

𝜕𝜕𝑃𝑃(𝐩𝐩𝒕𝒕)
𝜕𝜕𝑝𝑝𝑡𝑡(𝜔𝜔) = �

𝑝𝑝𝑡𝑡(𝜔𝜔)
𝑍𝑍𝑃𝑃(𝐩𝐩𝒕𝒕)

�
1−𝜎𝜎

. 
 

2.3. Differentiated Input Varieties: The set of differentiated inputs available for use in 𝑡𝑡, Ω𝑡𝑡, 

changes over time due to innovation, diffusion, and obsolescence. More specifically, Ω𝑡𝑡 is 

partitioned into Ω𝑡𝑡𝑚𝑚 and Ω𝑡𝑡𝑐𝑐. The former, Ω𝑡𝑡𝑚𝑚, is the set of the new inputs introduced & sold 

exclusively (and monopolistically) by the innovators. They enjoy the monopoly power for just 

one period, the same period in which the innovators pay the innovation cost. The latter, Ω𝑡𝑡𝑐𝑐, is the 

set of all inputs that the economy inherited at the beginning of period 𝑡𝑡. Because all these input 

varieties were innovated before period 𝑡𝑡, their innovators have already lost their monopoly 

power, due to diffusion, and hence they are competitively priced.12 In addition, all the input 

varieties in Ω𝑡𝑡 = Ω𝑡𝑡𝑚𝑚 + Ω𝑡𝑡𝑐𝑐 are subject to idiosyncratic obsolescence shocks, and only a fraction 

𝛿𝛿 ∈ (0,1) survives and carries over to the next period to be in Ω𝑡𝑡+1𝑐𝑐 .  

2.4. Production and Pricing of Differentiated Inputs: Producing one unit of each variety in Ω𝑡𝑡 

requires 𝜓𝜓 units of labor, the numeraire. Thus, the marginal cost of producing each input is equal 

to 𝜓𝜓. The unit price of all competitively priced input varieties in Ω𝑡𝑡𝑐𝑐 is equal to its marginal cost, 

𝜓𝜓. Since they all enter symmetrically in the production, they are produced by the same amount, 

𝑥𝑥𝑡𝑡𝑐𝑐, so that: 

 𝑝𝑝𝑡𝑡(𝜔𝜔) = 𝜓𝜓 ≡ 𝑝𝑝𝑐𝑐;   𝑥𝑥𝑡𝑡(𝜔𝜔) ≡ 𝑥𝑥𝑡𝑡𝑐𝑐   for 𝜔𝜔 ∈ Ω𝑡𝑡𝑐𝑐. (6) 

In contrast, the unit price of all monopolistically supplied input varieties in Ω𝑡𝑡𝑚𝑚 is priced at the 

same exogenously constant markup, as 𝑝𝑝𝑡𝑡(𝜔𝜔) = 𝑀𝑀𝜓𝜓, where 𝑀𝑀 ≡ 𝜎𝜎 (𝜎𝜎 − 1),⁄  because each 

innovator/monopolist faces the demand curve eq.(5) with the constant price elasticity, 𝜎𝜎 > 1.  

Again, due to the symmetry, they are all produced by the same amount, 𝑥𝑥𝑡𝑡𝑚𝑚, so that: 

 𝑝𝑝𝑡𝑡(𝜔𝜔) =
𝜎𝜎𝜓𝜓
𝜎𝜎 − 1

≡ 𝑝𝑝𝑚𝑚;   𝑥𝑥𝑡𝑡(𝜔𝜔) ≡ 𝑥𝑥𝑡𝑡𝑚𝑚    for 𝜔𝜔 ∈ Ω𝑡𝑡𝑚𝑚. (7) 

From eqs.(6)-(7), 

 
12Even after they have lost the monopoly power, the innovators could remain the sole producers of their innovations. 
Indeed, this needs to be the case, if we assume that the competitive fringes are required to pay a small fixed cost to 
produce, and let this fixed cost go to zero; in the limit, the innovators cannot set the price above the marginal cost, 
due to the mere presence of the competitive fringes. 
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 𝑝𝑝𝑐𝑐

𝑝𝑝𝑚𝑚
= 1 −

1
𝜎𝜎

< 1; 
𝑥𝑥𝑡𝑡𝑐𝑐

𝑥𝑥𝑡𝑡𝑚𝑚
= �1 −

1
𝜎𝜎
�
−𝜎𝜎

> 1;  
(8) 

and hence the market share of a competitive variety relative to that of a monopolistic variety is 

 𝑝𝑝𝑐𝑐𝑥𝑥𝑡𝑡𝑐𝑐

𝑝𝑝𝑚𝑚𝑥𝑥𝑡𝑡𝑚𝑚
= �1 −

1
𝜎𝜎
�
1−𝜎𝜎

≡ 𝜃𝜃 ∈ (1, 𝑒𝑒), 
(9) 

which is a constant number, 𝜃𝜃. It is monotonically increasing in 𝜎𝜎, with 𝜃𝜃 → 1, as 𝜎𝜎 → 1, and 

𝜃𝜃 → 𝑒𝑒 = 2.718 …, as 𝜎𝜎 → ∞.  It should also be pointed out that 𝜃𝜃, though monotonically 

increasing in 𝜎𝜎, changes little in response to 𝜎𝜎 (𝜃𝜃 ≈ 2.370 for 𝜎𝜎 = 4 and 𝜃𝜃 ≈ 2.627 for 𝜎𝜎 = 14). 

This constant number, 𝜃𝜃, plays a crucial role in the analysis. To understand what it 

represents, plug the common prices given in eqs.(6)-(7), 𝑝𝑝𝑡𝑡(𝜔𝜔) ≡ 𝑝𝑝𝑐𝑐 for 𝜔𝜔 ∈ Ω𝑡𝑡𝑐𝑐 and 𝑝𝑝𝑡𝑡(𝜔𝜔) ≡

𝑝𝑝𝑚𝑚 for 𝜔𝜔 ∈ Ω𝑡𝑡𝑚𝑚, into eq.(4) to obtain the expression for the TFP: 

 𝑌𝑌𝑡𝑡
𝐿𝐿

=
1
𝑃𝑃𝑡𝑡

= 𝑍𝑍[𝑉𝑉𝑡𝑡𝑐𝑐(𝑝𝑝𝑐𝑐)1−𝜎𝜎 + 𝑉𝑉𝑡𝑡𝑚𝑚(𝑝𝑝𝑚𝑚)1−𝜎𝜎]
1

𝜎𝜎−1 =
𝑍𝑍
𝜓𝜓

(𝑉𝑉𝑡𝑡)
1

𝜎𝜎−1 (10) 

where 𝑉𝑉𝑡𝑡𝑐𝑐 and 𝑉𝑉𝑡𝑡𝑚𝑚 denote the measures of Ω𝑡𝑡𝑐𝑐 and Ω𝑡𝑡𝑚𝑚, respectively, and 

 
𝑉𝑉𝑡𝑡 ≡ 𝑉𝑉𝑡𝑡𝑐𝑐 +

𝑉𝑉𝑡𝑡𝑚𝑚

𝜃𝜃
. 

(11) 

Here, 𝑉𝑉𝑡𝑡 can be viewed as the “competitive equivalent” mass of input varieties, since Eqs.(10)-

(11) show that one competitive variety has the same impact on productivity with those of 𝜃𝜃 > 1 

monopolistic varieties. Thus, the effect of innovation on TFP is initially muted, when the newly 

introduced inputs are sold at the monopoly price; it reaches its full potential only after their 

innovators lost their monopoly power, and their innovations become competitively priced. Thus, 

𝜃𝜃 − 1 > 0 measures the delayed impact of innovation. This also means that past innovations are 

more discouraging than contemporaneous innovations to each innovator. To see this, plug the 

common prices given in eqs.(6)-(7), 𝑝𝑝𝑡𝑡(𝜔𝜔) = 𝑝𝑝𝑐𝑐 for 𝜔𝜔 ∈ Ω𝑡𝑡𝑐𝑐 and 𝑝𝑝𝑡𝑡(𝜔𝜔) = 𝑝𝑝𝑚𝑚 for 𝜔𝜔 ∈ Ω𝑡𝑡𝑚𝑚 in 

eq.(5), to obtain the demand curve faced by each innovator in equilibrium: 

𝑥𝑥𝑡𝑡(𝜔𝜔) =
𝐿𝐿�𝑝𝑝𝑡𝑡(𝜔𝜔)�

−𝜎𝜎

𝑉𝑉𝑡𝑡𝑐𝑐(𝑝𝑝𝑐𝑐)1−𝜎𝜎 + 𝑉𝑉𝑡𝑡𝑚𝑚(𝑝𝑝𝑚𝑚)1−𝜎𝜎 =
𝐿𝐿�𝑝𝑝𝑡𝑡(𝜔𝜔)�

−𝜎𝜎

𝑉𝑉𝑡𝑡(𝜓𝜓)1−𝜎𝜎 ,  

which is inversely related to 𝑉𝑉𝑡𝑡. Thus, from the point of view of the innovator/monopolist, 

competing against one competitive variety is equivalent to competing against 𝜃𝜃 > 1 

monopolistic varieties. In other words, 𝜃𝜃 represents the toughness of competing against a 

competitive variety, relative to competing against a monopolistic variety. This creates an 

incentive for innovations to synchronize. Each innovator prefers enjoying its temporary 
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monopoly power, while other innovators are enjoying their temporary monopoly power, i.e., 

before their innovations become competitively priced. Thus, 𝜃𝜃 also measures the force for 

temporal clustering of innovations. 

 

2.5. Introduction of New Varieties (Innovation): There is free entry to innovation activities. 

Anyone can introduce new input varieties at the beginning of each period, which requires F units 

of labor per variety. Innovations in period 𝑡𝑡 must be rewarded by the monopoly profit earned in 

period 𝑡𝑡, as the monopoly power lasts only one period. Thus, unless the gross profit (𝑝𝑝𝑚𝑚 −

𝜓𝜓)𝑥𝑥𝑡𝑡𝑚𝑚 = 𝑝𝑝𝑚𝑚𝑥𝑥𝑡𝑡𝑚𝑚 𝜎𝜎⁄ = 𝜓𝜓𝑥𝑥𝑡𝑡𝑐𝑐 𝜃𝜃𝜎𝜎⁄  covers the cost of innovation, 𝐹𝐹, there is no entry/innovation.  On 

the other hand, if there is active entry/innovation, the profit net of the innovation cost must be 

equal to zero. This can be written as the complementary slackness condition: 

 𝑉𝑉𝑡𝑡𝑚𝑚 ≥ 0;  

𝐹𝐹 ≥ (𝑝𝑝𝑚𝑚 − 𝜓𝜓)𝑥𝑥𝑡𝑡𝑚𝑚 = 𝑝𝑝𝑚𝑚𝑥𝑥𝑡𝑡𝑚𝑚 𝜎𝜎⁄ = 𝜓𝜓𝑥𝑥𝑡𝑡𝑐𝑐 𝜃𝜃𝜎𝜎⁄ ; 

𝑉𝑉𝑡𝑡𝑚𝑚[(𝑝𝑝𝑚𝑚 − 𝜓𝜓)𝑥𝑥𝑡𝑡𝑚𝑚 − 𝐹𝐹] = 𝑉𝑉𝑡𝑡𝑚𝑚[𝑝𝑝𝑚𝑚𝑥𝑥𝑡𝑡𝑚𝑚 − (𝜓𝜓𝑥𝑥𝑡𝑡𝑚𝑚 + 𝐹𝐹)] = 0. 

(12) 

 

2.6. Resource Constraint:  Labor, the only primary factor of production, is used in the 

production of intermediate inputs as well as the innovation activities. Thus, the resource 

constraint of the economy is given by: 

𝐿𝐿 = 𝑉𝑉𝑡𝑡𝑐𝑐(𝜓𝜓𝑥𝑥𝑡𝑡𝑐𝑐) + 𝑉𝑉𝑡𝑡𝑚𝑚(𝜓𝜓𝑥𝑥𝑡𝑡𝑚𝑚 + 𝐹𝐹). 

Using eq.(9), eq.(11) and eq.(12), this can be further written as:  

𝐿𝐿 = 𝑉𝑉𝑡𝑡𝑐𝑐(𝑝𝑝𝑐𝑐𝑥𝑥𝑡𝑡𝑐𝑐) + 𝑉𝑉𝑡𝑡𝑚𝑚(𝑝𝑝𝑚𝑚𝑥𝑥𝑡𝑡𝑚𝑚) = 𝑉𝑉𝑡𝑡(𝜓𝜓𝑥𝑥𝑡𝑡𝑐𝑐) 

For 𝑉𝑉𝑡𝑡𝑚𝑚 > 0, eq.(12) implies 𝜓𝜓𝑥𝑥𝑡𝑡𝑐𝑐 = 𝜎𝜎𝜃𝜃𝐹𝐹, so that this resource constraint implies 𝑉𝑉𝑡𝑡 = 𝐿𝐿 (𝜎𝜎𝜃𝜃𝐹𝐹)⁄ .   

For 𝑉𝑉𝑡𝑡𝑚𝑚 = 0, 𝑉𝑉𝑡𝑡 = 𝑉𝑉𝑡𝑡𝑐𝑐.  Hence, 𝑉𝑉𝑡𝑡 ≡ 𝑉𝑉𝑡𝑡𝑐𝑐 + 𝑉𝑉𝑡𝑡𝑚𝑚 𝜃𝜃⁄ = 𝑚𝑚𝑚𝑚𝑥𝑥{𝐿𝐿 (𝜎𝜎𝜃𝜃𝐹𝐹)⁄ ,𝑉𝑉𝑡𝑡𝑐𝑐}, from which  

 𝑉𝑉𝑡𝑡𝑚𝑚 = 𝑚𝑚𝑚𝑚𝑥𝑥 �
𝐿𝐿
𝜎𝜎𝐹𝐹

− 𝜃𝜃𝑉𝑉𝑡𝑡𝑐𝑐, 0�. (13) 

Eq.(13) shows that innovations are inactive (𝑉𝑉𝑡𝑡𝑚𝑚 = 0), when 𝑉𝑉𝑡𝑡𝑐𝑐 ≥ 𝐿𝐿 (𝜎𝜎𝜃𝜃𝐹𝐹)⁄  and active (𝑉𝑉𝑡𝑡𝑚𝑚 >

0) when 𝑉𝑉𝑡𝑡𝑐𝑐 < 𝐿𝐿 (𝜎𝜎𝜃𝜃𝐹𝐹)⁄ .  Thus, 𝐿𝐿 (𝜎𝜎𝜃𝜃𝐹𝐹)⁄  can be interpreted as the saturation level of 

competitive varieties, which kills any incentive to innovate.  Eq.(13) also shows that, when 

innovations are active, 𝑉𝑉𝑡𝑡 = 𝐿𝐿 (𝜎𝜎𝜃𝜃𝐹𝐹)⁄  is constant, and hence one additional competitive variety 

crowds out θ > 1 innovations. Note also that the scale of production of each of competitive and 
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monopolistic varieties, 𝑥𝑥𝑡𝑡𝑐𝑐 =  𝜎𝜎𝜃𝜃(𝐹𝐹 𝜓𝜓⁄ ) and 𝑥𝑥𝑡𝑡𝑚𝑚 = (𝜎𝜎 − 1)(𝐹𝐹 𝜓𝜓⁄ ), are independent of L. The size 

of the economy affects only how much innovation takes place. 

2.7. Dynamical System: We are now ready to derive the law of motion for the economy. Recall 

that the economy inherits 𝑉𝑉𝑡𝑡𝑐𝑐 of competitive varieties at the beginning of period 𝑡𝑡. From eq.(13), 

this determines innovations, 𝑉𝑉𝑡𝑡𝑚𝑚. Due to idiosyncratic obsolescence shocks, only a fraction 𝛿𝛿 ∈

(0,1) of all the input varieties produced in period 𝑡𝑡 survive to period 𝑡𝑡 + 1. Thus, 

𝑉𝑉𝑡𝑡+1𝑐𝑐 = 𝛿𝛿(𝑉𝑉𝑡𝑡𝑐𝑐 + 𝑉𝑉𝑡𝑡𝑚𝑚) = 𝛿𝛿𝑚𝑚𝑚𝑚𝑥𝑥 �
𝐿𝐿
𝜎𝜎𝐹𝐹

+ (1 − 𝜃𝜃)𝑉𝑉𝑡𝑡𝑐𝑐,𝑉𝑉𝑡𝑡𝑐𝑐�. 

This defines the law of motion for 𝑉𝑉𝑡𝑡𝑐𝑐. However, it is more convenient to normalize 𝑉𝑉𝑡𝑡𝑐𝑐 with 

𝐿𝐿 (𝜎𝜎𝜃𝜃𝐹𝐹)⁄ , the saturation level of competitive varieties, by defining 𝑛𝑛𝑡𝑡 ≡ �𝜎𝜎𝜎𝜎𝜎𝜎
𝐿𝐿
� 𝑉𝑉𝑡𝑡𝑐𝑐,  which is 

equal to the market share of competitive varieties, if 𝑛𝑛𝑡𝑡 ≤ 1, and may be called the market 

saturation rate. Then, the above law of motion is simplified to: 

 𝑛𝑛𝑡𝑡+1 = 𝑓𝑓(𝑛𝑛𝑡𝑡) ≡ �𝑓𝑓𝐿𝐿
(𝑛𝑛𝑡𝑡) ≡ 𝛿𝛿𝜃𝜃 − 𝛿𝛿(𝜃𝜃 − 1)𝑛𝑛𝑡𝑡 for 

𝑓𝑓𝐻𝐻(𝑛𝑛𝑡𝑡) ≡ 𝛿𝛿𝑛𝑛𝑡𝑡 for 
𝑛𝑛𝑡𝑡 < 1
𝑛𝑛𝑡𝑡 > 1 (14) 

where the two parameters satisfy (𝛿𝛿, 𝜃𝜃) ∈ (0,1) × (1, 𝑒𝑒). For any initial condition, 𝑛𝑛0, the entire 

equilibrium trajectory of the economy can be obtained by iterating eq.(14).  

Figure 1 illustrates eq.(14) for the case of 𝛿𝛿(𝜃𝜃 − 1) > 1.  This dynamical system, eq.(14) 

is defined by a skewed V-shaped map, a 1-dimensional piecewise linear map 𝑓𝑓(𝑛𝑛𝑡𝑡) with two 

branches, one decreasing 𝑓𝑓𝐿𝐿(𝑛𝑛𝑡𝑡) and one increasing 𝑓𝑓𝐻𝐻(𝑛𝑛𝑡𝑡). It has two parameters, 𝛿𝛿 ∈ (0,1), the 

survival rate of each input varieties, and 𝜃𝜃 ∈ (1, 𝑒𝑒), the market share multiplier due to the loss of 

monopoly power by its innovator, which also captures the delayed impact of innovations and the 

force of temporal clustering of innovations.   

 
 

 

Figure 1:  

The skewed V-map,  

drawn for 𝛿𝛿(𝜃𝜃 − 1) > 1. 

 

 

 

 𝑓𝑓𝐿𝐿(𝑛𝑛𝑡𝑡) ≡ 𝛿𝛿𝜃𝜃 − 𝛿𝛿(𝜃𝜃 − 1)𝑛𝑛𝑡𝑡 

45º 

𝑛𝑛∗ 

𝑛𝑛𝑡𝑡+1 
𝛿𝛿𝜃𝜃 

𝑓𝑓𝐻𝐻(𝑛𝑛𝑡𝑡) = 𝛿𝛿𝑛𝑛𝑡𝑡 
𝛿𝛿 

𝑛𝑛𝑡𝑡 O 1 
Active Innovation No Innovation 

𝑓𝑓𝐿𝐿(𝛿𝛿) 
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The economic intuition behind this map is easy to grasp. Recall that 𝑛𝑛𝑡𝑡 ≡ (𝜎𝜎𝜃𝜃𝐹𝐹/𝐿𝐿)𝑉𝑉𝑡𝑡𝑐𝑐 is 

the market saturation rate, that is, the range of competitive varieties the economy inherited, 𝑉𝑉𝑡𝑡𝑐𝑐, 

normalized by the saturation level, 𝐿𝐿 (𝜎𝜎𝜃𝜃𝐹𝐹)⁄ . Thus, for 𝑛𝑛𝑡𝑡 > 1, no innovation takes place. In this 

phase, 𝑛𝑛𝑡𝑡 shrinks by the factor 𝛿𝛿 < 1, due to the obsolescence shocks, which is why the map is 

linear and below the 45º line. Hence, the economy eventually enters the phase, 𝑛𝑛𝑡𝑡 < 1, where 

some innovations take place. In this phase, because an increase in 𝑛𝑛𝑡𝑡 crowds out innovations at 

the rate equal to 𝜃𝜃 > 1, the total range of (both competitive and monopolistic) input varieties 

produced is decreasing in 𝑛𝑛𝑡𝑡 by the factor of 𝜃𝜃 − 1.  And because only 𝛿𝛿 fraction of them 

survives to the next period, a higher 𝑛𝑛𝑡𝑡 reduces 𝑛𝑛𝑡𝑡+1 at the rate equal to 𝛿𝛿(𝜃𝜃 − 1) > 0, which is 

why the map is downward-sloping in this range.  (In Figure 1,  𝛿𝛿(𝜃𝜃 − 1) > 1. ) 

2.8. Properties of the Skewed-V map: One major advantage of eq.(14), a skewed V-map, is 

that its properties can be fully characterized in terms of the two parameters, (𝛿𝛿, 𝜃𝜃).13  

As seen in Figure 1, eq.(14) has a unique steady state,  

𝑛𝑛∗ ≡
𝛿𝛿𝜃𝜃

1 + 𝛿𝛿(𝜃𝜃 − 1) < 1. 

