Love-for-Variety

Kiminori Matsuyama Northwestern University Philip Ushchev *ECARES, Université Libre de Bruxelles*

Updated: 2023-12-06; 23:44

December 7, 2023 Macroeconomics Workshop University of Tokyo

Introduction

Love-for-Variety: Productivity (utility) gains from increasing variety of intermediate inputs (consumer goods).

- A natural consequence of the convexity of the production technologies (preferences).
- Willingness to pay for new inputs (goods); Dixit-Stiglitz(1977), Krugman(1980), Ethier(1982), Romer (1987), etc.
- A central concept in economic growth (Grossman-Helpman 1993; Gancia-Zillibotti 2005, Acemoglu 2008), international trade (Helpman-Krugman 1095), and economic geography (Fujita-Krugman-Venables 1999).

But, little is known about how love-for-variety depends on the underlying production (or utility) function.

Under symmetric CES with gross substitutes: the analytical expression for love-for-variety is $1/(\sigma - 1) > 0$, where $\sigma > 1$ represents both:

- ✓ the (constant) elasticity of substitution across varieties&
- ✓ the (constant) price elasticity of demand for each variety.
- Appealing feature: love-for-variety is smaller when different varieties are more substitutable and when the price elasticity of demand for each variety is higher (i.e., a larger σ).
- Unappealing feature: love-for-variety is independent of how many varieties are already available.

Questions:

- How does love-for-variety depend on the underlying demand structure?
- Under what conditions, should we expect love-for-variety to decline as more varieties become available?

For general symmetric homothetic demand systems, we define Substitutability, $\sigma(V)$, & Love-for-Variety, $\mathcal{L}(V)$.

- Both are functions of the mass of available varieties, *V*, only.
- We can say little about their relations without some additional restrictions.

We turn to the 3 classes of homothetic demand systems:

H.S.A. (Homothetic Single Aggregator)
HDIA (Homothetic Direct Implicit Additivity)
HIIA (Homothetic Indirect Implicit Additivity)

- Pairwise disjoint with the sole exception of CES.
- Price elasticity is a function of a single variable.

 $\zeta_{\omega} \equiv \zeta\left(\frac{p_{\omega}}{\mathcal{A}(\mathbf{p})}\right) \equiv \zeta^*\left(\frac{x_{\omega}}{\mathcal{A}^*(\mathbf{x})}\right)$, where $\mathcal{A}(\mathbf{p})$ or $\mathcal{A}^*(\mathbf{x})$ is linear homogeneous, a sufficient statistic that captures the cross-variety effects.

Main Results: In each of these 3 classes,

- The substitutability is increasing in V, if and only if Marshall's 2^{nd} law of demand holds.
- Increasing (decreasing) substitutability implies diminishing (increasing) love-for-variety. The converse is not true.
- Constant love-for-variety, constant substitutability and constant price elasticity are all equivalent and occur iff CES.

The 3 classes offer a tractable way of capturing the intuition that gains from increasing variety is diminishing, if different varieties are more substitutable when more varieties are available.

General Symmetric Homothetic Demand Systems

General Symmetric Homothetic (Input) Demand System: A Quick Refresher of Duality Theory

Consider homothetic demand systems for differentiated inputs generated by symmetric CRS production technology.

CRS Production Function	Unit Cost Function
$X(\mathbf{x}) \equiv \min_{\mathbf{p}} \{ \mathbf{p} \mathbf{x} P(\mathbf{p}) \ge 1 \}$	$P(\mathbf{p}) \equiv \min_{\mathbf{x}} \{ \mathbf{p} \mathbf{x} X(\mathbf{x}) \ge 1 \}$

 $\mathbf{x} = \{x_{\omega}; \omega \in \overline{\Omega}\}$: the input quantity vector; $\mathbf{p} = \{p_{\omega}; \omega \in \overline{\Omega}\}$: the input price vector.

 $\overline{\Omega}$, a continuum of all potential input varieties.

 $\Omega \subset \overline{\Omega}$, the set of available input varieties, with its mass denoted by $V \equiv |\Omega|$.

 $\overline{\Omega} \backslash \Omega$: the set of unavailable varieties, $x_{\omega} = 0$ and $p_{\omega} = \infty$ for $\omega \in \overline{\Omega} \backslash \Omega$.

Either $X(\mathbf{x})$ or $P(\mathbf{p})$ can be a *primitive*, as long as they are linear homogeneous, monotonic & strict quasi-concave. To study the effect of $V \equiv |\Omega|$, we assume inputs are *inessential*, i.e., $\overline{\Omega} \setminus \Omega \neq \emptyset$ doesn't imply $X(\mathbf{x}) = 0 \Leftrightarrow P(\mathbf{p}) = \infty$.

