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Love-for-Variety: Productivity (utility) gains from increasing variety of intermediate inputs (consumer goods).

¢ A natural consequence of the convexity of the production technologies (preferences).

e Willingness to pay for new inputs (goods); Dixit-Stiglitz(1977), Krugman(1980), Ethier(1982), Romer (1987), etc.

e A central concept in economic growth (Grossman-Helpman 1993; Gancia-Zillibotti 2005, Acemoglu 2008),
international trade (Helpman-Krugman 1095), and economic geography (Fujita-Krugman-Venables 1999).

But, little 1s known about how love-for-variety depends on the underlying production (or utility) function.

Under symmetric CES with gross substitutes: the analytical expression for love-for-variety is 1/(oc — 1) > 0,
where o > 1 represents both:
v’ the (constant) elasticity of substitution across varieties
&
v’ the (constant) price elasticity of demand for each variety.

e Appealing feature: love-for-variety is smaller when different varieties are more substitutable and when the price
elasticity of demand for each variety is higher (i.e., a larger o).

e Unappealing feature: love-for-variety is independent of how many varieties are already available.

Questions:
e How does love-for-variety depend on the underlying demand structure?
e Under what conditions, should we expect love-for-variety to decline as more varieties become available?
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For general symmetric homothetic demand systems, we define Substitutability, o(V), & Love-for-Variety, L(V).
e Both are functions of the mass of available varieties, V, only.
e We can say little about their relations without some additional restrictions.

We turn to the 3 classes of homothetic demand systems:
H.S.A. (Homothetic Single Aggregator)

HDIA (Homothetic Direct Implicit Additivity)

HITA (Homothetic Indirect Implicit Additivity)

HSA

Translog

e Pairwise disjoint with the sole exception of CES.
e Price elasticity is a function of a single variable.

= Po |\ = 7+ *w * < 13
(o =¢ (c,q (p)) = (dq* (X)), where A(p) or A*(X) is linear homogeneous, a

sufficient statistic that captures the cross-variety effects.

Homothetic symmetric demand systems
with gross substitutes
Main Results: In each of these 3 classes,
e The substitutability is increasing in V, if and only if Marshall’s 2™ law of demand holds.

e Increasing (decreasing) substitutability implies diminishing (increasing) love-for-variety. The converse is not true.
e Constant love-for-variety, constant substitutability and constant price elasticity are all equivalent and occur iff CES.

The 3 classes offer a tractable way of capturing the intuition that gains from increasing variety is diminishing, if

different varieties are more substitutable when more varieties are available.
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General Symmetric Homothetic Demand Systems
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General Symmetric Homothetic (Input) Demand System: A Quick Refresher of Duality Theory
Consider homothetic demand systems for differentiated inputs generated by symmetric CRS production technology.

CRS Production Function

Unit Cost Function

X(x) = mljn{pXIP(p) > 1}

P(p) = mxin{pX|X(X) > 1}

x = {x,; w € O}: the input quantity vector; p = {p,; w € Q}: the input price vector.

Q, a continuum of all potential input varieties.

Q c Q, the set of available input varieties, with its mass denoted by V = |Q].
O\Q: the set of unavailable varieties, x,, = 0 and p,, = o for w € Q\L.

Either X(x) or P(p) can be a primitive, as long as they are linear homogeneous, monotonic & strict quasi-concave.
To study the effect of V = |Q|, we assume inputs are inessential, i.e., Q\Q # @ doesn’t imply X(x) = 0 & P(p) = .

Inverse Demand Curve

Demand Curve

0X(x) dP(p)
From Euler’s Homogenous Function Theorem,
px= | putodo = POX()
Q
PwXw _ 0lnX(x) dInP(p)

Budget Share of w € (): Sw

px P(pX(x) dlnx,

= s(xy,X) = W = s(pw,P)
w
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Defining the Love-for-Variety Measure

_ Q

. . . 1, = 1{(1 o € ()}, where 1 5{1 for W€ _

Unit Quantity Vector: a = 1{(la)e } (1a)w 0 for w € Q\Q
Do ) 151 = 1 where )y = or w€ &

Unit Price Vector: {(19 ) ONS Q} (19 ) = {Oo for w € Q\Q

Note: [, (1g)pdw = [, (lﬁl)wdw = Q| =

Both X(1g) and P(lﬁl) depend only on V. Hence, at the symmetric patterns, X = x1g and p = p1g%,