Its stability depends on 𝛿𝛿(𝜃𝜃 − 1) > 0, the slope of 𝑓𝑓𝐿𝐿(𝑛𝑛𝑡𝑡), which is determined by the extent to 

which innovations in one period discourage those in the next period, which is equal to 𝜃𝜃 − 1 (the 

delayed impact of an innovation) multiplied by 𝛿𝛿 (the probability with which innovated products 

survive for one period).   

For 𝛿𝛿(𝜃𝜃 − 1) < 1, this effect dissipates over time, making the unique steady state 𝑛𝑛∗ 

stable. Indeed, one could easily show that it is not only locally stable but also globally attracting; 

that is, for any initial condition, the equilibrium trajectory converges to 𝑛𝑛∗. The speed of 

convergence to the steady state is inversely related to 𝛿𝛿(𝜃𝜃 − 1) and approaches to zero, as 

𝛿𝛿(𝜃𝜃 − 1) → 1. 

For 𝛿𝛿(𝜃𝜃 − 1) > 1, as drawn in Figure 1, innovations in one period discourage more 

innovations in the next period, making the unique steady state 𝑛𝑛∗ unstable. In this case, starting 

from any initial condition, the trajectory will eventually enter the interval, [𝛿𝛿,𝑓𝑓𝐿𝐿(𝛿𝛿)], depicted by 

the red square in Figure 1, and once entered, it never leaves. In other words, this interval is both 

 
13Sushko and Gardini (2010, section 3.1) offers a complete analysis of continuous, piecewise linear maps with two 
branches, increasing in the lower branch, and decreasing in the upper branch, which they call “skew-tent maps”. By 
defining 𝑦𝑦t = −𝑛𝑛𝑡𝑡 , our skewed-V map can be transformed into a skew-tent map, 𝑦𝑦𝑡𝑡+1 = 𝑇𝑇(𝑦𝑦𝑡𝑡). 
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absorbing and trapping. We shall call it the trapping interval. Furthermore, for almost all initial 

conditions, the trajectory exhibits persistent fluctuations within the trapping interval.  One could 

also show that, within this trapping interval, there exists a unique period-2 cycle, 𝑛𝑛𝐿𝐿∗ ↔ 𝑛𝑛𝐻𝐻∗ , 

along which the trajectory oscillates between the phase of active innovation (𝑛𝑛𝑡𝑡 = 𝑛𝑛𝐿𝐿∗ < 1) and 

the phase of no innovation (𝑛𝑛𝑡𝑡 = 𝑛𝑛𝐻𝐻∗ > 1), where 

𝛿𝛿 < 𝑛𝑛𝐿𝐿∗ ≡
𝛿𝛿2𝜃𝜃

1 + 𝛿𝛿2(𝜃𝜃 − 1) < 𝑛𝑛∗ ≡
𝛿𝛿𝜃𝜃

1 + 𝛿𝛿(𝜃𝜃 − 1) < 1 < 𝑛𝑛𝐻𝐻∗ ≡
𝛿𝛿𝜃𝜃

1 + 𝛿𝛿2(𝜃𝜃 − 1) < 𝑓𝑓𝐿𝐿(𝛿𝛿). 

The stability of the period-2 cycle, 𝑛𝑛𝐿𝐿∗ ↔ 𝑛𝑛𝐻𝐻∗ , depends on  𝛿𝛿2(𝜃𝜃 − 1), which measures the extent 

to which innovations in one period discourage those in two periods later, which is equal to 𝜃𝜃 − 1 

(the delayed impact of an innovation) multiplied by 𝛿𝛿2 (the probability with which innovated 

products survive for two periods). 

If 𝛿𝛿2(𝜃𝜃 − 1) < 1 < 𝛿𝛿(𝜃𝜃 − 1),  the period-2 cycle is stable. Even though 𝛿𝛿(𝜃𝜃 − 1) >

1 implies that enough of innovations in 𝑡𝑡 survives for one period to discourage innovations in 

𝑡𝑡 + 1, 𝛿𝛿2(𝜃𝜃 − 1) < 1 implies that not enough of them survives for two periods to discourage 

innovations in 𝑡𝑡 + 2, which makes the period-2 cycle stable.  One could also show that the 

equilibrium trajectory converges to the period-2 cycle for almost all initial conditions. Again, the 

speed of convergence to the period-2 cycle is inversely related to 𝛿𝛿2(𝜃𝜃 − 1) and approaches to 

zero, as 𝛿𝛿2(𝜃𝜃 − 1) → 1. 

For 𝛿𝛿2(𝜃𝜃 − 1) > 1, the period-2 cycle, 𝑛𝑛𝐿𝐿∗ ↔ 𝑛𝑛𝐻𝐻∗ , is unstable. In this case, Deneckere and 

Judd (1992) pointed out the existence of ergodic chaos in the sense of Lasota and Yorke (1973). 

In fact, recent advances in piece-wise linear dynamical systems, reviewed by Sushko and Gardini 

(2010), allow us to say more.  That is, there exists a unique chaotic attractor,14 consisting of 

2𝑚𝑚cyclic intervals15, where 𝑚𝑚 is a non-negative integer, which depends on the parameter values. 

And the trajectory converges to it for almost all initial conditions. 

 
14As pointed out in Matsuyama, Sushko, and Gardini (2016, p.529), most existing examples of chaos in economics 
are not attractors, as they rely on Li-Yorke (1975)’s “period-3 implies chaos,” which asserts only the existence of a 
chaotic (i.e., persistently aperiodically fluctuating) trajectory for some initial conditions. And the set of the initial 
conditions leading to such trajectories can be measure zero. In other words, even with the existence of a period-3 
cycle, the trajectory may converge to a stable periodic cycle for almost all initial conditions. Here, the trajectory 
converges to a chaotic attractor for almost all initial conditions. 
15Along the chaotic attractor consisting of 𝑘𝑘 cyclic intervals, the trajectory visits each interval every 𝑘𝑘 periods but 
never return to the same value so that it ends up filling each interval.   
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Figure 2:  
Effects of an increase in δ (for 𝜃𝜃 = 2.5). (In 
courtesy of L.Gardini & I.Sushko) 
 

 

 

 

 

 

 

Figure 2 illustrates these properties of eq.(14) by showing how the unique attractor 

changes as 𝛿𝛿 goes up, for 𝜃𝜃 = 2.5, which corresponds to 𝜎𝜎 ≈ 6.3159.  For 𝛿𝛿 < (𝜃𝜃 − 1)−1 =

2 3⁄ , the unique steady state 𝑛𝑛∗is not only stable but also globally attracting. As 𝛿𝛿 passes 

(𝜃𝜃 − 1)−1 = 2 3⁄ , 𝑛𝑛∗ becomes unstable, as indicated by the solid graph of 𝑛𝑛∗ switching to a 

dotted graph.  This gives rise to the stable period-2 cycle, 𝑛𝑛𝐿𝐿∗ ↔ 𝑛𝑛𝐻𝐻∗ . At (𝜃𝜃 − 1)−0.5 ≈ 0.8165, 

the period-2 cycle becomes unstable, as indicated by a pair of the solid graphs of 𝑛𝑛𝐿𝐿∗ ↔ 𝑛𝑛𝐻𝐻∗  

switching to a pair of the dotted graphs.  This gives rise to the chaotic attractor, which first 

consists of 8 cyclic intervals (as indicated in enlargement in the red box), which in turn merge to 

become the chaotic attractor consisting of 4 cyclic intervals, which in turn merge to become the 

chaotic attractor consisting of 2 cyclic intervals.  Notice that, for (𝜃𝜃 − 1)−0.5 ≈ 0.8165 < 𝛿𝛿 < 1, 

the chaotic attractor always exists. Thus, the chaotic attractor here is robust; there exists no 

“window of periodicity,” unlike in a chaotic system generated by smooth (i.e., 𝐶𝐶∞) maps.16   

 
16As discussed by Matsuyama, Sushko, and Gardini (2016, p.529), chaotic attractors generated by smooth maps are 
not robust. In a smooth dynamical system, the set of parameter values for which a chaotic attractor exists is totally 
disconnected (i.e., containing no open sets). The chaotic attractor here is robust (i.e., it exists for an open set in the 
parameter space), since eq.(14) is nonsmooth due to its regime-switching feature. Note also that, in eq.(14), the loss 
of the stability of the period-2 cycle immediately gives rise to the chaotic attractor, without “the period-doubling 
route to chaos,” another familiar feature of smooth dynamical systems. 
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Figure 3: the (σ, 𝜽𝜽)-plane (In courtesy 
of L.Gardini & I.Sushko) 
𝑄𝑄𝑘𝑘 indicates the parameter region for 
the chaotic attractor consisting of 𝑘𝑘 =
(𝑘𝑘 = 0,1,2…) cyclic intervals; 𝑄𝑄2𝑚𝑚 
(𝑚𝑚 = 0,1,2…) are accumulating to the 
point (𝛿𝛿,𝜃𝜃) = (1,2). (𝐻𝐻1,𝐻𝐻2,𝐷𝐷𝐹𝐹𝐷𝐷1 and 
𝐷𝐷𝐹𝐹𝐷𝐷2 indicate different types of 
bifurcation occurring at the boundary 
that separate the regions of different 
types of the unique attractors.)  
 
In the Judd model, 𝜃𝜃 < 𝑒𝑒 = 2.718 ….  
The red arrow, along which 𝜃𝜃 = 2.5, 
indicates the experiment illustrated in 
Figure 2.  

 

Figure 3 illustrates the existence regions of the different types of the unique attractor in 

the space of the two parameters, (𝛿𝛿,𝜃𝜃). If 𝜃𝜃 had no upper bound, the skewed-V shape map, 

eq.(14) could have, as its unique attractor, a stable 𝑘𝑘-cycle, or a chaotic attractor consisting of 𝑘𝑘 

cyclic intervals, where 𝑘𝑘 can be any positive number. However, in the Judd (1985, section 4) 

model, which assumes CES, 𝜃𝜃 = (1 − 𝜎𝜎−1)1−𝜎𝜎 < 𝑒𝑒 = 2.718 … so that the unique attractor could 

only be a stable steady state, a stable 2-cycle, or a chaotic attractor of  𝑘𝑘 = 2𝑚𝑚 (𝑚𝑚 = 0,1,2,…) 

cyclic intervals. Along the red arrow, 𝜃𝜃 = 2.5, or 𝜎𝜎 ≈ 6.3159, which corresponds to the thought 

experiment in Figure 2. Recall that 𝜃𝜃, though monotonically increasing in 𝜎𝜎, does not change 

much in response to 𝜎𝜎, with 𝜃𝜃 ≈ 2.370 for 𝜎𝜎 = 4, and 𝜃𝜃 ≈ 2.627 for 𝜎𝜎 = 14. Figure 3 thus 

indicates that the patterns observed for a wide range of 4 < 𝜎𝜎 < 14, which roughly corresponds 

to 2.370 < 𝜃𝜃 < 2.627, is qualitatively similar to those shown in Figure 2. 

Figure 3 also shows that, for 𝜎𝜎 > 2 (hence 𝜃𝜃 > 2), a higher 𝛿𝛿 makes endogenous 

fluctuations more likely. This is because more of innovations in the current period survives to 

crowd out innovations in the future. Figure 3 also shows that, for 𝛿𝛿 > (𝑒𝑒 − 1)−1 ≈ 0.582, a 

higher 𝜎𝜎 (hence a higher 𝜃𝜃) makes endogenous fluctuations more likely.17 This is because the 

negative impact of competing products becoming competitively priced on the monopoly profit is 

 
17For (𝑒𝑒 − 1)−1 ≈ 0.582 < 𝛿𝛿 < (𝑒𝑒 − 1)−1 2⁄ ≈ 0.763, endogenous fluctuations always exhibit a stable period-2 
cycle. For 𝛿𝛿 > (𝑒𝑒 − 1)−1 2⁄ ≈ 0.763, a period-2 cycle loses the stability and give rise to a chaotic attractor, as 𝜎𝜎 
(hence 𝜃𝜃) become higher. 
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much larger with a higher 𝜎𝜎, which gives the innovators stronger incentive to avoid competition 

by clustering their innovation activities.18   

Note also that, even inside the region of the stable steady state, both a higher 𝛿𝛿 and a 

higher 𝜎𝜎 (hence a higher 𝜃𝜃) slows down the speed of convergence to the steady state, which is 

inversely related to 𝛿𝛿(𝜃𝜃 − 1), making the dynamics more persistent. In other words, it takes 

longer for the impact of temporal shocks to dissipate, with a higher value of 𝛿𝛿(𝜃𝜃 − 1). 

2.9.  Implications of the CES assumption: One salient feature of the dynamical system, 

eq.(14), is that it does not depend on 𝐿𝐿/𝐹𝐹, which is a relevant measure of the market size from 

the point of view of innovators.  Even though an increase in 𝐿𝐿 𝐹𝐹⁄  increases 𝑉𝑉𝑡𝑡𝑚𝑚 (the number of 

innovation and the mass of innovators competing against each other),  𝑉𝑉𝑡𝑡𝑐𝑐 (the variety of 

competitively priced products), and hence the total variety of the inputs produced in the 

economy, the effects are only proportional.19  With 𝛿𝛿 and 𝜎𝜎 (hence 𝜃𝜃) being separate parameters, 

𝐿𝐿 𝐹𝐹⁄  has no effect on the dynamics of 𝑛𝑛𝑡𝑡. 

This is because, under the CES assumption, eq.(5) or eq.(6), the price elasticity of 

demand for differentiated inputs, and hence the markup rate, are exogenous, and independent of   

the market size/innovation cost ratio, in spite of the ample evidence that larger market size and 

the entry of new firms have the procompetitive effect.  Even though the destabilizing impact of a 

higher 𝜃𝜃 shown in Figure 3 is suggestive of a potential link between the nature of competition 

and the patterns of fluctuations in innovation, the CES assumption precludes any possibility that 

the market size/innovation cost ratio might affect the patterns of fluctuations through its effect on 

market competition. 

 

3. The Judd Model under H.S.A. 

How would the dynamics of innovation change in the presence of the procompetitive 

effect? To address this question, we now extend the Judd model by using a class of CRS 

production functions, called H.S.A. As already pointed out in the introduction, this class of CRS 

 
18With a higher 𝜎𝜎, monopolistic varieties are sold at a lower markup rate, so that the price decline caused by the loss 
of their monopoly power is smaller. However, with a higher 𝜎𝜎, the price decline causes a larger increase in demand.  
This latter quantity effect dominates the former price effect, which is why 𝜃𝜃 is increasing in 𝜎𝜎, and hence a higher 𝜎𝜎 
has the destabilizing effect. 
19Simple algebra shows 𝑉𝑉𝑡𝑡𝑐𝑐 = 𝑛𝑛𝑡𝑡(𝐿𝐿 𝜎𝜎𝜃𝜃𝐹𝐹)⁄ ; 𝑉𝑉𝑡𝑡𝑚𝑚 = 𝑚𝑚𝑚𝑚𝑥𝑥{1 − 𝑛𝑛𝑡𝑡 , 0}(𝐿𝐿 𝜎𝜎𝐹𝐹)⁄ ; 𝑉𝑉𝑡𝑡 = 𝑚𝑚𝑚𝑚𝑥𝑥{1,𝑛𝑛𝑡𝑡}(𝐿𝐿 𝜎𝜎𝜃𝜃𝐹𝐹)⁄ , which are all 
proportional to 𝐿𝐿 𝐹𝐹⁄ .  From eq.(10), one could also show that TFP and the real wage is monotone increasing in 
𝐿𝐿 𝐹𝐹⁄ , but the effect is not proportional, unless 𝜎𝜎 = 2.  
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production functions have several advantages. Here, we repeat only one of them.  Namely, the 

Judd model under H.S.A. remains equally tractable as the Judd model under CES, because the 

dynamical system is still characterized by a skewed-V map. The only difference from the case of 

CES is that 𝜃𝜃, still a constant, now becomes a function of 𝐿𝐿 𝐹𝐹⁄ . Thus, by investigating the 

property of this function, the Judd model under H.S.A. offers a simple way of studying how the 

market size/innovation cost ratio affects the nature of fluctuations in innovation dynamics 

through its effect on 𝜃𝜃 in the presence of the procompetitive effect. 

3.1. Symmetric H.S.A. with gross substitutes: In Matsuyama and Ushchev (2017, section 3), 

we studied a class of homothetic functions that we called Homothetic with a Single Aggregator 

(H.S.A.), and in Matsuyama and Ushchev (2020a, section 3), we restrict this class further by 

defining over a continuum of varieties and imposing the symmetry and gross substitutability in 

order to make it applicable to monopolistic competitive settings.  More specifically, a symmetric 

CRS production function, 𝑌𝑌𝑡𝑡 = 𝐹𝐹(𝐱𝐱𝒕𝒕), or its unit cost function, 𝑃𝑃𝑡𝑡 = 𝑃𝑃(𝐩𝐩𝒕𝒕), belongs to the class 

of H.S.A. if it generates the demand system for inputs such that the market share of each input, 

which is always equal to the elasticity of 𝑃𝑃(𝐩𝐩𝒕𝒕) with respect to its own price, as shown in eq.(3), 

can also be written as 

 𝑝𝑝𝑡𝑡(𝜔𝜔)𝑥𝑥𝑡𝑡(𝜔𝜔)
𝑃𝑃𝑡𝑡𝑌𝑌𝑡𝑡

=
𝑝𝑝𝑡𝑡(𝜔𝜔)
𝑃𝑃(𝐩𝐩𝒕𝒕)

𝜕𝜕𝑃𝑃(𝐩𝐩𝒕𝒕)
𝜕𝜕𝑝𝑝𝑡𝑡(𝜔𝜔) = 𝑠𝑠 �

𝑝𝑝𝑡𝑡(𝜔𝜔)
𝐴𝐴(𝐩𝐩𝒕𝒕)

�. 
(15) 

Here, 𝑠𝑠:ℝ++ → ℝ+ is the market share function, which is twice continuously differentiable20 

and strictly decreasing as long as 𝑠𝑠(𝑧𝑧) > 0, with lim𝑧𝑧→�̅�𝑧𝑠𝑠(𝑧𝑧) = 0, where 𝑧𝑧̅ ≡

inf{𝑧𝑧 > 0|𝑠𝑠(𝑧𝑧) = 0}, and 𝐴𝐴(𝐩𝐩𝒕𝒕) is the common price aggregator, linear homogenous in 𝐩𝐩𝒕𝒕, 

defined implicitly and uniquely by 

 
� 𝑠𝑠 �

𝑝𝑝𝑡𝑡(𝜔𝜔)
𝐴𝐴(𝐩𝐩𝒕𝒕)

�𝑑𝑑𝜔𝜔
Ω𝑡𝑡

 = 1, 
(16) 

 
20Twice continuous differentiability greatly simplifies the analysis. In Appendix A, we also discuss a piecewise (i.e., 
kinked) continuously differentiable example to illustrate how the analysis needs to be modified. 
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which ensures, by construction, that the market shares of all inputs are added up to one.21  

Symmetric CES with gross substitutes is a special case of H.S.A, with 𝑠𝑠(𝑧𝑧) = 𝛾𝛾𝑧𝑧1−𝜎𝜎 (𝜎𝜎 > 1).  

Symmetric translog is another special case, with 𝑠𝑠(𝑧𝑧) = max{−𝛾𝛾 ln(𝑧𝑧 𝑧𝑧̅⁄ ) , 0}.22 

 Eqs. (15)-(16) state that the market share of an input is decreasing in its relative price, 

which is defined as its own price, 𝑝𝑝𝑡𝑡(𝜔𝜔), divided by the common price aggregator, 𝐴𝐴(𝐩𝐩𝒕𝒕).  

Notice that 𝐴𝐴(𝐩𝐩𝒕𝒕) is independent of 𝜔𝜔; it is “the average price” against which the relative prices 

of all inputs are measured. In other words, one could keep track of all the cross-price effects in 

the demand system by looking at a single aggregator, 𝐴𝐴(𝐩𝐩𝒕𝒕), which is the key feature of H.S.A. 

The assumption that the market share function, 𝑠𝑠(∙), is independent of 𝜔𝜔 is not a defining feature 

of H.S.A.; it is due to the symmetry of the underlying production function that generates this 

demand system. The assumption that it is strictly decreasing in 𝑧𝑧 < 𝑧𝑧̅ means that inputs are gross 

substitutes. Furthermore, if 𝑧𝑧̅ < ∞, 𝑧𝑧̅𝐴𝐴(𝐩𝐩𝒕𝒕) is the choke price, at which demand for a variety goes 

to zero.  

The unit cost function, 𝑃𝑃(𝐩𝐩), behind this H.S.A. demand system can be obtained by 

integrating eq.(15), which yields 

ln �
𝑃𝑃(𝐩𝐩)
𝐴𝐴(𝐩𝐩)� = const.−� � �

𝑠𝑠(𝜉𝜉)
𝜉𝜉

d𝜉𝜉
�̅�𝑧

𝑝𝑝(𝜔𝜔) 𝐴𝐴(𝐩𝐩)⁄

� 𝑑𝑑𝜔𝜔
Ω

. 