Inverse Demand Curve	Demand Curve
$p_{\omega} = P(\mathbf{p}) \frac{\partial X(\mathbf{x})}{\partial x_{\omega}}$	$x_{\omega} = \frac{\partial P(\mathbf{p})}{\partial p_{\omega}} X(\mathbf{x})$

From Euler's Homogenous Function Theorem,

$$\mathbf{p}\mathbf{x} \equiv \int_{\Omega} p_{\omega} x_{\omega} d\omega = P(\mathbf{p}) X(\mathbf{x})$$

Budget Share of
$$\omega \in \Omega$$
:
$$s_{\omega} \equiv \frac{p_{\omega} x_{\omega}}{\mathbf{p} \mathbf{x}} = \frac{p_{\omega} x_{\omega}}{P(\mathbf{p}) X(\mathbf{x})} = \frac{\partial \ln X(\mathbf{x})}{\partial \ln x_{\omega}} \equiv s(x_{\omega}, \mathbf{x}) = \frac{\partial \ln P(\mathbf{p})}{\partial \ln p_{\omega}} \equiv s(p_{\omega}, \mathbf{p})$$

Defining the Love-for-Variety Measure

Unit Quantity Vector:

$$\mathbf{1}_{\Omega} \equiv \{(1_{\Omega})_{\omega}; \omega \in \overline{\Omega}\},\$$

where
$$(1_{\Omega})_{\omega} \equiv \begin{cases} 1 & \text{for } \omega \in \Omega \\ 0 & \text{for } \omega \in \overline{\Omega} \setminus \Omega \end{cases}$$

Unit Price Vector:

$$\mathbf{1}_{\Omega}^{-1} \equiv \left\{ \left(\mathbf{1}_{\Omega}^{-1} \right)_{\omega}; \omega \in \overline{\Omega} \right\},$$

where $(1_{\Omega}^{-1})_{\omega} \equiv \begin{cases} 1 & \text{for } \omega \in \Omega \\ \infty & \text{for } \omega \in \overline{\Omega} \setminus \Omega \end{cases}$

Note: $\int_{\Omega} (1_{\Omega})_{\omega} d\omega = \int_{\Omega} (1_{\Omega}^{-1})_{\omega} d\omega = |\Omega| \equiv V$.

Both $X(\mathbf{1}_{\Omega})$ and $P(\mathbf{1}_{\Omega}^{-1})$ depend only on V. Hence, at the symmetric patterns, $\mathbf{x} = x\mathbf{1}_{\Omega}$ and $\mathbf{p} = p\mathbf{1}_{\Omega}^{-1}$,

$$X(\mathbf{x}) = xX(\mathbf{1}_{\Omega}) = \frac{x}{y(V)} \equiv \frac{xV}{Vy(V)}; \qquad \frac{d \ln y(V)}{d \ln V} + 1 < 0.$$
$$P(\mathbf{p}) = pP(\mathbf{1}_{\Omega}^{-1}) \equiv \frac{p}{z(V)}; \qquad \frac{d \ln z(V)}{d \ln V} > 0.$$

Moreover,

$$\mathbf{p}\mathbf{x} = P(\mathbf{p})X(\mathbf{x}) \Longrightarrow pxV = \frac{p}{z(V)}\frac{x}{y(V)} \Longrightarrow \frac{d\ln z(V)}{d\ln V} = -\frac{d\ln y(V)}{d\ln V} - 1 > 0.$$

Definition. *The love-for-variety measure* is defined by:

$$\mathcal{L}(V) \equiv \frac{d \ln z(V)}{d \ln V} = -\frac{d \ln y(V)}{d \ln V} - 1 > 0.$$

Price Elasticity of Demand for Each Variety and Marshall's 2nd Law

Price Elasticity of	$\frac{1}{2} - \partial \ln x_{\omega}$	$\partial \ln s(p_{\omega}; \mathbf{p})$		$\partial \ln s^*(x_\omega; \mathbf{x})$	-1
Demand for ω	$\zeta_{\omega} \equiv -\frac{\omega}{\partial \ln p_{\omega}} = \zeta(p_{\omega}; \mathbf{p}) \equiv$	$1 - \frac{\partial \ln p_{\omega}}{\partial \ln p_{\omega}} = \zeta^*(x_{\omega}; \mathbf{x})$	≣ [1 -	$-\frac{\partial \ln x_{\omega}}{\partial \ln x_{\omega}}$	> 1.