3 _ox XV dlny (V)
X(X)_xX(lﬂ)_/g)(V):Vy(V)' TInV +1<0.
B _ P dInz(V)

P(p) =pP(15") = (V) dinV

Moreover,

B P x dinz(V)  dlnyg(V)
px=PP)X() = pxV =55 08 = "oy - dmy L0

Definition. The love-for-variety measure is defined by:

_dlnz(V) dlny (V)
LWV ==y = dmy 170
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Price Elasticity of Demand for Each Variety and Marshall’s 2"? Law

Price Elasticity of dlnx, dIns(py; p)

Demand for w Cw = _alnpw ={(py;p) =1-—

dlns*(x,: x)]°"
(X5 X) o1

= (*"(xy;X) = ll —

dlnp, dlnx,

Definition: Marshall’s 2" Law holds if
dl : dIn{*(x,,;
n{(py p)>0(:) n¢*(xy; X)
dInp, dInx,

< 0.

Defining the Measure of Substitutability Across Different Varieties

Because {(p,,; p) = {*(x,; X) is homogenous of degree zero in p and X,

(1;15Y) =¢(p; p1at) = (s x1g) = I*(1;1g) = a(V).

Appendix A: o(V) is the Allen-Uzawa elasticity of substitution btw every pair of inputs at p = p1g* or x = x1g.

Definition: The substitutability measure 1s defined by
o(V) =3(L15") =7"(1;19) > 1.
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Example: Standard CES with Gross Substitutes:

1

X() = U xwl‘adw] & o P(p)=%U Pwl_"dwr_a,
Q

where o > 1 is the (constant) elasticity of substitution parameter and Z is the TFP parameter under Standard CES.

Definition Under CES
Price Elasticit dInx \ .
’ 0= =g = $PuiP) = () $(puiP) = §" (i) = 0> 1
w
Substitutability o) ={(1;15Y) = " (1; 1) o) =0>1

Love-for-variety

dinz(V)  dlng(V)

LV) =y = " dmv

—-1>0.

1
LWV)=—>0.
o—1

Under Standard CES,

e Price elasticity of demand, {(p,,; p) = {*(x,; X), is independent of p or X and equal to o.
e Substitutability, o(V), is independent of V and equal to o.

e Love-for-variety, L(V), is also independent of V, and equal to a constant that is inversely related to o.
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Example: Generalized CES with Gross Substitutes a la Benassy (1996).

o 1

X() = 2(V) U xwl‘%dw]a_l o P(p)=% | Pwl_”da)r_a,
Q Q

Note: Z (V) allows variety to have direct externalities to TFP.

Definition Under CES
Price Elasticit dInx \ \
' (o =~ 2= {0 P) = " (X3 %) {(PwiP) =" (XpiX) =0 > 1
dInp,

Substitutability o) ={(1;15Y) = " (1, 1) o) =0>1
Love-for-variety _dnz(V) dlny(V) 1 dinZ(V)

L) ==y = amv_ 70 L) =3 amv

Under Generalized CES,

e Price elasticity of demand, {(p,,; p) = {*(x,; X), is independent of p or X and equal to o.

Substitutability, o(V), is independent of VV and equal to o.

dlnzZ(V) _

e Benassy (1996) assumed Ty VT ﬁ . Then, L(V) = v is a separate parameter independent of o.

d;nlrzlgfv) is independent of o, L(V) is still inversely related to o.

o If we instead assume
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General Homothetic DS: The relation btw {(p,,; p) = (*(x,; x), 6(V), & L(V) can be complex.
e Whether Marshall’s 2" Law holds or not says little about the derivatives of a(V) and L(V).
e 0(V)and L(V) could be positively related.

(Counter)Example: Weighted Geometric Mean of Standard CES with Gross Substitutes:

0 1 1
X(x) =exp U InX(x;0) dF(0)|, where [(X(x;0)]} o = j x, 77 dw
1 Q
and F () is a c.d.f. of o € (1, 00), satisfying floo dF (o) = 1.
Definition Under Geometric Mean of CES
. o o 1 1
Price Elasticity w = — 0lnx, = (*(x,; X) 0* (x4 X) = Ep ((xw)_%/(X(x; O'))l_E)/EF <(xw)_%/0(X(x; 0))1_5> > 1
dInp,
Substitutability o(V)=0(1;10) B 1
"W = Fa/e !
Love-for-variety _ dny(V) _ 1
L(V):—W—1>O L(V)—EF<G_1)>0

e Price elasticity of demand, {*(x,,; X), is not constant, and violates the Marshall’s 2°¢ Law.
e Both a(V) and L(V) are independent of V.

e The range of 6(V) and L(V) is given by 0 < !

o(V)-1
e Easy to construct a parametric family of F, such that a(V) and L(V).