This unit cost function, 𝑃𝑃(𝐩𝐩), satisfies the linear homogeneity, monotonicity, and strict quasi-

concavity in the interior, and so does the corresponding production function, 𝐹𝐹(𝐱𝐱), which 

follows from Matsuyama and Ushchev (2017; Proposition 1-i)). This guarantees the existence of 

the underlying CRS technology 𝑃𝑃(𝐩𝐩), that generates this H.S.A. demand system. In the case of 

CES, it is easy to verify that 𝑃𝑃(𝐩𝐩) = 𝑐𝑐𝐴𝐴(𝐩𝐩), where 𝑐𝑐 > 0 is a constant.  However, it is important 

 
21For 𝐴𝐴(𝐩𝐩𝒕𝒕) to be well-defined for all 𝐩𝐩𝒕𝒕 = {𝑝𝑝𝑡𝑡(𝜔𝜔);  𝜔𝜔 ∈ Ω𝑡𝑡}, the Lebesgue measure of Ω𝑡𝑡, Λ(Ω𝑡𝑡), must satisfy 
Λ(Ω𝑡𝑡)lim𝑧𝑧→0𝑠𝑠(𝑧𝑧) > 1. If lim𝑧𝑧→0𝑠𝑠(𝑧𝑧)  = ∞, as in CES and translog, this inequality always holds. To ensure this 
inequality along the equilibrium path even if lim𝑧𝑧→0𝑠𝑠(𝑧𝑧) < ∞, we will assume 𝐿𝐿 𝐹𝐹⁄ > lim𝑧𝑧→0{𝜁𝜁(𝑧𝑧) 𝑠𝑠(𝑧𝑧)⁄ }, where 
𝜁𝜁(𝑧𝑧) ≡ 1 − 𝑧𝑧𝑠𝑠′(𝑧𝑧) 𝑠𝑠(𝑧𝑧)⁄  is the price elasticity function defined later. 
22For 𝑠𝑠:ℝ++ → ℝ+, satisfying the above conditions, a class of the market share functions, 𝑠𝑠𝛾𝛾(𝑧𝑧) ≡ 𝛾𝛾𝑠𝑠(𝑧𝑧) for 𝛾𝛾 > 0, 
generate the same demand system with the same common price aggregator. We just need to renormalize the indices 
of varieties, as 𝜔𝜔′ = 𝛾𝛾𝜔𝜔, so that ∫ 𝑠𝑠𝛾𝛾(𝑝𝑝𝑡𝑡(𝜔𝜔) 𝐴𝐴(𝐩𝐩𝒕𝒕)⁄ )𝑑𝑑𝜔𝜔Ω𝑡𝑡

 =  ∫ 𝑠𝑠(𝑝𝑝𝑡𝑡(𝜔𝜔′) 𝐴𝐴(𝐩𝐩𝒕𝒕)⁄ )𝑑𝑑𝜔𝜔′
Ω𝑡𝑡

= 1.  In this sense, 𝑠𝑠𝛾𝛾(𝑧𝑧) ≡
𝛾𝛾𝑠𝑠(𝑧𝑧) for 𝛾𝛾 > 0, are all equivalent. Note also that a class of the market share functions, 𝑠𝑠𝜆𝜆(𝑧𝑧) ≡ 𝑠𝑠(𝜆𝜆𝑧𝑧) for 𝜆𝜆 > 0, 
generate the same demand system, with 𝐴𝐴𝜆𝜆(𝐩𝐩𝒕𝒕) = 𝜆𝜆𝐴𝐴(𝐩𝐩𝒕𝒕), because  𝑠𝑠𝜆𝜆(𝑝𝑝𝑡𝑡(𝜔𝜔) 𝐴𝐴𝜆𝜆(𝐩𝐩𝒕𝒕)⁄ ) =  𝑠𝑠(𝜆𝜆 𝑝𝑝𝑡𝑡(𝜔𝜔) 𝐴𝐴𝜆𝜆(𝐩𝐩𝒕𝒕)⁄ ) =
𝑠𝑠(𝑝𝑝𝑡𝑡(𝜔𝜔) 𝐴𝐴(𝐩𝐩𝒕𝒕)⁄ ).  In this sense, 𝑠𝑠𝜆𝜆(𝑧𝑧) ≡ 𝑠𝑠(𝜆𝜆𝑧𝑧) for 𝜆𝜆 > 0 are all equivalent. Using these equivalences, for example, 
one could obtain the CES case with 𝑠𝑠(𝑧𝑧) = 𝑧𝑧1−𝜎𝜎  (𝜎𝜎 > 1) by setting 𝛾𝛾 = 1 and the translog case, with 𝑠𝑠(𝑧𝑧) =
max{− ln(𝑧𝑧 𝑧𝑧̅⁄ ) , 0} by setting 𝛾𝛾 = 1 and 𝜆𝜆 = 1 𝑧𝑧̅ = 1,⁄  without loss of generality. 
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to note that, with the sole exception of CES, 𝑃𝑃(𝐩𝐩) ≠ 𝑐𝑐𝐴𝐴(𝐩𝐩) for any constant 𝑐𝑐 > 0, as shown in 

Matsuyama and Ushchev (2020a; Corollary 2 of Lemma 2)23. This should not come as a total 

surprise. After all, 𝐴𝐴(𝐩𝐩) is the inverse measure of competitive pressures, which fully captures the 

cross-price effects in the demand system, while 𝑃𝑃(𝐩𝐩) is the inverse measure of TFP, which fully 

captures the productivity (or welfare) effects of price changes; there is no reason to think a priori 

that they should move together. 

 We are now ready to proceed with the analysis of the Judd model under H.S.A. 

 

3.2. Pricing of Differentiated Varieties: All competitive varieties are priced at the marginal 

cost, 𝑝𝑝𝑡𝑡(𝜔𝜔) = 𝜓𝜓 = 𝑝𝑝𝑐𝑐 and hence their relative prices are  𝑧𝑧𝑡𝑡𝑐𝑐 ≡ 𝜓𝜓 𝐴𝐴(𝐩𝐩𝒕𝒕)⁄  for 𝜔𝜔 ∈ Ω𝑡𝑡𝑐𝑐. For 

monopolistic varieties, 𝜔𝜔 ∈ Ω𝑡𝑡𝑚𝑚, from eq.(15), each monopolist/innovator faces the demand 

curve,  

𝑥𝑥𝑡𝑡(𝜔𝜔) =
𝑃𝑃𝑡𝑡𝑌𝑌𝑡𝑡
𝑝𝑝𝑡𝑡(𝜔𝜔) 𝑠𝑠 �

𝑝𝑝𝑡𝑡(𝜔𝜔)
𝐴𝐴(𝐩𝐩𝒕𝒕)

� =
𝐿𝐿

𝑝𝑝𝑡𝑡(𝜔𝜔) 𝑠𝑠 �
𝑝𝑝𝑡𝑡(𝜔𝜔)
𝐴𝐴(𝐩𝐩𝒕𝒕)

�. 

Hence it sets the price 𝑝𝑝𝑡𝑡(𝜔𝜔) to maximize the profit,  

(𝑝𝑝𝑡𝑡(𝜔𝜔) − 𝜓𝜓)𝑥𝑥𝑡𝑡(𝜔𝜔) = �1 −
𝜓𝜓

𝑝𝑝𝑡𝑡(𝜔𝜔)� 𝑠𝑠 �
𝑝𝑝𝑡𝑡(𝜔𝜔)
𝐴𝐴(𝐩𝐩𝒕𝒕)

�𝐿𝐿, 

holding 𝐴𝐴(𝐩𝐩𝒕𝒕) as given. Or equivalently, it sets its relative price 𝑧𝑧𝑡𝑡(𝜔𝜔) ≡ 𝑝𝑝𝑡𝑡(𝜔𝜔) 𝐴𝐴(𝐩𝐩𝒕𝒕)⁄  to solve: 

𝑚𝑚𝑚𝑚𝑥𝑥𝑧𝑧𝑡𝑡(𝜔𝜔) �1 −
𝑧𝑧𝑡𝑡𝑐𝑐

𝑧𝑧𝑡𝑡(𝜔𝜔)� 𝑠𝑠�𝑧𝑧𝑡𝑡
(𝜔𝜔)�𝐿𝐿 ≡ 𝑚𝑚𝑚𝑚𝑥𝑥𝑧𝑧𝑡𝑡(𝜔𝜔)  𝜋𝜋(𝑧𝑧𝑡𝑡(𝜔𝜔); 𝑧𝑧𝑡𝑡𝑐𝑐)𝐿𝐿 ≡  𝜋𝜋�(𝑧𝑧𝑡𝑡𝑐𝑐)𝐿𝐿 

holding 𝑧𝑧𝑡𝑡𝑐𝑐 ≡ 𝜓𝜓 𝐴𝐴(𝐩𝐩𝒕𝒕)⁄  as given. Here, 𝜋𝜋(𝑧𝑧𝑡𝑡(𝜔𝜔); 𝑧𝑧𝑡𝑡𝑐𝑐) is the profit per unit of the aggregate 

expenditure, L, as a function of its relative price, and  𝜋𝜋�(𝑧𝑧𝑡𝑡𝑐𝑐) ≡ 𝑚𝑚𝑚𝑚𝑥𝑥𝑧𝑧𝑡𝑡(𝜔𝜔)  𝜋𝜋(𝑧𝑧𝑡𝑡(𝜔𝜔); 𝑧𝑧𝑡𝑡𝑐𝑐) is the 

maximized profit per unit of the aggregate expenditure.  Thus, the monopoly price needs to 

satisfy both the following first-order condition (FOC) and second-order condition (SOC): 

FOC: 𝑧𝑧𝑡𝑡(𝜔𝜔) �1 −
1

𝜁𝜁�𝑧𝑧𝑡𝑡(𝜔𝜔)�
� = 𝑧𝑧𝑡𝑡𝑐𝑐 

SOC:  
𝑧𝑧𝑡𝑡(𝜔𝜔)𝜁𝜁′�𝑧𝑧𝑡𝑡(𝜔𝜔)�

𝜁𝜁�𝑧𝑧𝑡𝑡(𝜔𝜔)�
> 1 − 𝜁𝜁�𝑧𝑧𝑡𝑡(𝜔𝜔)� 

where  

 
23This holds also for asymmetric H.S.A., as well as H.S.A. with gross complements. See Matsuyama and Ushchev 
(2017; Proposition 1-iii). 
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𝜁𝜁(𝑧𝑧) ≡ 1 −

𝑧𝑧𝑠𝑠′(𝑧𝑧)
𝑠𝑠(𝑧𝑧) > 1 

(17) 

is the price elasticity of the demand curve for a particular variety, which is a function of its 

relative price; it is inversely related to the markup rate, 𝑀𝑀(𝑧𝑧) ≡ 𝜁𝜁(𝑧𝑧) (𝜁𝜁(𝑧𝑧) − 1)⁄ . Note that 

𝜁𝜁(𝑧𝑧) > 1 is well-defined and continuously differentiable for 𝑧𝑧 ∈ (0, 𝑧𝑧̅).  Conversely, any 

continuously differentiable 𝜁𝜁: (0, 𝑧𝑧̅) → (1,∞), satisfying lim
𝑧𝑧→�̅�𝑧

𝜁𝜁(𝑧𝑧) = ∞ if 𝑧𝑧̅ < ∞, can be used as 

a primitive of symmetric H.S.A. production functions with gross substitutes with  

𝑠𝑠(𝑧𝑧) = exp ��
1 − 𝜁𝜁(𝜏𝜏)

𝜏𝜏
𝑑𝑑𝜏𝜏

𝑧𝑧

𝑐𝑐
� , 𝑧𝑧 ∈ (0, 𝑧𝑧̅), 

where 𝑐𝑐 ∈ (0, 𝑧𝑧̅) is a constant. 

FOC and SOC are sufficient for a local optimum, but generally not for the global 

optimum. In what follows, we avoid the need to deal with local but not global optima by 

assuming:24 

(A1)  𝜁𝜁(𝑧𝑧) − 1 +
𝑧𝑧𝜁𝜁′(𝑧𝑧)
𝜁𝜁(𝑧𝑧) > 0, for 𝑧𝑧 ∈ (0, 𝑧𝑧̅).  

Lemma: (A1) is equivalent to each of the following three statements: 

i) 𝑧𝑧 �1 − 1
𝜁𝜁(𝑧𝑧 )

� is strictly increasing in 𝑧𝑧 ∈ (0, 𝑧𝑧̅).  

ii) For any 𝑧𝑧𝑐𝑐 ∈ (0, 𝑧𝑧̅),  𝜋𝜋(𝑧𝑧; 𝑧𝑧𝑐𝑐) ≡ �1 − 𝑧𝑧𝑐𝑐

𝑧𝑧
� 𝑠𝑠(𝑧𝑧) has a single peak at 𝑧𝑧𝑚𝑚 ∈ (𝑧𝑧𝑐𝑐, 𝑧𝑧̅), given 

by 𝑧𝑧𝑚𝑚 �1 − 1
𝜁𝜁(𝑧𝑧𝑚𝑚 )

� ≡ 𝑧𝑧𝑐𝑐 . 

iii) 𝑠𝑠(𝑧𝑧)
𝜁𝜁(𝑧𝑧) is strictly decreasing in 𝑧𝑧 ∈ (0, 𝑧𝑧̅). 

Proof: The equivalence of (A1) and i) follows from 
𝑑𝑑�𝑧𝑧�1− 1

𝜁𝜁(𝑧𝑧 )� �

𝑑𝑑𝑧𝑧
= 1

𝜁𝜁(𝑧𝑧) �𝜁𝜁(𝑧𝑧) − 1 + 𝑧𝑧𝜁𝜁′(𝑧𝑧)
𝜁𝜁(𝑧𝑧) �.  

The equivalence of i) and ii) follows from 𝑑𝑑
𝑑𝑑𝑧𝑧
𝜋𝜋(𝑧𝑧; 𝑧𝑧𝑐𝑐) = 𝑠𝑠(𝑧𝑧)𝜁𝜁(𝑧𝑧) 

𝑧𝑧2
�𝑧𝑧𝑐𝑐 − 𝑧𝑧 �1 − 1

𝜁𝜁(𝑧𝑧 )
��.  Finally, 

the equivalence of (A1) and iii) follows from 
𝑑𝑑�ln  𝑠𝑠(𝑧𝑧)

𝜁𝜁(𝑧𝑧) �

𝑑𝑑 ln 𝑧𝑧
= 𝑧𝑧𝑠𝑠′(𝑧𝑧)

𝑠𝑠(𝑧𝑧) − 𝑧𝑧𝜁𝜁′(𝑧𝑧)
𝜁𝜁(𝑧𝑧) = 1 − 𝜁𝜁(𝑧𝑧) − 𝑧𝑧𝜁𝜁′(𝑧𝑧)

𝜁𝜁(𝑧𝑧) . ∎ 

 
24This is mostly for the expositional simplicity. Even if (A1) is violated, much of the analysis would go through. 
However, the derivation would become far more involved. This is because, for a finite (hence, non-generic) set of 
the parameter values, different monopolistic varieties are sold at different prices and by different amounts for the 
same profit. As a result, a change in the parameters could cause discrete jumps in endogenous variables in 
comparative statics. See Appendix C for an example. 
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Thus, under (A1), ii) in Lemma holds so that all the innovators sets the same price, 𝑝𝑝𝑡𝑡(𝜔𝜔) = 𝑝𝑝𝑡𝑡𝑚𝑚, 

and hence the same relative price,  𝑧𝑧𝑡𝑡(𝜔𝜔) = 𝑧𝑧𝑡𝑡𝑚𝑚 ≡ 𝑝𝑝𝑡𝑡𝑚𝑚 𝐴𝐴(𝐩𝐩𝒕𝒕)⁄ , given by the FOC, 

 
𝑧𝑧𝑡𝑡𝑚𝑚 �1 −

1
𝜁𝜁(𝑧𝑧𝑡𝑡𝑚𝑚)� = 𝑧𝑧𝑡𝑡𝑐𝑐, 

(18) 

which automatically satisfies the SOC.  Furthermore, from i) in Lemma, 𝑧𝑧𝑡𝑡𝑚𝑚 is continuously 

differentiable and strictly increasing in 𝑧𝑧𝑡𝑡𝑐𝑐, and vice versa. 

3.3. Introduction of New Varieties (Innovation): From eq.(18), the maximized profit is written 

as,  

𝜋𝜋�(𝑧𝑧𝑡𝑡𝑐𝑐)𝐿𝐿 ≡ 𝜋𝜋(𝑧𝑧𝑡𝑡𝑚𝑚; 𝑧𝑧𝑡𝑡𝑐𝑐)𝐿𝐿 ≡ �1 −
𝑧𝑧𝑡𝑡𝑐𝑐

𝑧𝑧𝑡𝑡𝑚𝑚
� 𝑠𝑠(𝑧𝑧𝑡𝑡𝑚𝑚)𝐿𝐿 =

𝑠𝑠(𝑧𝑧𝑡𝑡𝑚𝑚)
𝜁𝜁(𝑧𝑧𝑡𝑡𝑚𝑚) 𝐿𝐿.  

This is because each innovator earns 𝑠𝑠(𝑧𝑧𝑡𝑡𝑚𝑚) fraction of the aggregate expenditure, 𝑃𝑃𝑡𝑡𝑌𝑌𝑡𝑡 = 𝐿𝐿, of 

which 1 − 1 𝜁𝜁(𝑧𝑧𝑡𝑡𝑚𝑚)⁄  fraction is paid to the production cost, and the remaining fraction, 1 𝜁𝜁(𝑧𝑧𝑡𝑡𝑚𝑚)⁄ , 

goes to the profit. The free entry (innovation) complementarity slackness condition is thus: 

𝑉𝑉𝑡𝑡𝑚𝑚 ≥ 0;  𝐹𝐹 ≥
𝑠𝑠(𝑧𝑧𝑡𝑡𝑚𝑚)
𝜁𝜁(𝑧𝑧𝑡𝑡𝑚𝑚) 𝐿𝐿;  𝑉𝑉𝑡𝑡𝑚𝑚 �𝐹𝐹 −

𝑠𝑠(𝑧𝑧𝑡𝑡𝑚𝑚)
𝜁𝜁(𝑧𝑧𝑡𝑡𝑚𝑚) 𝐿𝐿� = 0, 

which corresponds to eq.(12) under CES. In what follows, let us assume  

𝐹𝐹
𝐿𝐿

< lim
𝑧𝑧→0

𝑠𝑠(𝑧𝑧)
𝜁𝜁(𝑧𝑧). 

which implies, with iii) in Lemma, that 𝑧𝑧𝑚𝑚 > 0 can be defined uniquely by 

 𝑠𝑠�𝑧𝑧𝑚𝑚�
𝜁𝜁�𝑧𝑧𝑚𝑚�

𝐿𝐿
𝐹𝐹

 ≡ 1, 
(19) 

and it is strictly increasing in 𝐿𝐿 𝐹𝐹⁄ . Then, the complementarity condition can be rewritten as:  

𝑉𝑉𝑡𝑡𝑚𝑚 ≥ 0; 𝑧𝑧𝑡𝑡𝑚𝑚 ≥  𝑧𝑧𝑚𝑚;  𝑉𝑉𝑡𝑡𝑚𝑚�𝑧𝑧𝑡𝑡𝑚𝑚 −  𝑧𝑧𝑚𝑚� = 0. 

Furthermore, from eq.(18) and i) in Lemma, this also implies  

 
𝑧𝑧𝑡𝑡𝑐𝑐 = 𝑧𝑧𝑡𝑡𝑚𝑚 �1 −

1
𝜁𝜁(𝑧𝑧𝑡𝑡𝑚𝑚)� ≥  𝑧𝑧𝑐𝑐 ≡ 𝑧𝑧𝑚𝑚 �1 −

1
𝜁𝜁�𝑧𝑧𝑚𝑚�

�. 
(20) 

Since the market share of each monopolistic variety is 𝑠𝑠(𝑧𝑧𝑡𝑡𝑚𝑚) and that of each 

competitive variety is 𝑠𝑠(𝑧𝑧𝑡𝑡𝑐𝑐), the adding up constraint, eq. (16), can now be rewritten as: 

 
𝑉𝑉𝑡𝑡𝑚𝑚𝑠𝑠 �

𝑝𝑝𝑡𝑡𝑚𝑚

𝐴𝐴(𝐩𝐩𝒕𝒕)
� + 𝑉𝑉𝑡𝑡𝑐𝑐𝑠𝑠 �

𝜓𝜓
𝐴𝐴(𝐩𝐩𝒕𝒕)

� = 𝑉𝑉𝑡𝑡𝑚𝑚𝑠𝑠(𝑧𝑧𝑡𝑡𝑚𝑚) + 𝑉𝑉𝑡𝑡𝑐𝑐𝑠𝑠(𝑧𝑧𝑡𝑡𝑐𝑐) = 1. 
(21) 

First, consider the case where 𝑉𝑉𝑡𝑡𝑚𝑚 >  0 ⟹ 𝑧𝑧𝑡𝑡𝑚𝑚 = 𝑧𝑧𝑚𝑚;  𝑧𝑧𝑡𝑡𝑐𝑐 = 𝑧𝑧𝑐𝑐.  Then, eq.(21) becomes  
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𝑉𝑉𝑡𝑡𝑚𝑚 =
1 − 𝑠𝑠�𝑧𝑧𝑐𝑐�𝑉𝑉𝑡𝑡𝑐𝑐

𝑠𝑠�𝑧𝑧𝑚𝑚�
= 𝜃𝜃 �

1
𝑠𝑠�𝑧𝑧𝑐𝑐�

− 𝑉𝑉𝑡𝑡𝑐𝑐� > 0 

where 𝜃𝜃 ≡ 𝑠𝑠�𝑧𝑧𝑐𝑐� 𝑠𝑠�𝑧𝑧𝑚𝑚�� > 1 is the market share of a competitive variety, relative to a 

monopolistic variety.  Next, consider the case where 𝑉𝑉𝑡𝑡𝑚𝑚 =  0. Then, eq.(21) becomes 𝑉𝑉𝑡𝑡𝑐𝑐𝑠𝑠(𝑧𝑧𝑡𝑡𝑐𝑐) =

1.  Because 𝑧𝑧𝑡𝑡𝑐𝑐 ≥  𝑧𝑧𝑐𝑐, this implies  

𝑉𝑉𝑡𝑡𝑚𝑚 = 0 ⟺ 𝑉𝑉𝑡𝑡𝑐𝑐 =
1

𝑠𝑠(𝑧𝑧𝑡𝑡𝑐𝑐) ≥
1

𝑠𝑠�𝑧𝑧𝑐𝑐�
. 