Definition: Marshall's 2nd Law holds if

$$\frac{\partial \ln \zeta(p_{\omega}; \mathbf{p})}{\partial \ln p_{\omega}} > 0 \Longleftrightarrow \frac{\partial \ln \zeta^{*}(x_{\omega}; \mathbf{x})}{\partial \ln x_{\omega}} < 0.$$

Defining the Measure of Substitutability Across Different Varieties

Because $\zeta(p_{\omega}; \mathbf{p}) = \zeta^*(x_{\omega}; \mathbf{x})$ is homogenous of degree zero in \mathbf{p} and \mathbf{x} ,

$$\zeta(1;\mathbf{1}_{\Omega}^{-1}) = \zeta(p; p\mathbf{1}_{\Omega}^{-1}) = \zeta^*(x; x\mathbf{1}_{\Omega}) = \zeta^*(1;\mathbf{1}_{\Omega}) \equiv \sigma(V).$$

Appendix A: $\sigma(V)$ is the Allen-Uzawa elasticity of substitution btw every pair of inputs at $\mathbf{p} = p\mathbf{1}_{\Omega}^{-1}$ or $\mathbf{x} = x\mathbf{1}_{\Omega}$.

Definition: The substitutability measure is defined by

$$\sigma(V) \equiv \zeta(1; \mathbf{1}_{\Omega}^{-1}) = \zeta^*(1; \mathbf{1}_{\Omega}) > 1.$$

Example: Standard CES with Gross Substitutes:

$$X(\mathbf{x}) = Z \left[\int_{\Omega} x_{\omega}^{1 - \frac{1}{\sigma}} d\omega \right]^{\frac{\sigma}{\sigma - 1}} \iff P(\mathbf{p}) = \frac{1}{Z} \left[\int_{\Omega} p_{\omega}^{1 - \sigma} d\omega \right]^{\frac{1}{1 - \sigma}},$$

where $\sigma > 1$ is the (constant) elasticity of substitution parameter and Z is the TFP parameter under Standard CES.

	Definition	Under CES
Price Elasticity	$\zeta_{\omega} \equiv -\frac{\partial \ln x_{\omega}}{\partial \ln p_{\omega}} = \zeta(p_{\omega}; \mathbf{p}) = \zeta^*(x_{\omega}; \mathbf{x})$	$\zeta(p_{\omega}; \mathbf{p}) = \zeta^*(x_{\omega}; \mathbf{x}) = \sigma > 1$
Substitutability	$\sigma(V) \equiv \zeta(1; 1_{\Omega}^{-1}) = \zeta^*(1; 1_{\Omega})$	$\sigma(V) = \sigma > 1$
Love-for-variety	$\mathcal{L}(V) \equiv \frac{d \ln z(V)}{d \ln V} = -\frac{d \ln y(V)}{d \ln V} - 1 > 0.$	$\mathcal{L}(V) = \frac{1}{\sigma - 1} > 0.$

Under Standard CES,

- Price elasticity of demand, $\zeta(p_\omega; \mathbf{p}) = \zeta^*(x_\omega; \mathbf{x})$, is independent of \mathbf{p} or \mathbf{x} and equal to σ .
- Substitutability, $\sigma(V)$, is independent of V and equal to σ .
- Love-for-variety, $\mathcal{L}(V)$, is also independent of V, and equal to a constant that is inversely related to σ .

Example: Generalized CES with Gross Substitutes a la Benassy (1996).

$$X(\mathbf{x}) = Z(\mathbf{V}) \left[\int_{\Omega} x_{\omega}^{1 - \frac{1}{\sigma}} d\omega \right]^{\frac{\sigma}{\sigma - 1}} \iff P(\mathbf{p}) = \frac{1}{Z(\mathbf{V})} \left[\int_{\Omega} p_{\omega}^{1 - \sigma} d\omega \right]^{\frac{1}{1 - \sigma}},$$

Note: Z(V) allows variety to have direct externalities to TFP.