< L(V) < oo, where the equality holds iff F is degenerate.
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However, it is intuitive to think that, as input varieties are more substitutable,
¢ the price elasticity of demand for each variety become larger,
e the love-for-variety measure become smaller.

Homotheticity alone cannot capture this intuition!!

HSA

In search for additional restrictions to capture this intuition,
we turn to

Translog

@
Three Classes of Symmetric CRS Production Functions:

v Homothetic Single Aggregator (H.S.A.)
v Homothetic Direct Implicit Additivity (HDIA)
v Homothetic Indirect Implicit Additivity (HITA)

Homothetic symmetric demand systems
with gross substitutes
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3 Classes of Symmetric CRS Production Functions with Gross Substitutes (and Inessentiality)

Homothetic Single Aggregator (H.S.A.): Two Equivalent Definitions

Pw ) : Pw Xw . X
Sw =S with J S( )dwzl S =S*( ) with J s*( w)da)zl
@ (A (p) q \A(p) = @ A*(X) Q A*(X)
s(z)>0,s'(z2) <0for0<z<z<o0;s(z)=0forz=>7Z s*(0)=0,s"(y) >0, 0<ys”"(y)/s*"(y) <1
Homothetic Direct Implicit Additivity (HDIA): 7%,
[ o(Z2)an=1
Q X(x)

¢(0) = 0; p(0) = 0; p'(¢) > 0,9"(y) <0,— 49" (y)/P'(y) <1 for0 <y < co.Z>0is TFP.

Homothetic Indirect Implicit Additivity (HITA): Do
f 0 ( ) dow =1
Q

ZP(p)
0(z)>0,0'(5)<0,0"(5)>0,—20"(3)/0'(5) >1for0<z<z7<00&60(5)=0forz =>3.Z>0is TFP.

We focus on these three classes for two reasons.
e They are pairwise disjoint with the sole exception of CES.

e Price elasticity is a function of a single variable of the form, {,, = { (%) = (" (cﬂi‘&)), where A(p) or A*(X) is a

linear homogeneous aggregator of p or of X, a sufficient statistic to capture the interdependence across varieties.
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Homothetic Single Aggregator (H.S.A.)
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Symmetric H.S.A. (Homothetic Single Aggregator) DS with Gross Substitutes

Definition: A symmetric CRS technology, P = P(p) is called homothetic single aggregator (H.S.A.) if the budget
share of w depends solely on a single variable, z,, = p,, /A, its own price p,,, normalized by the common price
aggregator, A = A(p).

S pw%u:é”npﬁﬂzzs<pw) where f (1%))d 1
7 px  dlnp, A(p)/’ o S\t T

e s:R,, — R,: the budget share function, decreasing in the normalized price, z, = p,, /A for s(z,,) > 0 with
o lim,_;s(z) = 0.If Z = inf{z > 0|s(z) = 0} < o0, ZA(p) is the choke price.

e A = A(p): the common price aggregator, defined implicitly by the adding-up constraint, | Q s(p,/A)dw = 1.
By construction, the budget shares add up to one. A(p) linear homogenous in p for a fixed Q. A larger Q reduces A(p).

Some Special Cases

CES with gross substitutes s(z) = yz1™¢; o>1
Translog Cost Function s(z) = ymax{—1In(z/2),0}; Z <
{ 15|15
Constant Pass Through s(z) = y max [0 —(c-1z°r ] :0} c>1;,0<p<1
(CoPaTh)

As p 7 1, CoPaTh converges to CES with Z = (L)E — 00,
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Price Elasticity: z,S'(z,)
Cw = ((pw;p) =1-——2-= ((Zw) >1
s(2)
Notes:
e A function of a single variable, z, = p,,/A(p).
e ((z,) =0 > 1under CES, s(z) = yz17°.
* Marshall’s 2 law iff '(:) > 0, e.g., {(aw) = 1 = 75 for translog: = ooy = = 7rmpyy for CoPaTh.
nP(p) Pw
Unit Cost Function: By 1ntegrat1ng alnpw =S (Tp))’
Z
A(p) ] j pw )
dw, where ®(z) = j dé > 0.
[cP(p) A(p) A(p) s(z) )

where ¢ > 0 is a constant, proportlonal to TFP.