By putting these two cases together, we have 

 
𝑉𝑉𝑡𝑡𝑚𝑚 = 𝑚𝑚𝑚𝑚𝑥𝑥 �𝜃𝜃 �

1
𝑠𝑠�𝑧𝑧𝑐𝑐�

− 𝑉𝑉𝑡𝑡𝑐𝑐� , 0� = 𝑚𝑚𝑚𝑚𝑥𝑥 �
𝐿𝐿

𝜁𝜁�𝑧𝑧𝑚𝑚�𝐹𝐹
− 𝜃𝜃𝑉𝑉𝑡𝑡𝑐𝑐, 0�, 

(22) 

which corresponds to eq.(13) under CES. Thus, 1 𝑠𝑠�𝑧𝑧𝑐𝑐�⁄  can be viewed as the saturation level of 

competitive varieties, which kills any incentive to innovate.  

 

3.4. Dynamical System: By following the same step as in the case of CES, from eq.(22), we 

obtain the law of motion for 𝑉𝑉𝑡𝑡𝑐𝑐, 

 
𝑉𝑉𝑡𝑡+1𝑐𝑐 = 𝛿𝛿(𝑉𝑉𝑡𝑡𝑐𝑐 + 𝑉𝑉𝑡𝑡𝑚𝑚) = 𝛿𝛿𝑚𝑚𝑚𝑚𝑥𝑥 �

𝜃𝜃
𝑠𝑠�𝑧𝑧𝑐𝑐�

+ (1 − 𝜃𝜃)𝑉𝑉𝑡𝑡𝑐𝑐,𝑉𝑉𝑡𝑡𝑐𝑐�, 
(23) 

where 𝛿𝛿 ∈ (0,1) is the survival rate of each variety.  Now, divide the measure of competitive 

varieties, 𝑉𝑉𝑡𝑡𝑐𝑐, by the saturation level, 1 𝑠𝑠�𝑧𝑧𝑐𝑐�⁄ , to define the market saturation rate, 𝑛𝑛𝑡𝑡 ≡

𝑠𝑠�𝑧𝑧𝑐𝑐�𝑉𝑉𝑡𝑡𝑐𝑐, which is also equal to the market share of all competitive varieties for 𝑛𝑛𝑡𝑡 ≤ 1.  The 

above law of motion is then rewritten as the dynamical system in 𝑛𝑛𝑡𝑡 as follows: 

 𝑛𝑛𝑡𝑡+1 = 𝑓𝑓(𝑛𝑛𝑡𝑡) ≡ �𝑓𝑓𝐿𝐿
(𝑛𝑛𝑡𝑡) ≡ 𝛿𝛿(𝜃𝜃 + (1 − 𝜃𝜃)𝑛𝑛𝑡𝑡) for 

𝑓𝑓𝐻𝐻(𝑛𝑛𝑡𝑡) ≡ 𝛿𝛿𝑛𝑛𝑡𝑡 for 
𝑛𝑛𝑡𝑡 ≤ 1
𝑛𝑛𝑡𝑡 ≥ 1 (24) 

where we recall 𝜃𝜃 ≡ 𝑠𝑠�𝑧𝑧𝑐𝑐� 𝑠𝑠�𝑧𝑧𝑚𝑚�� > 1 is the market share of a competitive variety relative to a 

monopolistic variety, which measures the delayed impact of innovations and the force of 

temporal clustering of innovations. 

Notice that eq.(14) and eq.(24) are identical, both characterized by the skewed-V map, 

with the same two parameters, (𝛿𝛿,𝜃𝜃).  However, there is one crucial difference. Under H.S.A., 

𝜃𝜃 ≡ 𝑠𝑠�𝑧𝑧𝑐𝑐� 𝑠𝑠�𝑧𝑧𝑚𝑚�� > 1 is a function of 𝐿𝐿 𝐹𝐹⁄ , Θ(𝐿𝐿 𝐹𝐹⁄ ), which can be defined implicitly as:  
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Θ�
𝐿𝐿
𝐹𝐹
� ≡

𝑠𝑠 �𝑧𝑧𝑚𝑚 �1 − 1
𝜁𝜁�𝑧𝑧𝑚𝑚�

��

𝑠𝑠�𝑧𝑧𝑚𝑚�
> 1;  

𝑠𝑠� 𝑧𝑧𝑚𝑚�
𝜁𝜁� 𝑧𝑧𝑚𝑚�

𝐿𝐿
𝐹𝐹

 ≡ 1, 

(25) 

using eq.(19) and eq.(20).  From iii) in Lemma, eq.(18) shows that 𝑧𝑧𝑚𝑚 is increasing in 𝐿𝐿 𝐹𝐹⁄ .  

Thus, a larger market size/innovation cost ratio allows the innovators to break even with a higher 

relative price. Under CES, 𝜁𝜁�𝑧𝑧𝑚𝑚� = 𝜎𝜎 and 𝑠𝑠(𝑧𝑧) = (𝜆𝜆𝑧𝑧)1−𝜎𝜎, so that 𝜃𝜃 = (1 − 𝜎𝜎−1)1−𝜎𝜎 ∈ (1, 𝑒𝑒), 

which is independent of 𝑧𝑧𝑚𝑚.  Generally, however, 𝐿𝐿 𝐹𝐹⁄  affects 𝜃𝜃 ≡ 𝑠𝑠�𝑧𝑧𝑐𝑐� 𝑠𝑠�𝑧𝑧𝑚𝑚�� ≡ Θ(𝐿𝐿 𝐹𝐹⁄ ) > 1 

through its effect on 𝑧𝑧𝑚𝑚.  And through its effect on 𝜃𝜃 ≡ Θ(𝐿𝐿 𝐹𝐹⁄ ) > 1, 𝐿𝐿 𝐹𝐹⁄  affects the nature of 

fluctuations. Since a change in 𝐿𝐿 𝐹𝐹⁄  keeps eq.(14) otherwise intact, it suffices to study the 

property of this function in order to identify the effect of the market size/innovation cost ratio. 

 

4. Procompetitive Effect under H.S.A. 

Before proceeding, we introduce another assumption. 

(A2)   𝜁𝜁′(𝑧𝑧) ≥ 0 for all 𝑧𝑧 ∈ (0, 𝑧𝑧̅). 

That is, for a fixed 𝐴𝐴 = 𝐴𝐴(𝐩𝐩𝒕𝒕), the price elasticity of demand for each variety may go up but 

never go down along its demand curve, as its price goes up. The property is often referred to as 

Marshall’s 2nd law of demand. In what follows, we shall call (A2) the weak (strong) 2nd law, if 

the inequality is (A2) holds weakly (strictly).  Since 𝜁𝜁(𝑧𝑧) > 1, (A2) implies (A1), from which 

each of the three equivalent statements in Lemma follows.  

 What are the implications of (A2) on the firms’ pricing behavior? First, when innovation is 

active and hence there are monopolistic varieties, 𝑉𝑉𝑡𝑡𝑚𝑚 > 0, 𝑧𝑧𝑡𝑡𝑚𝑚 =  𝑧𝑧𝑚𝑚 and hence they are sold at 

the price given by:  

𝑝𝑝𝑡𝑡𝑚𝑚 �1 −
1

𝜁𝜁�𝑧𝑧𝑚𝑚�
� = 𝜓𝜓 ⟺ 𝑝𝑝𝑡𝑡𝑚𝑚 =

𝜁𝜁�𝑧𝑧𝑚𝑚�
𝜁𝜁�𝑧𝑧𝑚𝑚� − 1

𝜓𝜓 = 𝑀𝑀�𝑧𝑧𝑚𝑚�𝜓𝜓. 

Since 𝑧𝑧𝑚𝑚 is a monotone increasing function of 𝐿𝐿 𝐹𝐹⁄ , the strong 2nd Law implies that monopolistic 

varieties are sold at a lower markup rate, with a higher 𝐿𝐿 𝐹𝐹⁄ , and hence the larger market size has 

a procompetitive effect. The weak 2nd Law rules out the possibility of the large market size 

having an anti-competitive effect. 

 Second, let us temporarily assume that the marginal cost of production depends on 

varieties, 𝜓𝜓(𝜔𝜔), so that FOC of monopoly pricing becomes: 
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𝑝𝑝𝑡𝑡𝑚𝑚(𝜔𝜔) �1 −
1

𝜁𝜁�𝑧𝑧𝑡𝑡(𝜔𝜔)�
�  = 𝜓𝜓(𝜔𝜔) ⟺ 𝑝𝑝𝑡𝑡𝑚𝑚(𝜔𝜔) = 𝑀𝑀�𝑧𝑧𝑡𝑡(𝜔𝜔)�𝜓𝜓(𝜔𝜔). 

where 𝑧𝑧𝑡𝑡(𝜔𝜔) =  𝑝𝑝𝑡𝑡(𝜔𝜔) 𝐴𝐴(𝐩𝐩𝒕𝒕)⁄ . By totally log-differentiating this expression, we obtain: 

dln 𝑝𝑝𝑡𝑡𝑚𝑚(𝜔𝜔) =
1

1 + Δ
dln𝜓𝜓(𝜔𝜔) +

Δ
1 + Δ

dln𝐴𝐴(𝐩𝐩𝒕𝒕) 

where 

Δ ≡ −
dln𝑀𝑀�𝑧𝑧𝑡𝑡(𝜔𝜔)�

dln 𝑧𝑧𝑡𝑡(𝜔𝜔) =
𝑧𝑧𝑡𝑡(𝜔𝜔)𝜁𝜁′�𝑧𝑧𝑡𝑡(𝜔𝜔)�

�𝜁𝜁�𝑧𝑧𝑡𝑡(𝜔𝜔)� − 1�𝜁𝜁�𝑧𝑧𝑡𝑡(𝜔𝜔)�
, 

where (A1) implies 1 + Δ > 0. This shows how the pricing of a monopolistic variety responds to 

a change in its own marginal cost, 𝜓𝜓(𝜔𝜔), as well as a change in the pricing of competing 

varieties, 𝐴𝐴(𝐩𝐩𝒕𝒕). Under the strong 2nd law, Δ > 0, and hence 

0 <
dln 𝑝𝑝𝑡𝑡𝑚𝑚(𝜔𝜔)
dln𝐴𝐴(𝐩𝐩𝒕𝒕)

=
Δ

1 + Δ
< 1. 

Thus, an increase in 𝐴𝐴(𝐩𝐩𝒕𝒕) leads to an increase in 𝑝𝑝𝑡𝑡𝑚𝑚(𝜔𝜔). In other words, the pricing of 

monopolistic varieties satisfies strategic complementarity in pricing.25 Each monopolist responds 

to an increase in the prices of competing inputs by increasing its price. At the same time, holding 

the pricing of competing inputs, 𝐴𝐴(𝐩𝐩𝒕𝒕), fixed, the strong 2nd law (Δ > 0) implies that 

𝑝𝑝𝑡𝑡𝑚𝑚(𝜔𝜔) responds less than proportionately to a change in its marginal cost, 𝜓𝜓(𝜔𝜔).    

0 <
dln 𝑝𝑝𝑡𝑡𝑚𝑚(𝜔𝜔)
dln𝜓𝜓 (𝜔𝜔) =

1
1 + Δ

< 1, 

which implies that, when the marginal cost goes up, the markup rate would have to decline, 

unless the prices of competing varieties would also go up. This implies (firm-level) incomplete 

(i.e., less than 100%) pass-through.26 This also means that, in cross-section of firms, more 

productive firms have higher markup rates. The weak 2nd law rules out the case of strategic 

substitutes and more than 100% pass-through at the firm level with less productive firms having 

higher markup rates. 

 

 
25That is, firms respond to an increase in the prices of competing products by raising their prices/markup rates. 
26That is, in cross-section of firms, marginal costs are negatively correlated with the markup rates.  In other words, 
more productive firms have higher markup rates. Note that this need not imply an incomplete pass-through at the 
industrial level. If the marginal cost of all firms change equally, dln𝜓𝜓 (𝜔𝜔) = dln𝜓𝜓, the prices of all varieties 
respond proportionately to a change in 𝜓𝜓, dln𝑝𝑝𝑡𝑡(𝜔𝜔) = dln𝜓𝜓 = dln𝐴𝐴(𝐩𝐩𝒕𝒕), in equilibrium. Thus, a uniform increase 
in the marginal cost has no effect on 𝑧𝑧𝑡𝑡(𝜔𝜔), hence on the markup rate, implying a complete pass-through. 
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5. Two Propositions 

 We now consider two key questions about the implications of extending the Judd model 

from CES to H.S.A. and offer two propositions to answer them. 

 The first question asks whether the Judd model of innovation cycles under H.S.A. could 

exhibit types of dynamic paths, which cannot be generated under CES. This boils down to the 

question of whether 𝜃𝜃 can be greater than 𝑒𝑒 = 2.718 …, which is the upper bound of  𝜃𝜃 =

(1 − 𝜎𝜎−1)1−𝜎𝜎, under CES.   Proposition 1 states that the answer is negative under (A2). 

 

Proposition 1. Under (A2), 𝜃𝜃 ∈ (1, 𝑒𝑒),  where 𝑒𝑒 = 2.718 …   

Proof:  Consider the following identity: 

𝜃𝜃 ≡
𝑠𝑠�𝑧𝑧𝑐𝑐�
𝑠𝑠�𝑧𝑧𝑚𝑚�

= exp ��
1 − 𝜁𝜁(𝜏𝜏)

𝜏𝜏
𝑑𝑑𝜏𝜏

𝑧𝑧𝑐𝑐

𝑧𝑧𝑚𝑚
� = exp ��

𝜁𝜁(𝜏𝜏) − 1
𝜏𝜏

𝑑𝑑𝜏𝜏
𝑧𝑧𝑚𝑚

𝑧𝑧𝑐𝑐
�. 

Under (A2), 𝜁𝜁(⋅) is non-decreasing, and hence: 

exp ��
𝜁𝜁(𝜏𝜏) − 1

𝜏𝜏
𝑑𝑑𝜏𝜏

𝑧𝑧𝑚𝑚

𝑧𝑧𝑐𝑐
� ≤ exp ��𝜁𝜁�𝑧𝑧𝑚𝑚� − 1��

𝑑𝑑𝜏𝜏
𝜏𝜏

𝑧𝑧𝑚𝑚

𝑧𝑧𝑐𝑐
� = exp ��𝜁𝜁�𝑧𝑧𝑚𝑚� − 1� ln�

𝑧𝑧𝑚𝑚

𝑧𝑧𝑐𝑐
�� 

= exp �ln�1 −
1

𝜁𝜁�𝑧𝑧𝑚𝑚�
�
1−𝜁𝜁�𝑧𝑧𝑚𝑚�

� = �1 −
1

𝜁𝜁�𝑧𝑧𝑚𝑚�
�
1−𝜁𝜁�𝑧𝑧𝑚𝑚� 

 

which is strictly increasing in 𝜁𝜁�𝑧𝑧𝑚𝑚�, and converges to 𝑒𝑒, as 𝜁𝜁�𝑧𝑧𝑚𝑚� → ∞.∎ 

The intuition behind this result is simple. Under (A2), price elasticities can become only smaller 

at lower prices. Hence, when a monopolistic variety becomes competitively priced, an increase 

in the market share caused by a drop in the price could only be smaller compared to the case of 

CES, not larger. Thus, it has the same upper bound, 𝜃𝜃 < 𝑒𝑒. 

Without (A2), however, 𝜃𝜃 can be arbitrarily large: see Appendix B for an example. Thus, 

the Judd model under H.S.A. in principle could generate stable cycles of any period, or robust 

chaotic attractors with any positive number of cyclic intervals.27 

The second question is when a larger market size/innovation cost ratio, 𝐿𝐿/𝐹𝐹, has 

destabilizing effect on the dynamics of innovation. Since the dynamic behavior becomes more 

 
27For example, one could see in Figure 3 the range of 𝜃𝜃, which generates a stable cycle of period 3, a robust chaotic 
attractor with six cyclic intervals, or a robust chaotic attractor of three cyclic intervals. 
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unstable as 𝜃𝜃 becomes large, this boils down to the question of when Θ(𝐿𝐿/𝐹𝐹) is increasing in 

𝐿𝐿/𝐹𝐹. 

Proposition 2:  If 𝜁𝜁(⋅) − 1 is monotone and log-concave over an interval containing �𝑧𝑧𝑐𝑐, 𝑧𝑧𝑚𝑚�, 

Θ(𝐿𝐿/𝐹𝐹) is increasing in 𝐿𝐿/𝐹𝐹.  If at least one of the monotonicity and the log-concavity 

conditions is strict, Θ(𝐿𝐿/𝐹𝐹) is strictly increasing in 𝐿𝐿/𝐹𝐹. 

Proof: Since 𝑧𝑧𝑚𝑚is strictly increasing in 𝐿𝐿/𝐹𝐹, 𝜃𝜃 ≡ Θ(𝐿𝐿/𝐹𝐹) is strictly increasing in 𝐿𝐿/𝐹𝐹, if and 

only if 𝜃𝜃 ≡ 𝑠𝑠�𝑧𝑧𝑐𝑐�
𝑠𝑠�𝑧𝑧𝑚𝑚�

=
𝑠𝑠�𝑧𝑧𝑚𝑚�1− 1

𝜁𝜁�𝑧𝑧𝑚𝑚�
��

𝑠𝑠�𝑧𝑧𝑚𝑚�
 is strictly increasing in 𝑧𝑧𝑚𝑚.  By log-differentiating 𝜃𝜃 ≡ 𝑠𝑠�𝑧𝑧𝑐𝑐�

𝑠𝑠�𝑧𝑧𝑚𝑚�
 

with respect to 𝑧𝑧𝑚𝑚, 

𝑑𝑑 ln𝜃𝜃
𝑑𝑑 ln�𝑧𝑧𝑚𝑚�

= �1 − 𝜁𝜁�𝑧𝑧𝑐𝑐��
𝑑𝑑 ln�𝑧𝑧𝑐𝑐�
𝑑𝑑 ln�𝑧𝑧𝑚𝑚�

− �1 − 𝜁𝜁�𝑧𝑧𝑚𝑚�� 

= �1 − 𝜁𝜁�𝑧𝑧𝑐𝑐��

⎩
⎪
⎨

⎪
⎧

1 +
𝑑𝑑 ln �1 − 1

𝜁𝜁�𝑧𝑧𝑚𝑚�
� 

𝑑𝑑 ln�𝑧𝑧𝑚𝑚�
⎭
⎪
⎬

⎪
⎫

− �1 − 𝜁𝜁�𝑧𝑧𝑚𝑚�� 

= 𝜁𝜁�𝑧𝑧𝑚𝑚� − 𝜁𝜁�𝑧𝑧𝑐𝑐� −
𝜁𝜁�𝑧𝑧𝑐𝑐� − 1
𝜁𝜁�𝑧𝑧𝑚𝑚� − 1

𝑧𝑧𝑚𝑚𝜁𝜁′�𝑧𝑧𝑚𝑚�
𝜁𝜁�𝑧𝑧𝑚𝑚�

. 