	Definition	Under CES
Price Elasticity	$\zeta_{\omega} \equiv -\frac{\partial \ln x_{\omega}}{\partial \ln p_{\omega}} = \zeta(p_{\omega}; \mathbf{p}) = \zeta^*(x_{\omega}; \mathbf{x})$	$\zeta(p_{\omega}; \mathbf{p}) = \zeta^*(x_{\omega}; \mathbf{x}) = \sigma > 1$
Substitutability	$\sigma(V) \equiv \zeta(1; 1_{\Omega}^{-1}) = \zeta^*(1; 1_{\Omega})$	$\sigma(V) = \sigma > 1$
Love-for-variety	$\mathcal{L}(V) \equiv \frac{d \ln z(V)}{d \ln V} = -\frac{d \ln y(V)}{d \ln V} - 1 > 0.$	$\mathcal{L}(V) = \frac{1}{\sigma - 1} + \frac{d \ln Z(V)}{d \ln V}.$

Under Generalized CES,

- Price elasticity of demand, $\zeta(p_{\omega}; \mathbf{p}) = \zeta^*(x_{\omega}; \mathbf{x})$, is independent of \mathbf{p} or \mathbf{x} and equal to σ .
- Substitutability, $\sigma(V)$, is independent of V and equal to σ .
- Benassy (1996) assumed $\frac{d \ln Z(V)}{d \ln V} = \nu \frac{1}{\sigma 1}$. Then, $\mathcal{L}(V) = \nu$ is a separate parameter independent of σ .
- If we instead assume $\frac{d \ln Z(V)}{d \ln V}$ is independent of σ , $\mathcal{L}(V)$ is still inversely related to σ .

General Homothetic DS: The relation btw $\zeta(p_{\omega}; \mathbf{p}) = \zeta^*(x_{\omega}; \mathbf{x}), \sigma(V), \& \mathcal{L}(V)$ can be complex.

- Whether Marshall's 2^{nd} Law holds or not says little about the derivatives of $\sigma(V)$ and $\mathcal{L}(V)$.
- $\sigma(V)$ and $\mathcal{L}(V)$ could be positively related.

(Counter) Example: Weighted Geometric Mean of Standard CES with Gross Substitutes:

$$X(\mathbf{x}) \equiv \exp\left[\int_{1}^{\infty} \ln X(\mathbf{x}; \sigma) dF(\sigma)\right],$$
 where $[X(\mathbf{x}; \sigma)]^{1-\frac{1}{\sigma}} \equiv \int_{\Omega} x_{\omega}^{1-\frac{1}{\sigma}} d\omega$

and $F(\cdot)$ is a c.d.f. of $\sigma \in (1, \infty)$, satisfying $\int_{1}^{\infty} dF(\sigma) = 1$.

	Definition	Under Geometric Mean of CES
Price Elasticity	$\zeta_{\omega} \equiv -\frac{\partial \ln x_{\omega}}{\partial \ln p_{\omega}} = \zeta^*(x_{\omega}; \mathbf{x})$	$\zeta^*(x_{\omega}; \mathbf{x}) = E_F\left((x_{\omega})^{-\frac{1}{\sigma}} / (X(\mathbf{x}; \sigma))^{1-\frac{1}{\sigma}}\right) / E_F\left((x_{\omega})^{-\frac{1}{\sigma}} / \sigma (X(\mathbf{x}; \sigma))^{1-\frac{1}{\sigma}}\right) > 1$
Substitutability	$\sigma(V) \equiv \zeta^*(1; 1_{\Omega})$	$\sigma(V) = \frac{1}{E_F(1/\sigma)} > 1$
Love-for-variety	$\mathcal{L}(V) \equiv -\frac{d \ln \psi(V)}{d \ln V} - 1 > 0$	$\mathcal{L}(V) = E_F\left(\frac{1}{\sigma - 1}\right) > 0$

- Price elasticity of demand, $\zeta^*(x_\omega; \mathbf{x})$, is not constant, and *violates* the Marshall's 2nd Law.
- Both $\sigma(V)$ and $\mathcal{L}(V)$ are *independent* of V.
- The range of $\sigma(V)$ and $\mathcal{L}(V)$ is given by $0 < \frac{1}{\sigma(V) 1} \le \mathcal{L}(V) < \infty$, where the equality holds iff F is degenerate.
- Easy to construct a parametric family of F, such that $\sigma(V)$ and $\mathcal{L}(V)$.

However, it is intuitive to think that, as input varieties are more substitutable,

- the price elasticity of demand for each variety become larger,
- the love-for-variety measure become smaller.

Homotheticity alone cannot capture this intuition!!