Notes:
e P(p): linear homogeneous, monotonic, and strictly quasi-concave, ensuring the integrability of H.S.A.
e A(p)/P(p) is not constant and depends on p, with the sole exception of CES, because

dlnA(p) Z,S'(z,) B 1{(zy,) — 1]s(z,,) dIn P(P)
— = + s(zy),
dInp, [y 8'@)Zdw’ [, [{(Z4y) — 1s(z,)dw’ dInp,

unless {(z) is independent of z or s(z) = yz'~? with {(z) = o > 1.
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For symmetric price patterns, p = plﬁl,

_ { Dw B p _ 1 _ P 1 /1
1=s (A(p)) V=s (A(p151)> V=s <A(151)> V=t =g T aah S (V)

Hence,
Definition Under H.S.A.
Price Elasticity dlnx,, _ ( Pw )
= _ — . — % . = > 1,
(w — a In Do ((pa); p) ( (xa); X) cw ( A(p)
Substitutability o) ={(1;15Y) = (1, 1g) c(V) =q(s71(1/V)) > 1
Love-for-variety L) = dinz(V) _ diny(V) 10 LWV)=o(s7(1/V)) > 0.
dlnV dlnV

Notes:
e At symmetric price patterns,

Ap) | | [A(gH] ()
In [CP(p) = In [Tlﬁl) =o (S 1 (V)) — £(V)
e Since s~1(1/V) is increasing in V,
1
o) =¢ ( (v))

implies that Marshall’s 2™ law, ¢{’(-) > 0, is equivalent to increasing substitutability, o’(-) > 0, under H.S.A.
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) 1 '(2) G
O'(V) — ( (S—l (V))’ L(V) — & <S—1 (V))’ where ((Z) =1-— Zj(zj ; CD(Z) = S(Z) J SE

dé.

Lemma 1:

(' (z) % 0,Vz € (zy9,z) = P'(2) é 0,Vz € (zy,2).
Furthermore,
('(z) =0 & d'(z) =0 < CES.

From this,

Proposition 1
(' (z) % 0,Vz € (zy,2) & a' (V) % 0,vV € (1/s(zy), )
—
d'(z) é 0,Vz € (z4,z) & L' (V) é 0,VV € (1/s5(zy), ).
Furthermore,

('@D=0=2d1)=0=d'(2) =0 L'(V) =0 < CES.

Thus, under H.S.A.,
e Marshall’s 2™ Law, {'(-) > 0 for all z < Z, is equivalent to increasing substitutability, a’(-) > 0 for all V.

e Increasing (decreasing) substitutability implies diminishing (increasing) love-for-variety. The converse is not true.
e Constant love-for-variety, constant substitutability, and constant price elasticity are all equivalent and occur 1ff CES.
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Homothetic Direct Implicit Additivity (HDIA)
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Symmetric HDIA (Homothetic Directly Implicitly Additive) DS with Gross Substitutes

Definition: A symmetric CRS technology, X = X(x) = ZX(x) is called homothetic with direct implicit additivity
(HDIA) with gross substitutes if it can be defined implicitly by:

Jﬂ Cb(%)dw:j ¢( x(x)>da)_1

where ¢(-): R, = R, is independent of Z > 0, €3, with ¢(0) = 0; () = o0; ¢'(¢) > 0, ¢p"'(¢) <
0,— 4" (g)/d'(y) <1Vy € (0,).
e By construction, X(x) is independent of Z > 0, TFP.
If ¢'(0) < oo, the choke price is B(p)¢'(0). If ¢p'(0) = oo, no choke price.
CES with gross substitutes: ¢(¢) = (¢)*~/9, (6 > 1).
p

1-p\ 51
CoPaTh: ¢(y) = ff (1 + ﬁ({)T)p dé, 0 < p < 1, converging to CES with p 7/ 1.
e An extension of the Kimball (1995) aggregator in the sense that ( is not fixedand V = |Q] is a Variable