Since the mean value theorem implies 

𝜁𝜁�𝑧𝑧𝑚𝑚� − 𝜁𝜁�𝑧𝑧𝑐𝑐� = 𝜁𝜁′(�̃�𝑧)�𝑧𝑧𝑚𝑚 − 𝑧𝑧𝑐𝑐�   for some �̃�𝑧 ∈ �𝑧𝑧𝑐𝑐, 𝑧𝑧𝑚𝑚�, 

and the monotonicity of 𝜁𝜁(∙) implies 

𝜁𝜁′�𝑧𝑧𝑚𝑚��𝜁𝜁(�̃�𝑧) − 𝜁𝜁�𝑧𝑧𝑐𝑐�� ≥ 0, 

the above expression can be further rewritten as: 

𝑑𝑑 ln 𝜃𝜃
𝑑𝑑 ln�𝑧𝑧𝑚𝑚�

= 𝜁𝜁�𝑧𝑧𝑚𝑚� − 𝜁𝜁�𝑧𝑧𝑐𝑐� −
𝜁𝜁�𝑧𝑧𝑐𝑐� − 1
𝜁𝜁�𝑧𝑧𝑚𝑚� − 1

𝑧𝑧𝑚𝑚𝜁𝜁′�𝑧𝑧𝑚𝑚�
𝜁𝜁�𝑧𝑧𝑚𝑚�

= 𝜁𝜁′(�̃�𝑧)�𝑧𝑧𝑚𝑚 − 𝑧𝑧𝑐𝑐� −
𝜁𝜁�𝑧𝑧𝑐𝑐� − 1
𝜁𝜁�𝑧𝑧𝑚𝑚� − 1

𝑧𝑧𝑚𝑚𝜁𝜁′�𝑧𝑧𝑚𝑚� 
𝜁𝜁�𝑧𝑧𝑚𝑚�

= 𝜁𝜁′(�̃�𝑧)
𝑧𝑧𝑚𝑚

𝜁𝜁�𝑧𝑧𝑚𝑚�
−
𝜁𝜁�𝑧𝑧𝑐𝑐� − 1
𝜁𝜁�𝑧𝑧𝑚𝑚� − 1

𝑧𝑧𝑚𝑚𝜁𝜁′�𝑧𝑧𝑚𝑚� 
𝜁𝜁�𝑧𝑧𝑚𝑚�

 

= �
𝜁𝜁′(�̃�𝑧)
𝜁𝜁′�𝑧𝑧𝑚𝑚�

−
𝜁𝜁�𝑧𝑧𝑐𝑐� − 1
𝜁𝜁�𝑧𝑧𝑚𝑚� − 1

�
𝑧𝑧𝑚𝑚𝜁𝜁′�𝑧𝑧𝑚𝑚� 
𝜁𝜁�𝑧𝑧𝑚𝑚�

≥ �
𝜁𝜁′(�̃�𝑧)
𝜁𝜁′�𝑧𝑧𝑚𝑚�

−
𝜁𝜁(�̃�𝑧) − 1
𝜁𝜁�𝑧𝑧𝑚𝑚� − 1

�
𝑧𝑧𝑚𝑚𝜁𝜁′�𝑧𝑧𝑚𝑚� 
𝜁𝜁�𝑧𝑧𝑚𝑚�
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= �
𝜁𝜁′(�̃�𝑧)

𝜁𝜁(�̃�𝑧) − 1
−

𝜁𝜁′�𝑧𝑧𝑚𝑚�
𝜁𝜁�𝑧𝑧𝑚𝑚� − 1

�
𝑧𝑧𝑚𝑚 (𝜁𝜁(�̃�𝑧) − 1)

𝜁𝜁�𝑧𝑧𝑚𝑚�
≥ 0, 

where the term in the square bracket is non-negative because the log-concavity of 𝜁𝜁(⋅) − 1 

means that 𝜁𝜁
′(⋅)

𝜁𝜁(⋅)−1
 is decreasing. This proves 𝑑𝑑 ln𝜎𝜎

𝑑𝑑 ln�𝑧𝑧𝑚𝑚�
≥ 0 and hence Θ′(𝐿𝐿/𝐹𝐹) ≥ 0.  

Furthermore, if at least one of the monotonicity and the log-concavity conditions holds strictly, 

one of the two inequalities above holds strictly, from which 𝑑𝑑 ln𝜎𝜎
𝑑𝑑 ln�𝑧𝑧𝑚𝑚�

> 0 and Θ′(𝐿𝐿/𝐹𝐹) > 0.  

follows. ∎ 

Corollary:  Under the weak (strong) 2nd Law, 𝜃𝜃 ≡ Θ(𝐿𝐿/𝐹𝐹) is strictly increasing in  𝐿𝐿/𝐹𝐹, if 

𝜁𝜁(⋅) − 1 is strictly (weakly) log-concave. 

Note that the log-concavity of 𝜁𝜁(⋅) − 1 is weaker than the concavity of 𝜁𝜁(⋅) − 1,  and hence the 

concavity of 𝜁𝜁(⋅). For a thrice-continuously differentiable 𝑠𝑠(⋅), and hence twice-continuously 

differentiable 𝜁𝜁(⋅), 𝜁𝜁(⋅) − 1 is weakly log-concave if and only if   

𝜁𝜁′′(⋅) ≤
�𝜁𝜁′(⋅)�

2

𝜁𝜁(⋅) − 1
, 

which can be interpreted as 𝜁𝜁(⋅) being “not too convex.”   

What is the intuition behind Corollary? Under (A1), a higher 𝐿𝐿/𝐹𝐹 leads to a continuous 

increase in both 𝑧𝑧𝑚𝑚 and 𝑧𝑧𝑐𝑐 .  Under the strong 2nd Law, 𝜁𝜁′(⋅) > 0, the procompetitive effect leads 

to an increase in 𝜁𝜁�𝑧𝑧𝑚𝑚� as well as an increase in 𝜁𝜁(𝑧𝑧) over the range, (𝑧𝑧𝑐𝑐, 𝑧𝑧𝑚𝑚).  The former 

implies a lower markup rate, and hence the price drop due to the loss of monopoly is smaller, 

which contributes to a smaller 𝜃𝜃. The latter implies the market share responds more to the price 

drop, which contributes to a larger 𝜃𝜃.  As we know from the CES case, if the price elasticity 

would go up uniformly, the latter quantity effect dominates the former price effect, and 𝜃𝜃 would 

go up. If 𝜁𝜁(⋅) is not “too convex,” 𝜁𝜁�𝑧𝑧𝑚𝑚� does not go up too much faster than 𝜁𝜁(𝑧𝑧) over the 

range, (𝑧𝑧𝑐𝑐 , 𝑧𝑧𝑚𝑚), so that the former price effect does not dominate the latter quantity, and hence, 𝜃𝜃 

becomes increasing in 𝐿𝐿/𝐹𝐹.28   

 

 
28The above argument also tells us how things can go “wrong,” when the log-concavity of 𝜁𝜁(⋅) − 1 fails. See 
Appendix D for a pathological example, where 𝜃𝜃 is strictly decreasing in 𝐿𝐿 𝐹𝐹⁄  in spite of the strong 2nd law. In 
Appendix E, we show two parametric families, which satisfy the log-concavity condition in addition to the strong 
2nd law, and as such, they demonstrate the power of Proposition 2.  Both families contain CES as a limit case. 
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6. Two Parametric Families: Generalized Translog and Constant Pass-Through 

 The log-concavity of 𝜁𝜁(⋅) − 1 implies 𝑧𝑧̅ = ∞, hence rules out the choke price.  This section 

presents two parametric families of H.S.A., which satisfy the strong 2nd Law with the choke 

price, hence violate the log-concavity condition. Yet, they are tractable enough that 𝜃𝜃 can be 

expressed explicitly and shown to be strictly increasing in 𝐿𝐿 𝐹𝐹⁄ .  Thus, these two parametric 

families demonstrate that the log-concavity is merely sufficient, but not necessary for a larger 

market size/innovation cost ratio to be destabilizing through the procompetitive effect. We call 

the first family, “generalized translog,” because it contains the translog as a special case. We call 

the second family, “constant pass-through,” because it implies that the elasticity of the monopoly 

price with response to the marginal cost, the pass-through rate, is constant and less than one. 

Even though both families feature the choke price, each contains CES as a limit case.29 

Interestingly, the destabilizing effects of the market size/innovation cost ratio through the 

procompetitive effect become amplified as the demand system approaches to the CES limit 

within each family.  In other words, the qualitative properties of the dynamics change 

discontinuously with an arbitrarily small departure from CES. 

 

Example 1:  Generalized Translog 

𝑠𝑠(𝑧𝑧) =

⎩
⎪
⎨

⎪
⎧𝛾𝛾 �1 −

𝜎𝜎 − 1
𝜂𝜂

ln �
𝑧𝑧
𝛽𝛽
��

𝜂𝜂

= 𝛾𝛾 �
1 − 𝜎𝜎
𝜂𝜂

ln �
𝑧𝑧
𝑧𝑧̅
��

𝜂𝜂

for 𝑧𝑧 < 𝑧𝑧̅ ≡ 𝛽𝛽𝑒𝑒
𝜂𝜂

𝜎𝜎−1

0 for 𝑧𝑧 ≥ 𝑧𝑧̅ ≡ 𝛽𝛽𝑒𝑒
𝜂𝜂

𝜎𝜎−1

 

where 𝛽𝛽 > 0, 𝜂𝜂 > 0;  𝜎𝜎 > 1.  Then, 

𝜁𝜁(𝑧𝑧) = 1 +
𝜎𝜎 − 1

1 − 𝜎𝜎 − 1
𝜂𝜂 ln �𝑧𝑧𝛽𝛽�

= 1 −
𝜂𝜂

ln �𝑧𝑧𝑧𝑧̅�
> 1,   for 𝑧𝑧 < 𝑧𝑧̅ ≡ 𝛽𝛽𝑒𝑒

𝜂𝜂
𝜎𝜎−1 

which is strictly increasing in 𝑧𝑧 ∈ (0, 𝑧𝑧̅) with the range (1,∞), and hence satisfying the strong 

2nd Law.  Homothetic symmetric translog is a special case of this family, where 𝜂𝜂 = 1.30  CES is 

the limit case of this family, as 𝜂𝜂 → ∞, while holding 𝛽𝛽 > 0 and  𝜎𝜎 > 1 fixed, with  

 
29This is so even though CES has no choke price, because the choke price goes to infinity as one takes the limit in 
these families.  
30To see this, eq. (19’) of Feenstra (2003) gives the expression for the market share for each product under translog 
as 𝑝𝑝(𝜔𝜔)

𝑃𝑃(𝐩𝐩)
𝜕𝜕𝑃𝑃(𝐩𝐩)
𝜕𝜕𝑝𝑝(𝜔𝜔)

= 1
𝑁𝑁
− 𝛾𝛾′ �ln𝑝𝑝(𝜔𝜔) − 1

𝑁𝑁 ∫ ln𝑝𝑝(𝜔𝜔′)𝑑𝑑𝜔𝜔′
Ω � , (𝛾𝛾′ > 0), where 𝑁𝑁 is the measure of Ω. This can be rewritten 
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𝑧𝑧 < 𝑧𝑧̅ ≡ 𝛽𝛽𝑒𝑒
𝜂𝜂

𝜎𝜎−1 → ∞; 

𝑠𝑠(𝑧𝑧) = 𝛾𝛾 �1 −
𝜎𝜎 − 1
𝜂𝜂

ln �
𝑧𝑧
𝛽𝛽
��

𝜂𝜂

→ 𝛾𝛾 �
𝑧𝑧
𝛽𝛽
�
1−𝜎𝜎

; 

𝜁𝜁(𝑧𝑧) = 1 +
𝜎𝜎 − 1

1 − 𝜎𝜎 − 1
𝜂𝜂 ln �𝑧𝑧𝛽𝛽�

→ 𝜎𝜎. 

Because ln(𝜁𝜁(𝑧𝑧) − 1) = ln 𝜂𝜂 − ln(ln(𝑧𝑧̅ 𝑧𝑧⁄ )) is convex for 𝑧𝑧 ∈ (𝑧𝑧̅ 𝑒𝑒⁄ , 𝑧𝑧̅), the log-

concavity condition in Proposition 2 fails. It is thus necessary to go through a calculation 

explicitly.  From 

𝐿𝐿
𝐹𝐹

=
𝜁𝜁�𝑧𝑧𝑚𝑚�
𝑠𝑠�𝑧𝑧𝑚𝑚�

=
�ln�𝑧𝑧̅ 𝑧𝑧𝑚𝑚⁄ ��

−𝜂𝜂
+ 𝜂𝜂�ln�𝑧𝑧̅ 𝑧𝑧𝑚𝑚⁄ ��

−𝜂𝜂−1

𝛾𝛾 �𝜎𝜎 − 1
𝜂𝜂 �

𝜂𝜂 , 

where 𝑧𝑧𝑚𝑚 is strictly increasing in 𝐿𝐿 𝐹𝐹⁄ ∈ (0,∞) with the range (0, 𝑧𝑧̅).   Using 

𝑧𝑧𝑐𝑐 = 𝑧𝑧𝑚𝑚 �1 −
1

𝜁𝜁�𝑧𝑧𝑚𝑚�
� =

𝜂𝜂𝑧𝑧𝑚𝑚

𝜂𝜂 + ln�𝑧𝑧̅ 𝑧𝑧𝑚𝑚⁄ �
, 

we obtain 

𝜃𝜃 ≡
𝑠𝑠�𝑧𝑧𝑐𝑐�
𝑠𝑠�𝑧𝑧𝑚𝑚�

= �
ln�𝑧𝑧̅ 𝑧𝑧𝑐𝑐⁄ �
ln�𝑧𝑧̅ 𝑧𝑧𝑚𝑚⁄ �

�
𝜂𝜂

=

⎣
⎢
⎢
⎢
⎡ln�𝑧𝑧𝑚𝑚 𝑧𝑧̅⁄ � + ln �1 − 1

𝜁𝜁�𝑧𝑧𝑚𝑚�
�

ln�𝑧𝑧𝑚𝑚 𝑧𝑧̅⁄ �
⎦
⎥
⎥
⎥
⎤
𝜂𝜂

  

= �1 +
1
𝜂𝜂

ln �1 −
1

𝜁𝜁�𝑧𝑧𝑚𝑚�
�
1−𝜁𝜁�𝑧𝑧𝑚𝑚�

�

𝜂𝜂

< �1 +
1
𝜂𝜂
�
𝜂𝜂

< 𝑒𝑒. 

Because 𝜃𝜃 is increasing in 𝜁𝜁�𝑧𝑧𝑚𝑚�, which is increasing in 𝑧𝑧𝑚𝑚, 𝜃𝜃 is strictly increasing in 𝑧𝑧𝑚𝑚 and 

hence strictly increasing in 𝐿𝐿 𝐹𝐹⁄  with the range, 1 < 𝜃𝜃 < (1 + 1 𝜂𝜂⁄ )𝜂𝜂.  From this, we can 

conclude that the condition for the stable steady state always holds if 𝛿𝛿(𝜃𝜃 − 1) <

𝛿𝛿[(1 + 1 𝜂𝜂⁄ )𝜂𝜂 − 1] < 1.  If 𝛿𝛿[(1 + 1 𝜂𝜂⁄ )𝜂𝜂 − 1] > 1 > 𝛿𝛿2[(1 + 1 𝜂𝜂⁄ )𝜂𝜂 − 1], a stable period-2 

cycle merges for a sufficiently high 𝐿𝐿 𝐹𝐹⁄ .  If 𝛿𝛿2[(1 + 1 𝜂𝜂⁄ )𝜂𝜂 − 1] > 1, an increase in 𝐿𝐿 𝐹𝐹⁄  first 

leads to the emergence of a stable period-2 cycle, which then becomes unstable, and leads to the 

emergence of a chaotic attractor.  Note that the existence of endogenous fluctuations requires the 

 
as 𝑝𝑝(𝜔𝜔)

𝑃𝑃(𝐩𝐩)
𝜕𝜕𝑃𝑃(𝐩𝐩)
𝜕𝜕𝑝𝑝(𝜔𝜔)

= −𝛾𝛾′ ln �𝑝𝑝(𝜔𝜔)
𝐴𝐴(𝐩𝐩)

�, with ln𝐴𝐴(𝐩𝐩) ≡ 1
𝛾𝛾𝑁𝑁

+ 1
𝑁𝑁 ∫ ln𝑝𝑝(𝜔𝜔′)𝑑𝑑𝜔𝜔′

Ω  and 𝑠𝑠(𝑧𝑧) ≡ 𝛾𝛾′max{ln(1/𝑧𝑧) , 0}, which can be 
obtained by setting  𝜂𝜂 = 1 and normalizing 𝛾𝛾′ = 𝛾𝛾(𝜎𝜎 − 1) and 𝛽𝛽𝜎𝜎−1 = 𝑒𝑒. 
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𝜂𝜂 > 1.  Furthermore, for 𝛿𝛿 > (𝑒𝑒 − 1)−1 ≈ 0.582, it is more likely for a large 𝐿𝐿 𝐹𝐹⁄  to generate 

endogenous fluctuations (even chaotic fluctuations for 𝛿𝛿 > (𝑒𝑒 − 1)−1 2⁄ ≈ 0.763), as 𝜂𝜂 becomes 

larger, i.e., when it is closer to the limit case of CES within this family. This occurs because the 

upper bound of 𝜃𝜃, (1 + 1 𝜂𝜂⁄ )𝜂𝜂, is independent of 𝜎𝜎 > 1 and (1 + 1 𝜂𝜂⁄ )𝜂𝜂 → 𝑒𝑒, as we approach to 

the CES limit, 𝜂𝜂 → ∞, and yet, in the CES limit, 𝜃𝜃 = (1 − 1 𝜎𝜎⁄ )1−𝜎𝜎 < 𝑒𝑒. In other words, the 

qualitative properties of the dynamical system change discontinuously with an arbitrarily small 

departure from CES, even though the underlying demand system converges to CES; the 

destabilizing effects of the market size/innovation cost ratio through the procompetitive effect 

become amplified as the demand system approaches to the CES limit. 

 

Example 2:  Constant Pass-Through31 

𝑠𝑠(𝑧𝑧) =

⎩
⎪
⎨

⎪
⎧𝛾𝛾 �𝜎𝜎 − (𝜎𝜎 − 1) �

𝑧𝑧
𝛽𝛽
�
∆
�
1 ∆⁄

= 𝛾𝛾𝜎𝜎
1
∆ �1 − �

𝑧𝑧
𝑧𝑧̅
�
∆
�
1 ∆⁄

for 𝑧𝑧 < 𝑧𝑧̅ ≡ 𝛽𝛽 �
𝜎𝜎

𝜎𝜎 − 1
�
1 ∆⁄

0 for 𝑧𝑧 ≥ 𝑧𝑧̅ ≡ 𝛽𝛽 �
𝜎𝜎

𝜎𝜎 − 1
�
1 ∆⁄

 

with constant parameters, 𝛾𝛾,𝛽𝛽,∆ > 0 and 𝜎𝜎 > 1.  Then, 

𝜁𝜁(𝑧𝑧) =
1

1 − �1 − 1
𝜎𝜎� �

𝑧𝑧
𝛽𝛽�

∆ =
1

1 − �𝑧𝑧𝑧𝑧̅�
∆ > 1, for 𝑧𝑧 < 𝑧𝑧̅ ≡ 𝛽𝛽 �

𝜎𝜎
𝜎𝜎 − 1

�
1 ∆⁄

 

which is strictly increasing in 𝑧𝑧 ∈ (0, 𝑧𝑧̅) with the range (1,∞), and hence satisfying the strong 

2nd Law.   

From the pricing rule, 𝑧𝑧𝑡𝑡𝑐𝑐, 𝑧𝑧𝑡𝑡𝑚𝑚 ∈ (0, 𝑧𝑧̅) satisfy: 

𝑧𝑧𝑡𝑡𝑐𝑐 = 𝑧𝑧𝑡𝑡𝑚𝑚 �1 −
1

𝜁𝜁(𝑧𝑧𝑡𝑡𝑚𝑚)� = 𝑧𝑧𝑡𝑡𝑚𝑚 �
𝑧𝑧𝑡𝑡𝑚𝑚

𝑧𝑧̅
�
∆

⇒ 𝑧𝑧𝑡𝑡𝑚𝑚 = (𝑧𝑧̅)
∆

1+∆(𝑧𝑧𝑡𝑡𝑐𝑐)
1

1+∆ 

⇒ ln 𝑝𝑝𝑡𝑡𝑚𝑚 =
∆

1 + ∆
ln(𝐴𝐴(𝐩𝐩𝒕𝒕)𝑧𝑧̅) +

1
1 + ∆

ln(𝜓𝜓) 

so that this family is characterized by the constant pass-through rate, 0 < 1 (1 + ∆)⁄ < 1. CES is 

the limit case of this family as ∆→ 0, while holding 𝛽𝛽 > 0 and 𝜎𝜎 > 1 fixed, with 

𝑧𝑧̅ ≡ 𝛽𝛽 �
𝜎𝜎

𝜎𝜎 − 1
�
1 ∆⁄

→ ∞; 

 
31In Matsuyama and Ushchev (2020b), we proposed three parametric families of demand systems, all featuring a 
constant pass-through rate. One of them is within the class of H.S.A. This is its symmetric version.   
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𝜁𝜁(𝑧𝑧) =
1

1 − �1 − 1
𝜎𝜎� �

𝑧𝑧
𝛽𝛽�

∆ → 𝜎𝜎 

and, using l’Hôpital’s rule: 

lim
∆→0

ln
𝑠𝑠(𝑧𝑧)
𝛾𝛾

= lim
∆→0

ln �𝜎𝜎 − (𝜎𝜎 − 1) �𝑧𝑧𝛽𝛽�
∆
�

∆
= lim

∆→0

(1 − 𝜎𝜎) �𝑧𝑧𝛽𝛽�
∆

ln 𝑧𝑧

𝜎𝜎 − (𝜎𝜎 − 1) �𝑧𝑧𝛽𝛽�
∆ = (1 − 𝜎𝜎) ln 𝑧𝑧, 

and hence 

𝑠𝑠(𝑧𝑧) = 𝛾𝛾 �𝜎𝜎 − (𝜎𝜎 − 1) �
𝑧𝑧
𝛽𝛽
�
∆
�
1 ∆⁄

→ 𝛾𝛾𝑧𝑧1−𝜎𝜎 . 