In search for additional restrictions to capture this intuition, we turn to

Three Classes of Symmetric CRS Production Functions:

- **✓** Homothetic Single Aggregator (H.S.A.)
- ✓ Homothetic Direct Implicit Additivity (HDIA)
- ✓ Homothetic Indirect Implicit Additivity (HIIA)

3 Classes of Symmetric CRS Production Functions with Gross Substitutes (and Inessentiality)

Homothetic Single Aggregator (H.S.A.): Two Equivalent Definitions

$$s_{\omega} = s\left(\frac{p_{\omega}}{A(\mathbf{p})}\right) \qquad \text{with} \qquad \int_{\Omega} s\left(\frac{p_{\omega}}{A(\mathbf{p})}\right) d\omega \equiv 1 \qquad \Leftrightarrow \qquad s_{\omega} = s^*\left(\frac{x_{\omega}}{A^*(\mathbf{x})}\right) \quad \text{with} \qquad \int_{\Omega} s^*\left(\frac{x_{\omega}}{A^*(\mathbf{x})}\right) d\omega \equiv 1$$

$$s(z) > 0, s'(z) < 0 \text{ for } 0 < z < \bar{z} \le \infty; s(z) = 0 \text{ for } z \ge \bar{z} \qquad \qquad s^*(0) = 0, s^*(y) > 0, \quad 0 < ys^{*'}(y)/s^*(y) < 1$$

Homothetic Direct Implicit Additivity (HDIA):

Homothetic Indirect Implicit Additivity (HIIA):

$$\int_{\Omega} \theta\left(\frac{p_{\omega}}{ZP(\mathbf{p})}\right) d\omega \equiv 1$$

$$\theta(z) > 0, \theta'(z) < 0, \theta''(z) > 0, -z\theta''(z)/\theta'(z) > 1 \text{ for } 0 < z < \bar{z} \le \infty \& \theta(z) = 0 \text{ for } z \ge \bar{z}. Z > 0 \text{ is TFP.}$$

We focus on these three classes for two reasons.

- They are pairwise disjoint with the sole exception of CES.
- Price elasticity is a function of a single variable of the form, $\zeta_{\omega} \equiv \zeta\left(\frac{p_{\omega}}{\mathcal{A}(\mathbf{p})}\right) \equiv \zeta^*\left(\frac{x_{\omega}}{\mathcal{A}^*(\mathbf{x})}\right)$, where $\mathcal{A}(\mathbf{p})$ or $\mathcal{A}^*(\mathbf{x})$ is a linear homogeneous aggregator of \mathbf{p} or of \mathbf{x} , a sufficient statistic to capture the interdependence across varieties.

Homothetic Single Aggregator (H.S.A.)

Symmetric H.S.A. (Homothetic Single Aggregator) DS with Gross Substitutes

Definition: A symmetric CRS technology, $P = P(\mathbf{p})$ is called *homothetic single aggregator* (H.S.A.) if the budget share of ω depends solely on a single variable, $z_{\omega} \equiv p_{\omega}/A$, its own price p_{ω} , normalized by the common price aggregator, $A = A(\mathbf{p})$.

$$s_{\omega} \equiv \frac{p_{\omega} x_{\omega}}{\mathbf{p} \mathbf{x}} = \frac{\partial \ln P(\mathbf{p})}{\partial \ln p_{\omega}} = s \left(\frac{p_{\omega}}{A(\mathbf{p})}\right), \quad \text{where} \quad \int_{\Omega} s \left(\frac{p_{\omega}}{A(\mathbf{p})}\right) d\omega \equiv 1.$$

- $s: \mathbb{R}_{++} \to \mathbb{R}_{+}$: the budget share function, decreasing in the normalized price, $z_{\omega} \equiv p_{\omega}/A$ for $s(z_{\omega}) > 0$ with $\lim_{z \to \bar{z}} s(z) = 0$. If $\bar{z} \equiv \inf\{z > 0 | s(z) = 0\} < \infty$, $\bar{z}A(\mathbf{p})$ is the choke price.
- $A = A(\mathbf{p})$: the common price aggregator, defined implicitly by the adding-up constraint, $\int_{\Omega} s(p_{\omega}/A)d\omega \equiv 1$. By construction, the budget shares add up to one. $A(\mathbf{p})$ linear homogenous in \mathbf{p} for a fixed Ω . A larger Ω reduces $A(\mathbf{p})$.

Some Special Cases

CES with gross substitutes Translog Cost Function

Constant Pass Through (CoPaTh)

$$s(z) = \gamma z^{1-\sigma}; \qquad \sigma > 1$$

$$s(z) = \gamma \max\{-\ln(z/\bar{z}), 0\}; \qquad \bar{z} < \infty$$

$$s(z) = \gamma \max\left\{\left[\sigma - (\sigma - 1)z^{\frac{1-\rho}{\rho}}\right]^{\frac{\rho}{1-\rho}}, 0\right\} \qquad \sigma > 1; \ 0 < \rho < 1$$

As
$$\rho \nearrow 1$$
, CoPaTh converges to CES with $\bar{z} = \left(\frac{\sigma}{\sigma-1}\right)^{\frac{\rho}{1-\rho}} \to \infty$.