Inverse Demand Curve: Po . f Yo \_ ., (%% Demand Curve: LXy _
O (x(x>> =4 (30) w7~ @ ()
Unit Cost Function: 1. . 1
P(p) = F(p) =§j Po(9')” (B( ))

where B(p) and P(p) are both independent of Z > 0 and

[ ¢(<¢> (B(p)))dw

Il
=
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Budget Share:

PwXw

= (") ( )— o '<x_w>
rore @ o) e (75)

) EL 4 ( (x))
B o Xe \ %o C*(x)
<B(p))d‘” jg » (X(x))X(x) )

Budget share under HDIA: A function of the two relative prices, p,,/P(p) & p,,/B(p), or of the two relative
quantities, x,, /X (X) & x,,/C*(x), unless P(p)/B(p) = C*(x)/X(x) is a constant, which occurs iff CES.

Sw

where

satisfying the identity

W _[
B(p) Jq B(p)

Price Elasticity: N ¢’ (y,,) 5 b B |
Co = 0 (i) =~ = 2(y,) = 0| @07 (55) | = CPurp) > 1

e Price Elasticity, unlike the budget share, is a function of a single variable, 4, = x,,/X(X) or ¢'(4,) = p,,/B(P).
e {°(y4,) = 0 > 1under CES, ¢(y) = (y)1"1/°

Notes:

p—1

e Marshall’s 2" law iff {2 (-) < 0, satisfied by (?(¢) = 1+ (6 — 1)(¢) » under CoPaTh.
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For symmetric quantity patterns, X = x1g,

(i)’ = = ap 2" 6)
X(10) X(1q) Z

Hence,
Definition Under HDIA
Price Elasticity _ Olnx, N x,, o { D
€0 =" Finp, ~ $PeiP) = (x0iX) $w=20" <X(x)) =¢P ((qb )7! (B(p))> >1,
Substitutability o(V) =151 =7 (1; 1) o) = P 1(1/V))>1
Love-for-variety _ding(V)  dlng(l) _ 1 _
B T i T T W =g Giam 170
where
(%)
0 < Ey(y) = %qz)(g <1
Notes:

e At symmetric quantity patterns, X = x1q,
P(15') cr(10) j ( 1 > ( 1 ) ( 1 ) B(15Y) X(1gp)
= — = Es | = — dw = & ‘1(—> = — = =L(V) + 1.
B) - X o \Faw)?\Faw \* W) T Toan Y
e Since ¢p~1(1/V) is decreasing in V,

a(V) = ¢P(p71(1/V))
implies that Marshall’s 2™ law, {?’(+) < 0, is equivalent to increasing substitutability, o’ () > 0, under HDIA.
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_ (1 . _ 1 _ bon_ D) _y9'(y)
o(V) ={P(¢~1(1/V)); L(V) €@ 1(1/1)) 1, where  (P(y) = Iont Es(y) = 50s)
Hence,
Lemma 2:
P (y) S0,y € (0,40) = E(y) S 0,vy € (0,4).
Furthermore,
P'(y) =0 = EL(y) =0 & CES.
From this,

Proposition 2:

P (y) S0vy € (0,40) & a' (V) 2 0,vV € (1/¢(g), )
-

Es(4) S 0,Vy € (0,9) L' (V) S 0,VV € (1/d(y0) , ).
Furthermore,

P =0 @d'(V)=0Ej(y) =0 < L'(V) =0 < CES.

Thus, under HDIA,

e Marshall’s 2" Law, {?’(-) < 0 for all 4 > 0, is equivalent to increasing substitutability, o’ (-) > 0 for all V.
e Increasing (decreasing) substitutability implies diminishing (increasing) love-for-variety. The converse is not true.
e Constant love-for-variety, constant substitutability, and constant price elasticity are all equivalent and occur iff CES.
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Homothetic Indirect Implicit Additivity (HITA)
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Symmetric HITA (Homothetic Indirectly Implicitly Additive) DS with Gross Substitutes

Definition: A symmetric CRS technology, P = P(p) = P(p)/Z, is called homothetic with indirect implicit additivity
(HITA) if it can be defined implicitly by:

Jﬂ 0 (Zlfz)p)) dw = jﬂ 0 (;Z;b) dw =1,

where 8: R,, — R, is independent of Z > 0,3, with 8(z) > 0,0'(3) < 0,0"(z) > 0, —30"(3)/08'(3) > 1, for
0(z) > 0 with lim,_,, 8(z) = o and lim,_,: 8(z) = 0, where 5 = inf{z > 0|0(z) = 0}.