This family satisfies (A2), but 𝜁𝜁(𝑧𝑧) − 1 is not log-concave, so we cannot use Proposition 

2 to show that 𝜃𝜃 is increasing in 𝐿𝐿 𝐹𝐹⁄ . To calculate 𝜃𝜃 explicitly,  

𝑧𝑧𝑐𝑐 = 𝑧𝑧𝑚𝑚 �1 −
1

𝜁𝜁�𝑧𝑧𝑚𝑚�
� = 𝑧𝑧𝑚𝑚 �

𝑧𝑧𝑚𝑚

𝑧𝑧̅
�
∆

⇒
𝑧𝑧𝑐𝑐

𝑧𝑧̅
= �

𝑧𝑧𝑚𝑚

𝑧𝑧̅
�
1+∆

; 

𝑠𝑠�𝑧𝑧𝑚𝑚�
𝜁𝜁�𝑧𝑧𝑚𝑚�

𝐿𝐿
𝐹𝐹

 ≡ 1 ⇒ 𝛾𝛾𝜎𝜎
1
∆
𝐿𝐿
𝐹𝐹
�1 − �

𝑧𝑧𝑚𝑚

𝑧𝑧̅
�
∆

�
1+1 ∆⁄

= 1 ⇒ �
𝑧𝑧𝑐𝑐

𝑧𝑧̅
�

∆
1+∆

= �
𝑧𝑧𝑚𝑚

𝑧𝑧̅
�
∆

= 1 − �
𝐹𝐹

𝛾𝛾𝜎𝜎
1
∆𝐿𝐿
�

∆
1+∆

  

for 𝐹𝐹 𝐿𝐿⁄ < 𝛾𝛾𝜎𝜎
1
∆.  In this range, 𝑧𝑧𝑐𝑐 and 𝑧𝑧𝑚𝑚 are both strictly increasing in 𝐿𝐿 𝐹𝐹⁄ . Since 

𝜃𝜃 ≡
𝑠𝑠�𝑧𝑧𝑐𝑐�
𝑠𝑠�𝑧𝑧𝑚𝑚�

=

⎣
⎢
⎢
⎢
⎡1 − �

𝑧𝑧𝑐𝑐
𝑧𝑧̅ �

∆

1 − �
𝑧𝑧𝑚𝑚
𝑧𝑧̅ �

∆

⎦
⎥
⎥
⎥
⎤
1 ∆⁄

=

⎣
⎢
⎢
⎢
⎡1 − �

𝑧𝑧𝑚𝑚
𝑧𝑧̅ �

∆(1+∆)

1 − �
𝑧𝑧𝑚𝑚
𝑧𝑧̅ �

∆

⎦
⎥
⎥
⎥
⎤
1 ∆⁄

 

is also strictly increasing in 𝑧𝑧𝑚𝑚,32 𝜃𝜃 is strictly increasing in 𝐿𝐿 𝐹𝐹⁄  with the range,  

1 < 𝜃𝜃 < (1 + ∆)1 ∆⁄ .  The upper bound of 𝜃𝜃, (1 + ∆)1 ∆⁄ , is decreasing in ∆ and (1 + ∆)1 ∆⁄ ⋚ 2 

for ∆ ⋛ 1 and (1 + ∆)1 ∆⁄ → 𝑒𝑒, as ∆→ 0. From this, we can conclude that the steady state is 

always stable if 𝛿𝛿(𝜃𝜃 − 1) < 𝛿𝛿�(1 + ∆)1 ∆⁄ − 1� < 1. If 𝛿𝛿�(1 + ∆)1 ∆⁄ − 1� > 1 >

𝛿𝛿2�(1 + ∆)1 ∆⁄ − 1�, which requires ∆ < 1, a stable period-2 cycle emerges for a sufficiently high 

𝐿𝐿 𝐹𝐹⁄ . If 𝛿𝛿2�(1 + ∆)1 ∆⁄ − 1� > 1, an increase in 𝐿𝐿 𝐹𝐹⁄  first causes the loss of the stability of the 

 
32To see this, let 𝜉𝜉 ≡ �𝑧𝑧𝑚𝑚 𝑧𝑧̅⁄ �∆so that 𝜃𝜃 ≡ 𝜃𝜃(𝜉𝜉) = �1−𝜉𝜉

(1+∆)

1−𝜉𝜉
�
1 ∆⁄

 .  Then, 𝑑𝑑
𝑑𝑑𝜉𝜉
�1−𝜉𝜉

(1+∆)

1−𝜉𝜉
� = ∆𝜉𝜉(1+∆)−(1+∆)𝜉𝜉∆+1

(1−𝜉𝜉)2
≡ 𝑁𝑁(𝜉𝜉)

(1−𝜉𝜉)2
>

0 for 0 < 𝜉𝜉 < 1, because 𝑁𝑁(1) = 0 and 𝑁𝑁′(𝜉𝜉) = (1 + ∆)∆(𝜉𝜉 − 1)𝜉𝜉∆−1 < 0 for 0 < 𝜉𝜉 < 1.  
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steady state, which leads to the emergence of a stable period-2 cycle. A further increase in 𝐿𝐿 𝐹𝐹⁄  

then causes the loss of the stability of the period-2 cycle, which leads to the emergence of a 

chaotic attractor.  Note that the existence of endogenous fluctuations requires the (constant) pass-

through rate, 1 (1 + ∆),⁄  to be greater than one half.  Furthermore, for 𝛿𝛿 > (𝑒𝑒 − 1)−1 ≈ 0.582, it 

is more likely for a large 𝐿𝐿 𝐹𝐹⁄  to generate endogenous fluctuations (even chaotic fluctuations for 

𝛿𝛿 > (𝑒𝑒 − 1)−1 2⁄ ≈ 0.763), as ∆ becomes smaller and hence the pass-through rate, 1 (1 + ∆)⁄ , 

becomes closer to one, i.e., when it is closer to the limit case of CES within this family. This 

occurs because the upper bound of 𝜃𝜃, (1 + ∆)1 ∆⁄ , is independent of 𝜎𝜎 > 1 and (1 + ∆)1 ∆⁄ → 𝑒𝑒, 

as we approach to the CES limit, ∆→ 0, and yet, in the CES limit, 𝜃𝜃 = (1 − 1 𝜎𝜎⁄ )1−𝜎𝜎 < 𝑒𝑒. In 

other words, similar to the generalized translog family, the qualitative properties of the 

dynamical system under the constant pass-through family change discontinuously with an 

arbitrarily small departure from CES, even though the underlying demand system converges to 

CES; the destabilizing effects of the market size/innovation cost ratio through the procompetitive 

effect become amplified as the demand system approaches to the CES limit. 

 

7.   A Multi-Market Extension 

Let us now consider some cross-sectional implications in a multi-market/sector 

extension. Thanks to the homotheticity of the H.S.A. demand systems, such an extension is 

straightforward. Imagine that there are 𝐽𝐽 markets or sectors, indexed by 𝑗𝑗 = 1,2, … , 𝐽𝐽.  Each 

produces the single consumption good, 𝑗𝑗, whose market size is 𝐿𝐿𝑗𝑗, by assembling 𝑗𝑗-specific 

intermediate inputs in Ω𝑗𝑗, with CRS technology that belongs to the H.S.A. class, characterized by 

𝑠𝑠𝑗𝑗(∙); with the innovation cost, 𝐹𝐹𝑗𝑗, and the survival rate, 𝛿𝛿𝑗𝑗.  Market size, 𝐿𝐿𝑗𝑗, is exogenously 

fixed. This could be justified, for example, by assuming that there are identical households, 

which collectively supply 𝐿𝐿 units of labor, and their preferences are given by Cobb-Douglas of 

the following form, ∑ 𝛽𝛽𝑗𝑗 ln𝑋𝑋𝑗𝑗
𝐽𝐽
𝑗𝑗=1  with ∑ 𝛽𝛽𝑗𝑗

𝐽𝐽
𝑗𝑗=1 = 1. Then, 𝐿𝐿𝑗𝑗 = 𝛽𝛽𝑗𝑗𝐿𝐿.  Alternatively, there may be 

𝐽𝐽 different types of consumers, with 𝐿𝐿𝑗𝑗 being the total income of type-𝑗𝑗 consumers, who consume 

only type-𝑗𝑗 consumption good.  Here “types” may be their “tastes” or “cities they live.” Then, 

the dynamics of innovations in different markets/sectors are decoupled, with each following  

𝑛𝑛𝑗𝑗,𝑡𝑡+1 = 𝑓𝑓𝑗𝑗�𝑛𝑛𝑗𝑗,𝑡𝑡� ≡ �
𝑓𝑓𝑗𝑗𝐿𝐿�𝑛𝑛𝑗𝑗,𝑡𝑡� ≡ 𝛿𝛿𝑗𝑗�𝜃𝜃𝑗𝑗 + �1 − 𝜃𝜃𝑗𝑗�𝑛𝑛𝑗𝑗,𝑡𝑡� 𝑓𝑓𝑓𝑓𝑓𝑓 
𝑓𝑓𝑗𝑗𝐻𝐻�𝑛𝑛𝑗𝑗,𝑡𝑡� ≡ 𝛿𝛿𝑗𝑗𝑛𝑛𝑗𝑗,𝑡𝑡 𝑓𝑓𝑓𝑓𝑓𝑓 

𝑛𝑛𝑗𝑗,𝑡𝑡 < 1
𝑛𝑛𝑗𝑗,𝑡𝑡 > 1 
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where 𝜃𝜃𝑗𝑗  is given by 

𝜃𝜃𝑗𝑗 ≡
𝑠𝑠𝑗𝑗 �𝑧𝑧𝑗𝑗𝑚𝑚 �1 − 1

𝜁𝜁𝑗𝑗�𝑧𝑧𝑗𝑗𝑚𝑚�
��

𝑠𝑠𝑗𝑗�𝑧𝑧𝑗𝑗𝑚𝑚�
> 1;  

𝜁𝜁𝑗𝑗�𝑧𝑧𝑗𝑗𝑚𝑚�
𝑠𝑠𝑗𝑗�𝑧𝑧𝑗𝑗𝑚𝑚�

=
1

𝑠𝑠𝑗𝑗�𝑧𝑧𝑗𝑗𝑚𝑚�
�1 −

𝑧𝑧𝑗𝑗𝑚𝑚𝑠𝑠𝑗𝑗′�𝑧𝑧𝑗𝑗𝑚𝑚�
𝑠𝑠𝑗𝑗�𝑧𝑧𝑗𝑗𝑚𝑚�

� ≡
𝐿𝐿𝑗𝑗
𝐹𝐹𝑗𝑗

. 

This allows us to do market-by-market analysis. 

 To consider cross-sectional implications, let us think of 𝐽𝐽 metropolitan areas, which differ 

only in market size, 𝐿𝐿𝑗𝑗, so that we can index them in such a way that 𝐿𝐿1 < 𝐿𝐿2 < ⋯ < 𝐿𝐿𝐽𝐽.  Then, 

under either of the two complementary sets of sufficient conditions discussed above, 𝜃𝜃1 < 𝜃𝜃2 <

⋯𝜃𝜃𝐽𝐽.  Furthermore, since the steady state 𝑛𝑛∗ is increasing in 𝜃𝜃, 𝑛𝑛1∗ < 𝑛𝑛2∗ < ⋯ < 𝑛𝑛𝐽𝐽∗.  Thus, over 

the long run, metropolitan areas with larger markets have more innovation/entry activities (even 

in per capita term, if market size is due to the population size). However, the dynamics are more 

volatile in larger markets. This implies, among others, that the sales of each product, conditional 

on surviving idiosyncratic obsolescence shocks, fluctuates more in larger markets.33 

Furthermore, the dynamics may converge to the steady state and innovation occurs steadily in 

smaller markets, while they may converge to periodic cycles or even chaotic attractors so that 

innovations occur only intermittently in larger markets. Hence, innovation/entry activities are not 

always higher in larger markets than in smaller markets.34 

 

8. Concluding Remarks 

In this paper, we have studied how market size affects the patterns of fluctuations in the 

dynamics of innovation. Previous models of endogenous innovation cycles were silent on this 

issue, because a change in market size alters the amplitude of fluctuations but not the nature of 

fluctuations. This is due to the ubiquitous assumption of CES homothetic demand system, under 

which monopolistically competitive firms sell their products at an exogenous markup rate. This 

feature stands at odds with ample empirical evidence for the procompetitive effect of entry and 

market size. In the presence of such procompetitive effect, a larger market invites more firms to 

 
33If the innovating firms remain the sole producers of their products even after they have lost the monopoly power, 
which may be justified if the competitive fringes have to pay an arbitrarily small fixed cost to produce, this also 
means that the revenue of firms fluctuates more in larger markets. This is in line with the empirical evidence by 
Gaubert (2014, Ch.1) in cross-sections of the French metropolitan areas.   
34In a different context, Vives (2008) shows that, if firms have access to process innovations, which lower their 
marginal costs, larger market size could lead to more process innovations, not necessarily more entry of new firms. 
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enter. As a result, firms face more elastic demand, which forces them to set their prices at lower 

markup rates. Such competitive pressures make innovations more sensitive to changing market 

environments, thereby causing instability in the dynamics of innovation. To capture this 

intuition, we extended the Judd model of endogenous innovation cycles; we allowed for the 

procompetitive effect by replacing the assumption of CES demand system with a more general 

homothetic demand system, H.S.A., which contains both CES and homothetic translog as special 

cases. We show that a larger market size/innovation cost ratio has destabilizing effects in the 

dynamics of innovation through the procompetitive effect under two complementary sets of 

sufficient conditions; i) when the price elasticity is “not too convex” in price; and ii) when the 

demand system belongs to two parametric families of “generalized translog” or “constant pass-

through,” each of which features the choke price and yet contains CES as a limit case. This 

allows us to use them to check the robustness of the results under CES.  One might think a priori 

that, as the demand system approaches to the CES limit within each family, the destabilizing 

effects would become smaller and converge to zero.  It turns out, however, that they become 

amplified as the demand system approaches to the CES limit.  In other words, the qualitative 

properties of the dynamics change discontinuously with an arbitrarily small departure from CES 

within each family, even though the underlying demand system converges to CES. This provides 

a caution for using the CES demand system as an approximation even if the estimated pass-

through rate is arbitrarily close to one. We also discussed cross-sectional implications in a multi-

market extension.  Because innovation/entry activities fluctuate more in larger markets, they are 

not always higher in larger markets than in smaller markets.  Furthermore, the sale of each 

product, conditional on surviving idiosyncratic obsolescence shocks, is more volatile in larger 

markets. 

One might wonder how the analysis needs to be modified if we use, instead of H.S.A., 

HDIA and HIIA, the two alternative classes of homothetic demand systems, studied in 

Matsuyama and Ushchev (2020a). A preliminary investigation reveals that the equilibrium 

trajectory is obtained by iterating a one-dimensional piecewise smooth map with two branches, 

nonlinear and decreasing in the lower branch and linear and increasing in the upper branch. In 

other words, the slope of the lower branch, determined by the delayed impact of innovation, is no 

longer a constant. Thus, the map is no longer analytically solvable and needs to be solved 

numerically. Nevertheless, we conjecture that many features of a skewed-V map are preserved, 
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and qualitative insights carry over. This is because a skewed-V map can be used as a linear 

approximation (a normal form, in the language of the dynamical system theory) for such 

piecewise smooth maps; see Avrutin et.al. (2019, chapter 5.5); for an application of this 

technique in economics, see Matsuyama, Sushko, and Gardini (2016; Fig.8).35   

Beyond this application, H.S.A. demand systems should provide a useful alternative for 

the ubiquitous CES demand system in monopolistic competition models. Being tractable and yet 

capable of accommodating the procompetitive effect, they can capture mechanisms that cannot 

be captured by the CES assumption.36 In particular, the two parametric families in Section 6, 

“generalized translog” and “constant pass-through,” should find many applications. 

  

 
35One might also wonder how market size could affect the nature of fluctuations through the procompetitive effect in 
other models of endogenous innovation cycles, particularly in the implementation cycle model of Shleifer (1986). 
First, unlike the Judd model, which generates endogenous fluctuation along the unique equilibrium path, the Shleifer 
model generates endogenous fluctuations through expectational indeterminacy and multiple equilibria. There always 
exists an equilibrium path that does not fluctuate in the absence of exogenous shocks. We conjecture that 
introducing the procompetitive effect would not affect such a non-fluctuating equilibrium path. Second, as already 
explained in footnote 9, Shleifer’s mechanism, in contrast to Judd’s, hinges on the strategic complementarity in 
innovation, that is, the monopoly profit earned by an innovator, goes up if more innovations occur at the same time. 
The procompetitive effect, which causes the markup rate to go down, would weaken the strategic complementarity, 
thereby reducing the likelihood of multiple equilibria, and possibly eliminating fluctuating equilibrium paths. For 
this reason, we conjecture that larger market size, and resulting competitive pressures have stabilizing effects in 
Shleifer’s model. If this conjecture is correct, it suggests that studying market size and volatility of innovation/entry 
activities provides a way to test these two alternative mechanisms of generating endogenous innovation cycles. 
36For recent applications of H.S.A., see Grossman, Helpman, and Lhuillier (2021) and Matsuyama and Ushchev 
(working in progress). 
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Appendix A: Kinked Demand System: An Example  

Consider the case where 𝑠𝑠(⋅) has a kink, so that it is only piecewise continuously differentiable. 

In this case, 𝜁𝜁(𝑧𝑧) is discontinuous at the kink. Furthermore, the profit maximizing value of 𝑧𝑧𝑡𝑡𝑚𝑚 

may occur at a discontinuity point of 𝜁𝜁(𝑧𝑧), where 𝜁𝜁(⋅) jumps up, i.e., 𝑠𝑠′(⋅) jumps down or 

equivalently, |𝑠𝑠′(⋅)| jumps up.   If so, it is characterized by: 

lim
𝑧𝑧↑𝑧𝑧𝑑𝑑

𝑧𝑧 �1 −
1

𝜁𝜁(𝑧𝑧)� < 𝑧𝑧𝑡𝑡𝑐𝑐 < lim
𝑧𝑧↓𝑧𝑧𝑑𝑑

𝑧𝑧 �1 −
1

𝜁𝜁(𝑧𝑧)� < 𝑧𝑧𝑡𝑡𝑚𝑚 = 𝑧𝑧𝑑𝑑; lim
𝑧𝑧↑𝑧𝑧𝑑𝑑

𝜁𝜁(𝑧𝑧)
𝑠𝑠(𝑧𝑧) <

𝐿𝐿
𝐹𝐹

< lim
𝑧𝑧↓𝑧𝑧𝑑𝑑

𝜁𝜁(𝑧𝑧)
𝑠𝑠(𝑧𝑧) 

by denoting the discontinuity point by 𝑧𝑧𝑑𝑑 .   The following example illustrates such a case. 

 

Example A: kinked CES:  For 0 < 𝜀𝜀 < 𝜎𝜎 − 1 , 

𝑠𝑠(𝑧𝑧) = �𝑧𝑧
1−(𝜎𝜎−𝜀𝜀)

𝑧𝑧1−𝜎𝜎
if 𝑧𝑧 ≤ 1
if 𝑧𝑧 ≥ 1 ⇒ 𝜁𝜁(𝑧𝑧) = �

𝜎𝜎 − 𝜀𝜀
[𝜎𝜎 − 𝜀𝜀,𝜎𝜎]

𝜎𝜎

if 𝑧𝑧 < 1
if 𝑧𝑧 = 1
if 𝑧𝑧 > 1

 

⇒
𝜁𝜁(𝑧𝑧)
𝑠𝑠(𝑧𝑧) = �

(𝜎𝜎 − 𝜀𝜀)𝑧𝑧𝜎𝜎−𝜀𝜀−1
[𝜎𝜎 − 𝜀𝜀,𝜎𝜎]
𝜎𝜎𝑧𝑧𝜎𝜎−1

if 𝑧𝑧 < 1
if 𝑧𝑧 = 1
if 𝑧𝑧 > 1

. 

 

For 𝐿𝐿 𝐹𝐹⁄ <  𝜎𝜎 − 𝜀𝜀, we have 𝑧𝑧𝑐𝑐 < 𝑧𝑧𝑚𝑚 < 𝑧𝑧𝑑𝑑 = 1 with 

 𝑧𝑧𝑐𝑐 = �
𝐿𝐿/𝐹𝐹
𝜎𝜎 − 𝜀𝜀

�
1

(𝜎𝜎−𝜀𝜀)−1
�1 −

1
𝜎𝜎 − 𝜀𝜀

� = 𝑧𝑧𝑚𝑚 �1 −
1

𝜎𝜎 − 𝜀𝜀
� < 𝑧𝑧𝑚𝑚 = �

𝐿𝐿/𝐹𝐹
𝜎𝜎 − 𝜀𝜀

�
1

(𝜎𝜎−𝜀𝜀)−1
< 1 

⟹ 𝜃𝜃 = �1 −
1

𝜎𝜎 − 𝜀𝜀
�
1−(𝜎𝜎−𝜀𝜀)

 

For 𝜎𝜎 − 𝜀𝜀 <  𝐿𝐿 𝐹𝐹⁄ <  𝜎𝜎,  we have 𝑧𝑧𝑐𝑐 <  𝑧𝑧𝑚𝑚 = 𝑧𝑧𝑑𝑑 = 1 with, 

𝑧𝑧𝑐𝑐 = 1 −
𝐹𝐹
𝐿𝐿

< 𝑧𝑧𝑚𝑚 = 1 ⟹ 𝜃𝜃 = �1 −
𝐹𝐹
𝐿𝐿
�
1−(𝜎𝜎−𝜀𝜀)

. 

For 𝜎𝜎 < 𝐿𝐿 𝐹𝐹⁄ < 𝜎𝜎 �1 − 1
𝜎𝜎
�
1−𝜎𝜎

 , we have 𝑧𝑧𝑐𝑐 <  𝑧𝑧𝑑𝑑 = 1 < 𝑧𝑧𝑚𝑚 with, 

 𝑧𝑧𝑐𝑐 = �
𝐿𝐿
𝜎𝜎𝐹𝐹
�

1
𝜎𝜎−1

�1 −
1
𝜎𝜎
� = 𝑧𝑧𝑚𝑚 �1 −

1
𝜎𝜎
� < 1 < 𝑧𝑧𝑚𝑚 = �

𝐿𝐿
𝜎𝜎𝐹𝐹
�

1
𝜎𝜎−1

⟹ 𝜃𝜃 = �
𝐿𝐿
𝜎𝜎𝐹𝐹
�

𝜀𝜀
𝜎𝜎−1

�1 −
1
𝜎𝜎
�
1−𝜎𝜎+𝜀𝜀

. 