Price Elasticity: $\zeta_{\omega} = \zeta(p_{\omega}; \mathbf{p}) = 1 - \frac{z_{\omega} s'(z_{\omega})}{s(z_{\omega})} \equiv \zeta(z_{\omega}) > 1$

Notes:

- A function of a single variable, $z_{\omega} \equiv p_{\omega}/A(\mathbf{p})$.
- $\zeta(z_{\omega}) = \sigma > 1$ under CES, $s(z) = \gamma z^{1-\sigma}$.
- Marshall's 2^{nd} law iff $\zeta'(\cdot) > 0$, e.g., $\zeta(z_{\omega}) = 1 \frac{1}{\ln(z_{\omega}/\bar{z})}$ for translog; $= \frac{\sigma}{\sigma (\sigma 1)z_{\omega}^{(1-\rho)/\rho}} = \frac{1}{1 (z_{\omega}/\bar{z})^{(1-\rho)/\rho}}$ for CoPaTh.

Unit Cost Function: By integrating $\frac{\partial \ln P(\mathbf{p})}{\partial \ln p_{\omega}} = s \left(\frac{p_{\omega}}{A(\mathbf{p})} \right)$,

$$\ln\left[\frac{A(\mathbf{p})}{cP(\mathbf{p})}\right] = \int_{\Omega} s\left(\frac{p_{\omega}}{A(\mathbf{p})}\right) \Phi\left(\frac{p_{\omega}}{A(\mathbf{p})}\right) d\omega, \text{ where } \Phi(z) \equiv \frac{1}{s(z)} \int_{z}^{z} \frac{s(\xi)}{\xi} d\xi > 0.$$

where c > 0 is a constant, proportional to TFP.

Notes:

- $P(\mathbf{p})$: linear homogeneous, monotonic, and strictly quasi-concave, ensuring the integrability of H.S.A.
- $A(\mathbf{p})/P(\mathbf{p})$ is not constant and depends on \mathbf{p} , with the sole exception of CES, because

$$\frac{\partial \ln A(\mathbf{p})}{\partial \ln p_{\omega}} = \frac{z_{\omega} s'(z_{\omega})}{\int_{\Omega} s'(z_{\omega'}) z_{\omega'} d\omega'} = \frac{[\zeta(z_{\omega}) - 1] s(z_{\omega})}{\int_{\Omega} [\zeta(z_{\omega'}) - 1] s(z_{\omega'}) d\omega'} \neq \frac{\partial \ln P(\mathbf{p})}{\partial \ln p_{\omega}} = s(z_{\omega}),$$

unless $\zeta(z)$ is independent of z or $s(z) = \gamma z^{1-\sigma}$ with $\zeta(z) = \sigma > 1$.

For symmetric price patterns, $\mathbf{p} = p \mathbf{1}_{\Omega}^{-1}$,

$$1 = s\left(\frac{p_{\omega}}{A(\mathbf{p})}\right)V = s\left(\frac{p}{A(p\mathbf{1}_{\Omega}^{-1})}\right)V = s\left(\frac{1}{A(\mathbf{1}_{\Omega}^{-1})}\right)V \Rightarrow z_{\omega} = \frac{p_{\omega}}{A(\mathbf{p})} = \frac{1}{A(\mathbf{1}_{\Omega}^{-1})} = s^{-1}\left(\frac{1}{V}\right).$$

Hence,

	Definition	Under H.S.A.
Price Elasticity	$\zeta_{\omega} \equiv -\frac{\partial \ln x_{\omega}}{\partial \ln p_{\omega}} = \zeta(p_{\omega}; \mathbf{p}) = \zeta^*(x_{\omega}; \mathbf{x})$	$ \zeta_{\omega} \equiv \zeta\left(\frac{p_{\omega}}{A(\mathbf{p})}\right) > 1, $
Substitutability	$\sigma(V) \equiv \zeta(1; 1_{\Omega}^{-1}) = \zeta^*(1; 1_{\Omega})$	$\sigma(V) = \zeta(s^{-1}(1/V)) > 1$
Love-for-variety	$\mathcal{L}(V) \equiv \frac{d \ln z(V)}{d \ln V} = -\frac{d \ln y(V)}{d \ln V} - 1 > 0.$	$\mathcal{L}(V) = \Phi(s^{-1}(1/V)) > 0.$

Notes:

• At symmetric price patterns,

$$\ln\left[\frac{A(\mathbf{p})}{cP(\mathbf{p})}\right] = \ln\left[\frac{A(\mathbf{1}_{\Omega}^{-1})}{cP(\mathbf{1}_{\Omega}^{-1})}\right] = \Phi\left(s^{-1}\left(\frac{1}{V}\right)\right) = \mathcal{L}(V).$$