e By construction, P(p) is independent of Z > 0, TFP.

e If5 < o, P(p)Z = ZP(p)3 is the choke price. If Z = o0, no choke price.

e CES with gross substitutes: 8(z) = (z)}77, (¢ > 1).
p

P 1 p-1 1-p — o \1-p :
e CoPaTh: 8(g) = gt-r fz/z_((f) P — 1) dé forz < z = (—) ; 0 < p <1, converging to CESas p 7 1.

o—1
Inverse Demand Pw _ pr _ (_0/)—1( *w ) Demand Xop _g’ Pw \ _ ,( Pw )> 0
Curve: zP(p)  P(p) B*(X)/ |Curve: | p*(x)” " \B(p)) = \ZP(p)
Production N et [ X
Function: X(x) =ZX(x) = ZJQ (—6") (—B*(x)> X dw

where X (x) and B*(x) are both independent of Z > 0 and

jﬂ 9 ((—9')-1 (sz“x)» dw = 1.
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Budget Share: PoXw _ g1 Ko N\ Xo _ ,( Pu ) Puw
P - Tt - ) e

— / Pw
cwr==] o (P<p>>”“’d‘”>0

where

satisfying the identity,

Cp) _ [ P |_ _ X
p(p)—L P(p) 0(P(p)>] j " (50) P % = 50

Budget share under HIIA: A function of two relative prices, p,, /P(p) and p,,/C(p), or of two relative quantities,
x,/X(x) and x,, /B*(x), unless C(p)/P(p) = X(x)/B*(x) is a constant, which occurs iff CES.

Price Elasticity: "(Zw)

2,0 _ _ NS
(o = ((pw;p) = = QI(Zw) = (I(Zw) = (I (( 0) 1 (B*(X)

)) = (e %) > 1

Notes:
e Price Elasticity, unlike the budget share, is a function of a single variable, z,, = p,,/P(p) or x,,/B*(x) = —0'(z,,).
e (!(z,) =0 > 1under CES, 0(3) = (2)179, (6 > 1).

) nd . Ir . I _ o) _ 1
e Marshall’s 2" law iff {*'(z,,) > 0, satisfied by ' (z,,) = Pty Cay il RV under CoPaTh.
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For symmetric price patterns, p = p1g°,

1 1
0| = V=1== =6-1(1/V).
<P(151)> pagy 0 W
Hence,
Definition Under HITIA
Frice Blasticlty o=~ T = () = € (i ) ¢ < G > o o (5reg) )71
w — - w’ - w’ w = — = -0~ " >
Substitutability o(V) =151 = (15 1) o(V) = {’(9‘1(1/V)) > 1
for-vari dlnz(V dl 1%
Love-for-variety L) = dnlig/) _ ;lﬁ; ) 150 L) = ST >0
where
z0'(z)
E = — > 0.
0(2) 0(2)
Notes:

e At symmetric price patterns, p = p1g’,
c(1gh) X@ 1 1 1 P(15') B*(1
A( 5_11): *( ) =j 59<ﬁ>9<A —1>dw=59<9_1(—)>:>13(V)= ( 5_11): A( 2
P(15") B*(1a) Jg P(157)) \P(1y") 4 C(1g)  X(10)
e Since 871(1/V) is increasing in V,

a(V)=¢'(671(1/V))
implies that Marshall’s 2™ law, (' () > 0, is equivalent to increasing substitutability, o’ (-) > 0, under HIIA.
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o(V) =071 (1/V)); L(V) = ! where  ¢1(5) = _30"(z) £,(z) = _30'(2)

Eg(671(1/V)) 0'(z) ’ 0(z)
Hence,
Lemma 3:
(”(z) % 0,Vz € (30,2) = Ep(z) % 0,Vz € (29,2).
Furthermore,
'(z)=0 o €&j(z) =0 CES.
From this,

Proposition 3:

("' (2) 20,Vz € (30,2) ' (V) 20,V € (1/6(z,), )
-

£4(3) 2 0,Vz € (30,2) © L' (V) S 0,VV € (1/0(3) , ).
Furthermore,

"(2)=0 ©d¥)=0E)z)=0 & L'(V) =0 < CES.