 

For 𝐿𝐿 𝐹𝐹⁄ > 𝜎𝜎 �1 − 1
𝜎𝜎
�
1−𝜎𝜎

 we have  𝑧𝑧𝑑𝑑 = 1 < 𝑧𝑧𝑐𝑐 < 𝑧𝑧𝑚𝑚 with, 
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1 <  𝑧𝑧𝑐𝑐 = �
𝐿𝐿
𝜎𝜎𝐹𝐹
�

1
𝜎𝜎−1

�1 −
1
𝜎𝜎
� = 𝑧𝑧𝑚𝑚 �1 −

1
𝜎𝜎
� < 𝑧𝑧𝑚𝑚 = �

𝐿𝐿
𝜎𝜎𝐹𝐹
�

1
𝜎𝜎−1

⟹ 𝜃𝜃 = �1 −
1
𝜎𝜎
�
1−𝜎𝜎

. 

 

Hence, 𝜃𝜃 is strictly increasing in 𝐿𝐿 𝐹𝐹⁄  for 𝜎𝜎 − 𝜀𝜀 < 𝐿𝐿 𝐹𝐹⁄ < 𝜎𝜎 �1 − 1
𝜎𝜎
�
1−𝜎𝜎

  and constant otherwise. 

 

Appendix B: An example, showing that 𝜽𝜽 can be arbitrarily large without (A2).   

 

Example B: 

𝑠𝑠(𝑧𝑧) = exp ��
1 − 𝜁𝜁(𝜏𝜏)

𝜏𝜏
𝑑𝑑𝜏𝜏

𝑧𝑧

1
�, 

where 𝜁𝜁(𝑧𝑧) is given by 

1 −
1

𝜁𝜁(𝑧𝑧) = �1 − 𝐴𝐴−𝛽𝛽(1 − 𝐴𝐴1−𝛼𝛼)𝑧𝑧𝛽𝛽 𝑖𝑖𝑓𝑓 𝑧𝑧 ≤ 𝐴𝐴
𝐴𝐴𝑧𝑧−𝛼𝛼 𝑖𝑖𝑓𝑓 𝑧𝑧 > 𝐴𝐴

 

where 𝛼𝛼 ∈ (0,1) and 𝐴𝐴 ∈ (0,1) and  

𝛽𝛽 ≡
𝛼𝛼𝐴𝐴1−𝛼𝛼

1 − 𝐴𝐴1−𝛼𝛼
> 0 

By construction, 𝜁𝜁(𝑧𝑧) > 1, and continuously differentiable. Hence 𝑠𝑠(𝑧𝑧) is twice-continuously 

differentiable and strictly decreasing with lim𝑧𝑧→0𝑠𝑠(𝑧𝑧) = ∞, lim𝑧𝑧→∞𝑠𝑠(𝑧𝑧) = 0, and 𝑠𝑠(1) = 1.  

Furthermore,  

𝑧𝑧 �1 −
1

𝜁𝜁(𝑧𝑧)� = �𝑧𝑧 − 𝐴𝐴−𝛽𝛽(1− 𝐴𝐴1−𝛼𝛼)𝑧𝑧1+𝛽𝛽 𝑖𝑖𝑓𝑓 𝑧𝑧 ≤ 𝐴𝐴
𝐴𝐴𝑧𝑧1−𝛼𝛼 𝑖𝑖𝑓𝑓 𝑧𝑧 > 𝐴𝐴

 

is strictly increasing.  Hence, (A1) holds, even though 𝜁𝜁(𝑧𝑧) is strictly decreasing, and hence (A2) 

is violated. From iii) in Lemma,  𝑠𝑠(𝑧𝑧) 𝜁𝜁(𝑧𝑧)⁄  is strictly decreasing. For  𝐹𝐹 𝐿𝐿⁄ = 1 − 𝐴𝐴, the unique 

solution of   

𝑠𝑠�𝑧𝑧𝑚𝑚�
𝜁𝜁�𝑧𝑧𝑚𝑚�

𝐿𝐿
𝐹𝐹

= 1 

is given by 𝑧𝑧𝑚𝑚 = 1, from which 

𝑧𝑧𝑚𝑚 = 1 > 𝑧𝑧𝑐𝑐 = 𝑧𝑧𝑚𝑚 �1 −
1

𝜁𝜁�𝑧𝑧𝑚𝑚�
� = 𝐴𝐴, 

from which 
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1 −
1

𝜁𝜁�𝑧𝑧𝑚𝑚�
= 𝐴𝐴; 1 −

1
𝜁𝜁�𝑧𝑧𝑐𝑐�

= 𝐴𝐴1−𝛼𝛼 

Because 𝑠𝑠(𝑧𝑧) 𝜁𝜁(𝑧𝑧)⁄  is strictly decreasing, this implies 

𝜃𝜃 ≡
𝑠𝑠(𝑧𝑧𝑐𝑐)
𝑠𝑠(𝑧𝑧𝑚𝑚)

>
𝜁𝜁(𝑧𝑧𝑐𝑐)
𝜁𝜁(𝑧𝑧𝑚𝑚)

=
1 − 𝐴𝐴

1 − 𝐴𝐴1−𝛼𝛼
, 

where the RHS becomes arbitrarily large as 𝛼𝛼 → 1. 

 Thus, without (A2), the unique attractor of dynamical system eq.(24) could be a stable 

cycle of any positive number of periods or a chaotic attractor with any positive number of cyclic 

intervals, depending on 𝜃𝜃 and 𝛿𝛿. 

 

Appendix C: What might happen when (A1) is violated  

Now, let us consider what might happen when (A1) is violated so that  

1 − 𝜁𝜁(𝑧𝑧) >  
𝑧𝑧𝜁𝜁′(𝑧𝑧)
𝜁𝜁(𝑧𝑧)   

for some 𝑧𝑧 ∈ (0, 𝑧𝑧̅). Then, from Lemma,   

i) 𝑧𝑧(1 −  1 𝜁𝜁(𝑧𝑧)⁄ ) is strictly decreasing at such 𝑧𝑧 ∈ (0, 𝑧𝑧̅).  

ii) For some 𝑧𝑧𝑐𝑐 ∈ (0, 𝑧𝑧̅), 𝜋𝜋(𝑧𝑧) ≡ (1 −  𝑧𝑧𝑐𝑐 𝑧𝑧⁄ )𝑠𝑠(𝑧𝑧) has multiple peaks in 𝑧𝑧 ∈ (𝑧𝑧𝑐𝑐, 𝑧𝑧̅). 

iii) 𝑠𝑠(𝑧𝑧) 𝜁𝜁(𝑧𝑧)⁄  is strictly increasing at such 𝑧𝑧 ∈ (0, 𝑧𝑧̅). 

 

In this case, we need to worry about the possibility that there may be more than one relative 

price, 𝑧𝑧𝑡𝑡𝑚𝑚, that maximizes the profit of monopolists in equilibrium. If two such relative prices, 

𝑧𝑧1𝑡𝑡𝑚𝑚 and 𝑧𝑧2𝑡𝑡𝑚𝑚 > 𝑧𝑧1𝑡𝑡𝑚𝑚, exist, they must satisfy the following conditions: 

𝑧𝑧1𝑡𝑡𝑚𝑚  �1 −
1

𝜁𝜁(𝑧𝑧1𝑡𝑡𝑚𝑚 )
� = 𝑧𝑧2𝑡𝑡𝑚𝑚  �1 −

1
𝜁𝜁(𝑧𝑧2𝑡𝑡𝑚𝑚 )

� = 𝑧𝑧𝑡𝑡𝑐𝑐 , 

𝑠𝑠(𝑧𝑧1𝑡𝑡𝑚𝑚)
𝜁𝜁(𝑧𝑧1𝑡𝑡𝑚𝑚) =

𝑠𝑠(𝑧𝑧2𝑡𝑡𝑚𝑚)
𝜁𝜁(𝑧𝑧2𝑡𝑡𝑚𝑚) =

𝐹𝐹
𝐿𝐿

 

where both 𝑧𝑧1𝑡𝑡𝑚𝑚 and 𝑧𝑧2𝑡𝑡𝑚𝑚 > 𝑧𝑧1𝑡𝑡𝑚𝑚 must satisfy the SOC, which means that they are at an increasing 

segment of 𝑧𝑧(1 −  1 𝜁𝜁(𝑧𝑧)⁄ ) and at a decreasing segment of  𝑠𝑠(𝑧𝑧) 𝜁𝜁(𝑧𝑧)⁄ .  Furthermore, the budget 

constraint implies   

𝑉𝑉1𝑡𝑡𝑚𝑚𝑠𝑠(𝑧𝑧1𝑡𝑡𝑚𝑚) + 𝑉𝑉2𝑡𝑡𝑚𝑚𝑠𝑠(𝑧𝑧2𝑡𝑡𝑚𝑚) + 𝑉𝑉𝑡𝑡𝑐𝑐𝑠𝑠(𝑧𝑧𝑡𝑡𝑐𝑐) = 1, 

where 𝑉𝑉1𝑡𝑡𝑚𝑚 > 0 innovators/monopolists select 𝑧𝑧1𝑡𝑡𝑚𝑚 and 𝑉𝑉2𝑡𝑡𝑚𝑚 > 0 innovators/monopolists select 𝑧𝑧2𝑡𝑡𝑚𝑚. 

 For this to happen, 
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First, there must exist  𝑧𝑧1𝑚𝑚 and 𝑧𝑧2𝑚𝑚 > 𝑧𝑧1𝑚𝑚 that solve the following two equations: 

𝑧𝑧1𝑚𝑚  �1 −
1

𝜁𝜁(𝑧𝑧1𝑚𝑚 )
� = 𝑧𝑧2𝑚𝑚  �1 −

1
𝜁𝜁(𝑧𝑧2𝑚𝑚 )

� 

𝑠𝑠(𝑧𝑧1𝑚𝑚)
𝜁𝜁(𝑧𝑧1𝑚𝑚) =

𝑠𝑠(𝑧𝑧2𝑚𝑚)
𝜁𝜁(𝑧𝑧2𝑚𝑚) 

Second, the value of 𝐹𝐹 𝐿𝐿⁄  must coincide with the common value of 𝑠𝑠(𝑧𝑧) 𝜁𝜁(𝑧𝑧)⁄  at 𝑧𝑧1𝑚𝑚 and 𝑧𝑧2𝑚𝑚: 

𝑠𝑠(𝑧𝑧1𝑚𝑚)
𝜁𝜁(𝑧𝑧1𝑚𝑚) =

𝑠𝑠(𝑧𝑧2𝑚𝑚)
𝜁𝜁(𝑧𝑧2𝑚𝑚) =

𝐹𝐹
𝐿𝐿

 

Third, the value of 𝑉𝑉𝑡𝑡𝑐𝑐 must satisfy  

𝑉𝑉𝑡𝑡𝑐𝑐𝑠𝑠(𝑧𝑧𝑐𝑐) < 1, 

where 𝑧𝑧𝑐𝑐 is given by the common value of 𝑧𝑧(1 −  1 𝜁𝜁(𝑧𝑧)⁄ ) at 𝑧𝑧1𝑚𝑚 and 𝑧𝑧2𝑚𝑚: 

𝑧𝑧𝑐𝑐 = 𝑧𝑧1𝑚𝑚  �1 −
1

𝜁𝜁(𝑧𝑧1𝑚𝑚 )
� = 𝑧𝑧2𝑚𝑚  �1 −

1
𝜁𝜁(𝑧𝑧2𝑚𝑚 )

� 

Then, any combination of 𝑉𝑉1𝑡𝑡𝑚𝑚 > 0 and 𝑉𝑉2𝑡𝑡𝑚𝑚 > 0 satisfying 

𝑉𝑉1𝑡𝑡𝑚𝑚𝑠𝑠(𝑧𝑧1𝑚𝑚) + 𝑉𝑉2𝑡𝑡𝑚𝑚𝑠𝑠(𝑧𝑧2𝑚𝑚) = 1 − 𝑉𝑉𝑡𝑡𝑐𝑐𝑠𝑠(𝑧𝑧𝑐𝑐) > 0. 

can be an equilibrium. This means that the total innovation, 𝑉𝑉𝑡𝑡𝑚𝑚 = 𝑉𝑉1𝑡𝑡𝑚𝑚 + 𝑉𝑉2𝑡𝑡𝑚𝑚 can be any value in  

1
𝑠𝑠(𝑧𝑧1𝑚𝑚) −

𝑠𝑠(𝑧𝑧𝑐𝑐)
𝑠𝑠(𝑧𝑧1𝑚𝑚)𝑉𝑉𝑡𝑡

𝑐𝑐 ≤  𝑉𝑉𝑡𝑡𝑚𝑚 ≤  
1

𝑠𝑠(𝑧𝑧2𝑚𝑚) −
𝑠𝑠(𝑧𝑧𝑐𝑐)
𝑠𝑠(𝑧𝑧2𝑚𝑚)𝑉𝑉𝑡𝑡

𝑐𝑐 

Or 
1

𝑠𝑠(𝑧𝑧1𝑚𝑚) + (1 − 𝜃𝜃1)𝑉𝑉𝑡𝑡𝑐𝑐 ≤ 𝑉𝑉𝑡𝑡𝑐𝑐 +  𝑉𝑉𝑡𝑡𝑚𝑚 ≤  
1

𝑠𝑠(𝑧𝑧1𝑚𝑚) + (1 − 𝜃𝜃2)𝑉𝑉𝑡𝑡𝑐𝑐 

where 

𝜃𝜃1 ≡
𝑠𝑠(𝑧𝑧𝑐𝑐)
𝑠𝑠(𝑧𝑧1𝑚𝑚) < 𝜃𝜃2 ≡

𝑠𝑠(𝑧𝑧𝑐𝑐)
𝑠𝑠(𝑧𝑧2𝑚𝑚) 

From this, the dynamical system of 𝑛𝑛𝑡𝑡 = 𝑠𝑠(𝑧𝑧𝑐𝑐)𝑉𝑉𝑡𝑡𝑐𝑐 becomes: 

𝛿𝛿 max{𝜃𝜃1 + (1 − 𝜃𝜃1)𝑛𝑛𝑡𝑡,𝑛𝑛𝑡𝑡} ≤ 𝑛𝑛𝑡𝑡+1 ≤ 𝛿𝛿max{𝜃𝜃2 + (1 − 𝜃𝜃2)𝑛𝑛𝑡𝑡,𝑛𝑛𝑡𝑡} 

Hence, the dynamical system becomes ill-defined (or allow for a continuum of paths). 

 However, this can occur only if the value of 𝐹𝐹 𝐿𝐿⁄  happens to be equal to: 

𝑠𝑠(𝑧𝑧1𝑚𝑚)
𝜁𝜁(𝑧𝑧1𝑚𝑚) =

𝑠𝑠(𝑧𝑧2𝑚𝑚)
𝜁𝜁(𝑧𝑧2𝑚𝑚) =

𝐹𝐹
𝐿𝐿

 

where 𝑧𝑧1𝑚𝑚 and 𝑧𝑧2𝑚𝑚 > 𝑧𝑧1𝑚𝑚 solve the following two equations: 
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𝑧𝑧1𝑚𝑚  �1 −
1

𝜁𝜁(𝑧𝑧1𝑚𝑚 )
� = 𝑧𝑧2𝑚𝑚  �1 −

1
𝜁𝜁(𝑧𝑧2𝑚𝑚 )

� 

𝑠𝑠(𝑧𝑧1𝑚𝑚)
𝜁𝜁(𝑧𝑧1𝑚𝑚) =

𝑠𝑠(𝑧𝑧2𝑚𝑚)
𝜁𝜁(𝑧𝑧2𝑚𝑚) 

Hence, generically, this can occur only for a finite number of particular values of 𝐹𝐹 𝐿𝐿⁄ .   And 

when a change in 𝐹𝐹 𝐿𝐿⁄  crosses such a particular value from below, 𝑧𝑧𝑚𝑚 jumps from  𝑧𝑧1𝑚𝑚 to  𝑧𝑧2𝑚𝑚 

and 𝜃𝜃 jumps from 𝜃𝜃1 ≡ 𝑠𝑠(𝑧𝑧𝑐𝑐) 𝑠𝑠(𝑧𝑧1𝑚𝑚)⁄   to 𝜃𝜃2 ≡ 𝑠𝑠(𝑧𝑧𝑐𝑐) 𝑠𝑠(𝑧𝑧2𝑚𝑚)⁄ . 

 To illustrate this, consider the following example (although this example implies that 

𝜁𝜁(𝑧𝑧) is discontinuous) 

 

Example C: kinked CES:  For 0 < 𝜀𝜀 < 𝜎𝜎 − 1 , define the market share function as follows: 

𝑠𝑠(𝑧𝑧) = max�𝑧𝑧1−𝜎𝜎, 𝑧𝑧1−(𝜎𝜎−𝜀𝜀)�. 

The corresponding zeta-function is well defined for all 𝑧𝑧 ≠ 1, and is given by: 

𝜁𝜁(𝑧𝑧) = �𝜎𝜎,           𝑧𝑧 < 1,
𝜎𝜎 − 𝜀𝜀,   𝑧𝑧 > 1. 

In what follows, 𝜋𝜋(𝑧𝑧) will denote the profit function, while 𝜋𝜋∗(𝑧𝑧𝑐𝑐) will denote the maximum 

value of 𝜋𝜋(𝑧𝑧) as a function of 𝑧𝑧𝑐𝑐. 

Lemma A1. 

i) If 𝑧𝑧𝑐𝑐 ≤ 1 − 1 (𝜎𝜎 − 𝜀𝜀)⁄ , then 𝜋𝜋(𝑧𝑧) is single peaked, and its maximizer is smaller than 

1. 

ii) If 1 − 1 (𝜎𝜎 − 𝜀𝜀)⁄ < 𝑧𝑧𝑐𝑐 < 1 − 1 𝜎𝜎⁄ , then 𝜋𝜋(𝑧𝑧) has two local maximizers, one smaller 

than 1 and the other greater than 1; 

iii) If 𝑧𝑧𝑐𝑐 ≥ 1 − 1 𝜎𝜎⁄ , then 𝜋𝜋(𝑧𝑧) is single peaked, and its maximizer is greater than 1. 

Proof:  It is readily verified that 𝜋𝜋(𝑧𝑧) can be represented as follows; 

𝜋𝜋(𝑧𝑧) = max{𝜋𝜋1(𝑧𝑧),𝜋𝜋2(𝑧𝑧)}, 

where 

𝜋𝜋1(𝑧𝑧) ≡ �1 −
𝑧𝑧𝑐𝑐

𝑧𝑧
� 𝑧𝑧1−𝜎𝜎, 𝜋𝜋2(𝑧𝑧) ≡ �1 −

𝑧𝑧𝑐𝑐

𝑧𝑧
� 𝑧𝑧1−(𝜎𝜎−𝜀𝜀). 

Both 𝜋𝜋1(𝑧𝑧) and 𝜋𝜋2(𝑧𝑧) are single-peaked. Furthermore, evaluating the derivatives of 𝜋𝜋1(𝑧𝑧) and 

𝜋𝜋2(𝑧𝑧) at 𝑧𝑧 = 1 yields: 

𝜋𝜋1′ (1) = 𝑧𝑧𝑐𝑐 + (1 − 𝑧𝑧𝑐𝑐)(1 − 𝜎𝜎), 𝜋𝜋2′ (1) = 𝑧𝑧𝑐𝑐 + (1 − 𝑧𝑧𝑐𝑐)[1 − (𝜎𝜎 − 𝜀𝜀)], 
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which yields: 

𝑧𝑧𝑐𝑐 ≤ 1 − 1
𝜎𝜎−𝜀𝜀

 ⟺ 𝜋𝜋1′ (1) < 0 and 𝜋𝜋2′ (1) ≤ 0 ⟹ i) 

1 − 1
𝜎𝜎−𝜀𝜀

< 𝑧𝑧𝑐𝑐 < 1 − 1
𝜎𝜎
 ⟺ 𝜋𝜋1′ (1) < 0 < 𝜋𝜋2′ (1) ⟹ ii) 

𝑧𝑧𝑐𝑐 ≥ 1 − 1
𝜎𝜎
 ⟺ 𝜋𝜋1′ (1) ≥ 0 and 𝜋𝜋2′ (1) > 0 ⟹ iii) 

This completes the proof. ∎ 

 

Lemma A2. There exists a unique value �̃�𝑧 ∈ �1 − 1
𝜎𝜎−𝜀𝜀

, 1 − 1
𝜎𝜎
�, such that: 

i) If 𝑧𝑧𝑐𝑐 < �̃�𝑧, then 𝑧𝑧1𝑚𝑚 ≡ 𝑧𝑧𝑐𝑐

1−1 𝜎𝜎⁄
< 1 is the unique global profit maximizer; 

ii) If 𝑧𝑧𝑐𝑐 > �̃�𝑧, then 𝑧𝑧2𝑚𝑚 ≡ 𝑧𝑧𝑐𝑐

1−1 (𝜎𝜎−𝜀𝜀)⁄ > 1 is the unique global profit maximizer; 

iii) If 𝑧𝑧𝑐𝑐 = �̃�𝑧, then both 𝑧𝑧1𝑚𝑚 < 1 and 𝑧𝑧2𝑚𝑚 > 1 are global profit maximizers. 