• Since $s^{-1}(1/V)$ is increasing in V,

$$\sigma(V) = \zeta \left(s^{-1} \left(\frac{1}{V} \right) \right)$$

implies that Marshall's 2^{nd} law, $\zeta'(\cdot) > 0$, is equivalent to increasing substitutability, $\sigma'(\cdot) > 0$, under H.S.A.

$$\sigma(V) = \zeta\left(s^{-1}\left(\frac{1}{V}\right)\right); \ \mathcal{L}(V) = \Phi\left(s^{-1}\left(\frac{1}{V}\right)\right), \quad \text{where} \quad \zeta(z) \equiv 1 - \frac{zs'(z)}{s(z)}; \ \Phi(z) \equiv \frac{1}{s(z)} \int_{z}^{z} \frac{s(\xi)}{\xi} d\xi.$$

Lemma 1:

$$\zeta'(z) \geq 0, \forall z \in (z_0, \overline{z}) \implies \Phi'(z) \leq 0, \forall z \in (z_0, \overline{z}).$$

Furthermore,

$$\zeta'(z) = 0 \iff \Phi'(z) = 0 \iff CES.$$

From this,

Proposition 1

$$\zeta'(z) \geq 0, \forall z \in (z_0, \overline{z}) \Leftrightarrow \sigma'(V) \geq 0, \forall V \in (1/s(z_0), \infty)$$

 \Longrightarrow

$$\Phi'(z) \leq 0, \forall z \in (z_0, \overline{z}) \Leftrightarrow \mathcal{L}'(V) \leq 0, \forall V \in (1/s(z_0), \infty).$$

Furthermore,

$$\zeta'(z) = 0 \Leftrightarrow \sigma'(V) = 0 \Leftrightarrow \Phi'(z) = 0 \Leftrightarrow \mathcal{L}'(V) = 0 \Leftrightarrow CES.$$

Thus, under H.S.A.,

- Marshall's 2^{nd} Law, $\zeta'(\cdot) > 0$ for all $z < \overline{z}$, is equivalent to increasing substitutability, $\sigma'(\cdot) > 0$ for all V.
- Increasing (decreasing) substitutability implies diminishing (increasing) love-for-variety. The converse is not true.
- Constant love-for-variety, constant substitutability, and constant price elasticity are all equivalent and occur iff CES.

Homothetic Direct Implicit Additivity (HDIA)

Symmetric HDIA (Homothetic Directly Implicitly Additive) DS with Gross Substitutes

Definition: A symmetric CRS technology, $X = X(\mathbf{x}) \equiv Z\hat{X}(\mathbf{x})$ is called *homothetic with direct implicit additivity* (HDIA) with gross substitutes if it can be defined implicitly by:

$$\int_{\Omega} \phi\left(\frac{Zx_{\omega}}{X(\mathbf{x})}\right) d\omega = \int_{\Omega} \phi\left(\frac{x_{\omega}}{\hat{X}(\mathbf{x})}\right) d\omega \equiv 1,$$

where $\phi(\cdot)$: $\mathbb{R}_+ \to \mathbb{R}_+$ is independent of Z > 0, C^3 , with $\phi(0) = 0$; $\phi(\infty) = \infty$; $\phi'(y) > 0$, $\phi''(y) < 0$, $-y\phi''(y)/\phi'(y) < 1 \ \forall y \in (0,\infty)$.

- By construction, $\hat{X}(\mathbf{x})$ is independent of Z > 0, TFP.
- If $\phi'(0) < \infty$, the choke price is $B(\mathbf{p})\phi'(0)$. If $\phi'(0) = \infty$, no choke price.
- CES with gross substitutes: $\phi(y) = (y)^{1-1/\sigma}$, $(\sigma > 1)$.
- CoPaTh: $\phi(y) = \int_0^y \left(1 + \frac{1}{\sigma 1}(\xi)^{\frac{1 \rho}{\rho}}\right)^{\frac{\rho}{\rho 1}} d\xi$, $0 < \rho < 1$, converging to CES with $\rho \nearrow 1$.
- An extension of the Kimball (1995) aggregator in the sense that Ω is not fixed and $V \equiv |\Omega|$ is a variable.