Under HIIA,

e Marshall’s 2" Law, {”'(-) < 0 for all z < 7, is equivalent to increasing substitutability, o’(-) > 0 for all V.
e Increasing (decreasing) substitutability implies diminishing (increasing) love-for-variety. The converse is not true.
e Constant love-for-variety, constant substitutability, and constant price elasticity are all equivalent and occur 1ff CES.
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Summing Up
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Question: How does love-for-variety (gains from increasing variety) depend on the underlying demand structure?

We define Price Elasticity, Substitutability, Love-for-Variety for general symmetric homothetic demand systems.
e Substitutability, (1), Love-for-Variety, L(V), are both functions of the mass of available varieties, V, only.
e We can say little about their relations, unless we impose additional restrictions.

We turn to H.S.A., HDIA, and HIIA, under which the price elasticity can be written as a function of a single variable.

CES H.S.A. HDIA HIIA
Price Elasticity: {, = {(pw;p) = ¢ (x0; X)- o ¢ (A%;)) ¢ (%) ¢ (Pp(;)>
: e _ . 1 (1
Substitutability: (V) = {(1;151) = ¢*(1; 10). ; 5<S—1 (%)) @ (97(3)) ¢! <9—1 (%))
. . _ dlnz(V) _dlny(V) _ 1 /1 1 1
Love-for-variety: L(V) = dlnv ~ dlnv 1 | @ (s 1 (V)) E,(01(1/V)) 1 £o(6-1(1/V))

In each of these three classes,

e The substitutability is increasing in V, if and only if Marshall’s 2" law of demand holds.

e Increasing (decreasing) substitutability implies diminishing (increasing) love-for-variety. The converse is not true.

e Constant love-for-variety, constant substitutability and constant price elasticity are equivalent and occur iff CES.

Thus, they offer a tractable way of capturing the intuition that gains from increasing variety is diminishing, if

different varieties are more substitutable when more varieties are available.

Page 30 of 38




Appendices

Page 31 of 38



Appendix C: An Alternative (and Equivalent) Definition of H.S.A.

Definition: A symmetric CRS technology, X= X(x) is called homothetic single aggregator (H.S.A.) if the budget
share of w depends solely on a single variable, y,, = x,, /A", its own quantity x,,, normalized by the common
quantity aggregator, A* = A*(X).

. pwxwzalnX(X)=S*< X4 ) where j *( X4 )d _ 4
“7 px d1lnx,, A*(x)/)’ 5 S\ Y =

<1, s*(0) =0, s"(0) = 0.

dins*(y)
diny

o s":R,, — R,:the budget share function, iny,, = x,,/A* with 0 < E,+(y) =

e A* = A*(x): the common quantity aggregator, defined by the adding-up constraint, [ q S"(xy/A%)dw = 1By

construction, the budget shares add up to one. A*(x) linear homogenous in X for a fixed Q. A larger () increases A*.

Price Elasticity: ) dins*(y,) ] o
Cw=F¢ (xw;X)—ll— alny, = {*(y,) > 1,
Notes:
e Also a function of a single variable, y,, = x,, /A" (X).
e {*(y) =0 > 1under CES, s*(y) =y (y)t-1/0,
e Marshall’s 2™ law, 07 (x,;Xx)/0x, < 0, holds iff {*'(-) < 0.
dins*(y)

e The choke price exists iff lim s* (y) < oo, which implies lim = 1 and hence lim {*(y) = co. For example,
y—0 y—0 diny y—0

translog corresponds to s*(y), defined implicitly by s* exp(s*/y) = Zy, for Z < oo,
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Production Function: By integrating = aal?n)i(x) =s" ( Af&))'
w

[)il(x()@] j ) (i)

where

y
1 (s°@) L LlsT@/8ds
o* = d&” > 1,
VESe) e T P onla

dIns* (y)
dln

and c¢* > 0 is a constant, proportional to TFP. ®*(y) > 1 follows from E.+(y) =

1s decreasing in y.

Notes:
e X(x), linear homogeneous, monotonic, and strictly quasi-concave, ensuring the integrability of H.S.A.
e X(x)/A*(x)is not constant and depends on X, with the sole exception of CES, because

1 )
d1In A*(x) . Vo' V) _ [1 B (*(yw)] ") L 0 In X(x)
dlnx,, X! - 1 . , 0lnx
©  Jo s Ou)ywde [ [1 -7 (yw,)]s (Y1) dw w
unless ¢*(y) is independent of y or s*(y) =y ()" with {*(y) = 0 > 1.