Proof. We start with proving part iii). It is readily verified that  

𝜋𝜋∗(𝑧𝑧𝑐𝑐) = max{𝜋𝜋1∗(𝑧𝑧𝑐𝑐),𝜋𝜋2∗(𝑧𝑧𝑐𝑐)} , 

where 

𝜋𝜋1∗(𝑧𝑧𝑐𝑐) ≡ max
𝑧𝑧≥0

𝜋𝜋1(𝑧𝑧) =
1
𝜎𝜎
�1 −

1
𝜎𝜎
�
𝜎𝜎−1

(𝑧𝑧𝑐𝑐)1−𝜎𝜎, 

𝜋𝜋2∗(𝑧𝑧𝑐𝑐) ≡ max
𝑧𝑧≥0

𝜋𝜋2(𝑧𝑧) =
1

𝜎𝜎 − 𝜀𝜀
�1 −

1
𝜎𝜎 − 𝜀𝜀

�
𝜎𝜎−𝜀𝜀−1

(𝑧𝑧𝑐𝑐)1−(𝜎𝜎−𝜀𝜀). 

Thus, 𝑧𝑧𝑐𝑐 = �̃�𝑧 must be a solution to the following equation: 

𝜋𝜋1∗(𝑧𝑧𝑐𝑐) = 𝜋𝜋2∗(𝑧𝑧𝑐𝑐). 

Because 𝜋𝜋1∗(𝑧𝑧𝑐𝑐) and 𝜋𝜋2∗(𝑧𝑧𝑐𝑐) are power functions with different exponents, this equation has a 

unique positive solution 𝑧𝑧𝑐𝑐 = �̃�𝑧, where �̃�𝑧 is given by: 

�̃�𝑧 ≡ �
(𝜎𝜎 − 𝜀𝜀) �1 − 1

𝜎𝜎 − 𝜀𝜀�
1−(𝜎𝜎−𝜀𝜀)

𝜎𝜎 �1 − 1
𝜎𝜎�

1−𝜎𝜎 �

1
𝜀𝜀

. 

In this case, 𝜋𝜋(𝑧𝑧) has two global maximizers given by: 

𝑧𝑧1𝑚𝑚 ≡
�̃�𝑧

1 − 1 𝜎𝜎⁄
, 𝑧𝑧2𝑚𝑚 ≡

�̃�𝑧
1 − 1 (𝜎𝜎 − 𝜀𝜀)⁄ . 

This proves part iii). 
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When 𝑧𝑧𝑐𝑐 < �̃�𝑧, we have 𝜋𝜋1∗(𝑧𝑧𝑐𝑐) > 𝜋𝜋2∗(𝑧𝑧𝑐𝑐) ⟹ 𝜋𝜋1∗(𝑧𝑧𝑐𝑐) = 𝜋𝜋∗(𝑧𝑧𝑐𝑐), hence 𝑧𝑧1𝑚𝑚 < 1 is a unique 

global maximizer of 𝜋𝜋(𝑧𝑧), which proves part i). Likewise, if 𝑧𝑧𝑐𝑐 > �̃�𝑧, we have 𝜋𝜋2∗(𝑧𝑧𝑐𝑐) >

𝜋𝜋1∗(𝑧𝑧𝑐𝑐) ⟹ 𝜋𝜋2∗(𝑧𝑧𝑐𝑐) = 𝜋𝜋∗(𝑧𝑧𝑐𝑐), hence 𝑧𝑧2𝑚𝑚 > 1 is a unique global maximizer of 𝜋𝜋(𝑧𝑧). This proves 

part ii), which completes the proof. ∎ 

 

Proposition A. 

i) If 𝐿𝐿 𝐹𝐹⁄ < 1 𝜋𝜋∗(�̃�𝑧)⁄ , then in equilibrium all monopolists set the price 𝑝𝑝1𝑚𝑚 =

𝜓𝜓 (1 − 1 𝜎𝜎⁄ )⁄  

ii) If 𝐿𝐿 𝐹𝐹⁄ = 1 𝜋𝜋∗(�̃�𝑧)⁄ , then there is a continuum of equilibria; 

iii) If 𝐿𝐿 𝐹𝐹⁄ > 1 𝜋𝜋∗(�̃�𝑧)⁄ , then in equilibrium all monopolists set the price 𝑝𝑝2𝑚𝑚 =

𝜓𝜓 [1 − 1 (𝜎𝜎 − 𝜀𝜀)⁄ ]⁄ . 

Proof. The zero-profit condition can be stated as follows: 

𝜋𝜋∗(𝑧𝑧𝑐𝑐) =
𝐹𝐹
𝐿𝐿

. 

Because 𝜋𝜋∗(𝑧𝑧𝑐𝑐) = max{𝜋𝜋1∗(𝑧𝑧𝑐𝑐),𝜋𝜋2∗(𝑧𝑧𝑐𝑐)} , 𝜋𝜋∗(𝑧𝑧𝑐𝑐) is a decreasing function, because it is an 

upper envelope of two decreasing functions. Combining this with Lemma 2A, we have: 

𝐿𝐿 𝐹𝐹⁄ < 1 𝜋𝜋∗(�̃�𝑧)⁄  ⟺ 𝑧𝑧𝑐𝑐 < �̃�𝑧 ⟺ 𝑧𝑧1𝑚𝑚 < 1 is the unique global profit maximizer; 

𝐿𝐿 𝐹𝐹⁄ = 1 𝜋𝜋∗(�̃�𝑧)⁄  ⟺ 𝑧𝑧𝑐𝑐 = �̃�𝑧 ⟺ 𝑧𝑧1𝑚𝑚 < 1 and 𝑧𝑧2𝑚𝑚 > 1 are global profit maximizers; 

𝐿𝐿 𝐹𝐹⁄ > 1 𝜋𝜋∗(�̃�𝑧)⁄  ⟺ 𝑧𝑧𝑐𝑐 > �̃�𝑧 ⟺ 𝑧𝑧2𝑚𝑚 > 1 is the unique global profit maximizer. 

Observing that 𝑝𝑝𝑚𝑚 = 𝜓𝜓 𝑧𝑧𝑚𝑚 𝑧𝑧𝑐𝑐⁄  completes the proof. ∎ 

 

We now come to studying the behaviour of 𝜃𝜃. When 𝐿𝐿 𝐹𝐹⁄ < 1 𝜋𝜋∗(�̃�𝑧)⁄ , we have: 

𝜃𝜃 = �1 −
1
𝜎𝜎
�
1−𝜎𝜎

. 

However, as 𝐿𝐿 𝐹𝐹⁄  reaches the level of 1 𝜋𝜋∗(�̃�𝑧)⁄ , 𝜃𝜃 jumps upwards and becomes: 

𝜎𝜎
𝜎𝜎 − 𝜀𝜀

�1 −
1
𝜎𝜎
�
1−𝜎𝜎

. 

Observe that this value is not bounded from above by 𝑒𝑒, and can be made arbitrarily large. 

When 𝐿𝐿 𝐹𝐹⁄ ∈ (1 𝜋𝜋∗(�̃�𝑧)⁄ , 1 𝜋𝜋∗(1)⁄ ), we have: 

𝜃𝜃 = �1 −
1

𝜎𝜎 − 𝜀𝜀
�
1−(𝜎𝜎−𝜀𝜀)

(𝑧𝑧𝑐𝑐)−𝜀𝜀 . 
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Because 𝑧𝑧𝑐𝑐 = (𝜋𝜋∗)−1(𝐹𝐹 𝐿𝐿⁄ ) increases with 𝐿𝐿 𝐹𝐹⁄ , while 𝜃𝜃 decreases with 𝑧𝑧𝑐𝑐, we conclude that 𝜃𝜃 

decreases with 𝐿𝐿 𝐹𝐹⁄  over (1 𝜋𝜋∗(�̃�𝑧)⁄ , 1 𝜋𝜋∗(1)⁄ ). Finally, when 𝐿𝐿 𝐹𝐹⁄ ≥ 1 𝜋𝜋∗(1)⁄ , 𝜃𝜃 is again 

constant and is given by: 

𝜃𝜃 = �1 −
1

𝜎𝜎 − 𝜀𝜀
�
1−(𝜎𝜎−𝜀𝜀)

. 

To sum up, the impact of a growing 𝐿𝐿 𝐹𝐹⁄  is, first, destabilizing, and then stabilizing. 

 

Appendix D: (A2) alone does not ensure that 𝜽𝜽 is increasing in 𝑳𝑳 𝑭𝑭⁄ .  

The next example satisfies (A2), but not the log-concavity condition.  And 𝜃𝜃 can be 

decreasing in 𝐿𝐿 𝐹𝐹⁄ .  Thus, (A2) alone is not sufficient for 𝜃𝜃 to be increasing in 𝐿𝐿 𝐹𝐹⁄ . 

Example D: Additively Perturbed CES  

𝑠𝑠(𝑧𝑧) = max{𝑧𝑧1−𝜎𝜎 − 𝜀𝜀𝜎𝜎−1, 0} , (𝜎𝜎 > 1;  𝜀𝜀 > 0) ⟹ 

𝜁𝜁(𝑧𝑧) =
𝜎𝜎𝑧𝑧1−𝜎𝜎 − 𝜀𝜀𝜎𝜎−1

𝑧𝑧1−𝜎𝜎 − 𝜀𝜀𝜎𝜎−1
=
𝜎𝜎 − (𝜀𝜀𝑧𝑧)𝜎𝜎−1

1 − (𝜀𝜀𝑧𝑧)𝜎𝜎−1
= 𝜎𝜎 +

𝜎𝜎 − 1
(𝜀𝜀𝑧𝑧)1−𝜎𝜎 − 1

, 

with 𝜎𝜎 > 1 and 𝜀𝜀 > 0.  𝜁𝜁(𝑧𝑧) is strictly increasing in 𝑧𝑧 ∈ (0,1/𝜀𝜀) with the range from 𝜎𝜎 to ∞. It 

thus satisfies (A2), but not the log-concavity.  Hence, it is necessary to go through calculation 

explicitly as follows: 

𝜃𝜃 =
𝑠𝑠 �𝑧𝑧𝑚𝑚 �1 − 1

𝜁𝜁�𝑧𝑧𝑚𝑚�
��

𝑠𝑠�𝑧𝑧𝑚𝑚�
=
�𝑧𝑧𝑚𝑚 �1 − 1

𝜁𝜁�𝑧𝑧𝑚𝑚�
��

1−𝜎𝜎

− 𝜀𝜀𝜎𝜎−1

(𝑧𝑧𝑚𝑚)1−𝜎𝜎 − 𝜀𝜀𝜎𝜎−1
=
�
𝜎𝜎 − (𝜀𝜀𝑧𝑧𝑚𝑚)𝜎𝜎−1

𝜎𝜎 − 1 �
𝜎𝜎−1

− (𝜀𝜀𝑧𝑧𝑚𝑚)𝜎𝜎−1

1 − (𝜀𝜀𝑧𝑧𝑚𝑚)𝜎𝜎−1
, 

where 𝑧𝑧𝑚𝑚 is given by 

𝐿𝐿
𝐹𝐹

=
𝜁𝜁�𝑧𝑧𝑚𝑚�
𝑠𝑠�𝑧𝑧𝑚𝑚�

=
(𝑧𝑧𝑚𝑚)𝜎𝜎−1

1 − (𝜀𝜀𝑧𝑧𝑚𝑚)𝜎𝜎−1
𝜎𝜎 − (𝜀𝜀𝑧𝑧𝑚𝑚)𝜎𝜎−1

1 − (𝜀𝜀𝑧𝑧𝑚𝑚)𝜎𝜎−1
 

and it is strictly increasing in 𝐿𝐿 𝐹𝐹⁄ ∈ (0,∞) with the range, (0, 1 𝜀𝜀⁄ ). Therefore, as 𝑧𝑧𝑚𝑚 → 0,

𝜁𝜁�𝑧𝑧𝑚𝑚� → 𝜎𝜎 and 𝜃𝜃 → �1 − 1
𝜎𝜎
�
1−𝜎𝜎

 and, as 𝑧𝑧𝑚𝑚 → 1 𝜀𝜀⁄ ,  𝜁𝜁�𝑧𝑧𝑚𝑚� → ∞ and 𝜃𝜃 → 2.  This means that, 

for 𝜎𝜎 < 2, 𝜃𝜃 is strictly increasing in 𝑧𝑧𝑚𝑚 ∈ (0, 1 𝜀𝜀⁄ ), hence strictly increasing in 𝐿𝐿 𝐹𝐹⁄ ∈ (0,∞); 

for 𝜎𝜎 = 2, 𝜃𝜃 = 2; and for 𝜎𝜎 > 2, 𝜃𝜃 is strictly decreasing in 𝑧𝑧𝑚𝑚 ∈  (0, 1 𝜀𝜀⁄ ), hence strictly 

decreasing in 𝐿𝐿/𝐹𝐹 ∈ (0,∞). 

This example thus shows that, in spite of (A2), 𝜃𝜃 can be strictly decreasing in 𝐿𝐿/𝐹𝐹.   
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Appendix E: Two Families of Perturbed CES satisfying the log-concavity and (A2) 

condition that jointly ensure that 𝜽𝜽 is increasing in 𝑳𝑳 𝑭𝑭⁄ .  

 

Example E1: Multiplicatively Perturbed CES with a Linear Elasticity Function  

𝑠𝑠(𝑧𝑧) = (𝑧𝑧 exp(𝜀𝜀𝑧𝑧))1−𝜎𝜎 ⟹ 𝜁𝜁(𝑧𝑧) = 𝜎𝜎 + (𝜎𝜎 − 1)𝜀𝜀𝑧𝑧, 

where 𝜎𝜎 > 1 and 𝜀𝜀 > 0.  Since 𝜁𝜁(𝑧𝑧) − 1 = (𝜎𝜎 − 1)(1 + 𝜀𝜀𝑧𝑧) is strictly increasing and strictly 

log-concave, one could immediately conclude from Proposition 1 that 𝜃𝜃 is bounded by 𝑒𝑒, and 

from the corollary of Proposition 2 that 𝜃𝜃 is strictly increasing in 𝐿𝐿 𝐹𝐹⁄ . More explicitly, 

𝜃𝜃 =
𝑠𝑠�𝑧𝑧𝑐𝑐�
𝑠𝑠�𝑧𝑧𝑚𝑚�

= �
𝑧𝑧𝑐𝑐

𝑧𝑧𝑚𝑚
exp�𝜀𝜀(𝑧𝑧𝑐𝑐 − 𝑧𝑧𝑚𝑚)��

1−𝜎𝜎

= ��1 −
1

𝜁𝜁�𝑧𝑧𝑚𝑚�
� exp�−

𝜀𝜀𝑧𝑧𝑚𝑚

𝜁𝜁�𝑧𝑧𝑚𝑚�
��

1−𝜎𝜎

 

= �1 −
1

𝜁𝜁�𝑧𝑧𝑚𝑚�
�
1−𝜎𝜎

exp �1 −
𝜎𝜎

𝜁𝜁�𝑧𝑧𝑚𝑚�
�, 

where 𝑧𝑧𝑚𝑚 is given by 

𝐿𝐿
𝐹𝐹

=
𝜁𝜁�𝑧𝑧𝑚𝑚�
𝑠𝑠�𝑧𝑧𝑚𝑚�

= �𝜎𝜎 + (𝜎𝜎 − 1)𝜀𝜀𝑧𝑧𝑚𝑚��𝑧𝑧𝑚𝑚 exp�𝜀𝜀𝑧𝑧𝑚𝑚��
𝜎𝜎−1

 , 

and it is strictly increasing in 𝐿𝐿/𝐹𝐹 ∈ (0,∞), with the range, 𝑧𝑧𝑚𝑚 ∈ (0,∞).  Therefore, as 𝑧𝑧𝑚𝑚 → 0, 

𝜁𝜁�𝑧𝑧𝑚𝑚� → 𝜎𝜎 and 𝜃𝜃 → �1 − 1
𝜎𝜎
�
1−𝜎𝜎

< 𝑒𝑒, and as 𝑧𝑧𝑚𝑚 → ∞, 𝜁𝜁�𝑧𝑧𝑚𝑚� → ∞ and 𝜃𝜃 → 𝑒𝑒. 

Recall that the steady state is unstable, when 𝛿𝛿(𝜃𝜃 − 1) > 1.  For 𝜎𝜎 ≥ 2,𝜃𝜃 > 2 always 

holds.  Hence, the steady state is unstable for a sufficiently high 𝛿𝛿 (i.e., sufficiently close to one).  

For 𝜎𝜎 < 2, there exists a critical value of 𝐿𝐿 𝐹𝐹⁄ , at which 𝜃𝜃 = 2. For 𝐿𝐿 𝐹𝐹⁄  below this critical value, 

𝜃𝜃 < 2 and hence the steady state is always stable. For 𝐿𝐿 𝐹𝐹⁄  above this critical value, 𝜃𝜃 > 2 and 

hence the steady state is unstable for a sufficiently high 𝛿𝛿 (i.e., sufficiently close to one).  

 

Example E2: Multiplicatively Perturbed CES with a Linear Fractional Elasticity Function  

𝑠𝑠(𝑧𝑧) = 𝑧𝑧1−𝜎𝜎(1 + 𝑧𝑧)−𝜀𝜀 ⟹ 𝜁𝜁(𝑧𝑧) = 𝜎𝜎 +
𝜀𝜀𝑧𝑧

1 + 𝑧𝑧
. 

Again, 𝜎𝜎 > 1 and 𝜀𝜀 > 0.  Since 𝜁𝜁(𝑧𝑧) is strictly increasing and strictly concave, one could 

immediately conclude from Proposition 1 that 𝜃𝜃 is bounded by 𝑒𝑒, and from the corollary of 

Proposition 2 that 𝜃𝜃 is strictly increasing in 𝐿𝐿 𝐹𝐹⁄ .   More explicitly,   



Page 48 of 48 
 

𝜃𝜃 ≡
𝑠𝑠�𝑧𝑧𝑐𝑐�
𝑠𝑠�𝑧𝑧𝑚𝑚�

= �
𝑧𝑧𝑐𝑐

𝑧𝑧𝑚𝑚
�
1−𝜎𝜎

�
1 + 𝑧𝑧𝑐𝑐

1 + 𝑧𝑧𝑚𝑚
�
−𝜀𝜀

= �1 −
1

𝜁𝜁�𝑧𝑧𝑚𝑚�
�
1−𝜎𝜎

⎝

⎜
⎛

1 + 𝑧𝑧𝑚𝑚 �1 − 1
𝜁𝜁�𝑧𝑧𝑚𝑚�

�

1 + 𝑧𝑧𝑚𝑚

⎠

⎟
⎞

−𝜀𝜀

= �1 −
1

𝜁𝜁�𝑧𝑧𝑚𝑚�
�
1−𝜎𝜎

�1 −
1

𝜁𝜁�𝑧𝑧𝑚𝑚�
𝑧𝑧𝑚𝑚

1 + 𝑧𝑧𝑚𝑚
�
−𝜀𝜀

, 

where 𝑧𝑧𝑚𝑚 is given by 

𝐿𝐿
𝐹𝐹

=
𝜁𝜁�𝑧𝑧𝑚𝑚�
𝑠𝑠�𝑧𝑧𝑚𝑚�

= 𝑧𝑧𝑚𝑚𝜎𝜎−1�1 + 𝑧𝑧𝑚𝑚�
𝜀𝜀
�𝜎𝜎 +

𝜀𝜀𝑧𝑧𝑚𝑚

1 + 𝑧𝑧𝑚𝑚
� , 

and it is strictly increasing in 𝐿𝐿/𝐹𝐹 ∈ (0,∞), with the range, 𝑧𝑧𝑚𝑚 ∈ (0,∞).  Therefore, as 𝑧𝑧𝑚𝑚 → 0, 

𝜁𝜁�𝑧𝑧𝑚𝑚� → 𝜎𝜎 and 𝜃𝜃 → �1 − 1
𝜎𝜎
�
1−𝜎𝜎

< 𝑒𝑒 and, as 𝑧𝑧𝑚𝑚 → ∞, 𝜁𝜁�𝑧𝑧𝑚𝑚� → 𝜎𝜎 + 𝜀𝜀 and 𝜃𝜃 →

�1 − 1
𝜎𝜎+𝜀𝜀

�
1−𝜎𝜎−𝜀𝜀

< 𝑒𝑒. 

Recall that the steady state in unstable, when 𝛿𝛿(𝜃𝜃 − 1) > 1. For 𝜎𝜎 ≥ 2,𝜃𝜃 > 2 always 

holds.  Hence, the steady state is unstable for a sufficiently high 𝛿𝛿 (i.e., sufficiently close to one). 

For 𝜎𝜎 < 2 < 𝜎𝜎 + 𝜀𝜀 , there exists a critical value of   𝐿𝐿 𝐹𝐹⁄ , at which  𝜃𝜃 = 2.  For 𝐿𝐿 𝐹𝐹⁄  below this 

critical value, 𝜃𝜃 < 2 and hence the steady state is always stable. For 𝐿𝐿 𝐹𝐹⁄  above this critical 

value, 𝜃𝜃 > 2 and hence the steady state is unstable for a sufficiently high 𝛿𝛿 (i.e., sufficiently 

close to one). For 𝜎𝜎 + 𝜀𝜀 < 2, the steady state is stable. 