= S*(yw);

< 1 implying that s*(y) /y
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For symmetric quantity patterns, X = x1g,

L=+ (m) V=< (A*<119>) V= e

A*(llﬂ) = (%)

Hence,
Definition Under H.S.A.
. . X
Price Bty | g, = =2 — C(pui ) = (i) =8 (7)1
Substitutability o) ={(1;15Y) = " (1;1g) o(V) = (s (1/V)) > 1
Love-for-variety LYY = dnz(V) _ dlny(V) B 0 LWV) =o*(s(1/V))—1>0.
dInV dInV

Notes:
e At the symmetric quantity patterns,

ln[ X() = ¢* <S*_1 (l>> =L(V)+1

c*A*(X) v '

e Since s* 1(1/V) is decreasing in V,

()

implies that Marshall’s 2™ law, {*'(+) < 0, is equivalent to increasing substitutability, ¢'(-) > 0.
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1 1 oy 11 Y xpp
O'(V) = (* (5*—1 (V))' L(V) = p* <S*—1 (V)) —1, where Z*(Y) = [1 _ M‘ ; q)*(y) _ 1 S (f )df*

dlny Tswm)
Lemma 1%
" () S0,¥y € (0,y0) = @ () Z0,Vy € (0, ).
Furthermore,
' (y) =0 < &' (y) = 0 & CES.
From this,

Proposition 1*

() S0,vy € (0,y,) & ' (V) Z0,vV € (1/5*(y), )
—

d'(y) 2 0,vy € (0,y,) © L' (V) S 0,VV € (1/s* (), )
Furthermore,

(") =0 =0 lV)=0=>"(y) =0« L'(V) = 0 < CES.

Thus, under H.S.A.,

e Marshall’s 2™ Law, {*'(-) < 0 for all y > 0 is equivalent to increasing substitutability, o’ (-) > 0 for all V.
e Increasing (decreasing) substitutability implies diminishing (increasing) love-for-variety. The converse 1s not true.
e Constant love-for-variety, constant substitutability, and constant price elasticity are all equivalent and occur iff CES.
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Equivalence of the Two Definitions of H.S.A.

Under the isomorphism given by the one-to-one mapping btw s(z) <> s*(y), defined by:

s*(y) =s (Sl(ly)>; s(z) =s* (S(—Z)>

Z
From this,
o dIns*(y) - B d1lns(z)
C(y)=[1— diny ={@)=1-—7——
_dlns*(y) _dlns(2)
Vo = X,/A%(X),and z,, = p,, /A(pP), are negatively related as
LSO s
C Y Yz
d d d 1 d
Do _ iy o Lo 1 v,
Yo Zw Zw Vo) Yo
and
Zy(' (Zy)

7 - - a)=_*a) 0.
ol ) ) =) <
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If lirr(l) s*(y) < oo, lin% {*(y) = oo and the (normalized) choke price is:
y- y-

lm@— lims*(y) = Z=inf{z > 0|s(z) = 0} <

y=0 'y y=0
Moreover,
PwXw . PwXw
Ao Tere =30 =00 = ppvo

hence we have the identity,

AP) _ XX
P(p) A*(x)

¢ exp Uﬂ S(zw)cb(zw)dw] — = c" exp lJ " V)P (V) dw]
Q

which 1s a constant 1ff CES.

Furthermore, using

! @)—Q d§

ds* [65'9) ] dg
g
f=zo 8=y =708 =0,
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* 1 st 50 e _ 1 7 s(®) s©)
CD(y)—CI)(Z)zs*( )O 6 d S(Z)J Tl[ (6)__ df_ J df 1.

£ s(2)
Since
w©) = — s Hao@we) =22
[lsgn /€ de’ $
" (€M) /€ (£
ES * E ES CI)* ES * — )
w (&) Pl )/ 48 = sT()e (v () ;

this implies

Ew(&) =<I>*(y)=1+ 1L )
Ew (&) P(2) O(z) P*(y)-1

= exp lj [s* (V) P* Vo) — S(Zw)cb(zw)]dw] = exp lj S(Zw)dw] = €.

Q
and

LWV)=d(s71(1/V)) = d*(s*1(1/V)) - 1.

Page 38 of 38