Inverse Demand Curve:	$\frac{p_{\omega}}{B(\mathbf{p})} = \phi'\left(\frac{x_{\omega}}{\widehat{X}(\mathbf{x})}\right) = \phi'\left(\frac{Zx_{\omega}}{X(\mathbf{x})}\right)$	Demand Curve:	$\frac{Zx_{\omega}}{X(\mathbf{x})} = \frac{x_{\omega}}{\hat{X}(\mathbf{x})} = (\phi')^{-1} \left(\frac{p_{\omega}}{B(\mathbf{p})}\right)$
Unit Cost Function:	$P(\mathbf{p}) = \frac{1}{Z}\hat{P}(\mathbf{p}) = \frac{1}{Z}\hat{P}(\mathbf{p})$	$\equiv \frac{1}{Z} \int_{\Omega} p_{\omega}(\phi')^{-1} \left(\frac{p_{\omega}}{B(\mathbf{p})} \right)^{-1}$	

where $B(\mathbf{p})$ and $\hat{P}(\mathbf{p})$ are both independent of Z > 0 and

$$\int_{\Omega} \phi \left((\phi')^{-1} \left(\frac{p_{\omega}}{B(\mathbf{p})} \right) \right) d\omega \equiv 1.$$

Budget Share: $s_{\omega} \equiv \frac{p_{\omega} x_{\omega}}{P(\mathbf{p}) X(\mathbf{x})} = \frac{p_{\omega}}{\widehat{P}(\mathbf{p})} (\phi')^{-1} \left(\frac{p_{\omega}}{B(\mathbf{p})} \right) = \frac{x_{\omega}}{C^*(\mathbf{x})} \phi' \left(\frac{x_{\omega}}{\widehat{X}(\mathbf{x})} \right),$

where

$$C^*(\mathbf{x}) \equiv \int_{\Omega} x_{\omega} \phi' \left(\frac{x_{\omega}}{\hat{X}(\mathbf{x})} \right) d\omega$$

satisfying the identity

$$\frac{\widehat{P}(\mathbf{p})}{B(\mathbf{p})} = \int_{\Omega} \frac{p_{\omega}}{B(\mathbf{p})} (\phi')^{-1} \left(\frac{p_{\omega}}{B(\mathbf{p})} \right) d\omega = \int_{\Omega} \phi' \left(\frac{x_{\omega}}{\widehat{X}(\mathbf{x})} \right) \frac{x_{\omega}}{\widehat{X}(\mathbf{x})} d\omega = \frac{C^*(\mathbf{x})}{\widehat{X}(\mathbf{x})}.$$

Budget share under HDIA: A function of the two relative prices, $p_{\omega}/\hat{P}(\mathbf{p}) \& p_{\omega}/B(\mathbf{p})$, or of the two relative quantities, $x_{\omega}/\hat{X}(\mathbf{x}) \& x_{\omega}/C^*(\mathbf{x})$, unless $\hat{P}(\mathbf{p})/B(\mathbf{p}) = C^*(\mathbf{x})/\hat{X}(\mathbf{x})$ is a constant, which occurs iff CES.

Price Elasticity:	$z = z^*(x + y) = \phi'(y_\omega) = z^D(y_\omega) = z^D($
	$\zeta_{\omega} = \zeta^{*}(x_{\omega}; \mathbf{x}) = -\frac{1}{y_{\omega}\phi''(y_{\omega})} \equiv \zeta^{D}(y_{\omega}) = \zeta^{D}(\phi')^{-1}(\frac{1}{B(\mathbf{p})}) = \zeta(p_{\omega}; \mathbf{p}) > 1$

Notes:

- Price Elasticity, unlike the budget share, is a function of a single variable, $\psi_{\omega} \equiv x_{\omega}/\hat{X}(\mathbf{x})$ or $\phi'(\psi_{\omega}) = p_{\omega}/B(\mathbf{p})$.
- $\zeta^D(y_\omega) = \sigma > 1$ under CES, $\phi(y) = (y)^{1-1/\sigma}$
- Marshall's 2^{nd} law iff $\zeta^{D'}(\cdot) < 0$, satisfied by $\zeta^{D}(y) = 1 + (\sigma 1)(y)^{\frac{\rho 1}{\rho}}$ under CoPaTh.

For symmetric quantity patterns, $\mathbf{x} = x \mathbf{1}_{\Omega}$,

$$\phi\left(\frac{1}{\widehat{X}(\mathbf{1}_{\Omega})}\right)V = 1 \implies \frac{1}{\widehat{X}(\mathbf{1}_{\Omega})} = \phi^{-1}\left(\frac{1}{V}\right).$$

Hence,

	Definition	Under HDIA
Price Elasticity	$\zeta_{\omega} \equiv -\frac{\partial \ln x_{\omega}}{\partial \ln p_{\omega}} = \zeta(p_{\omega}; \mathbf{p}) = \zeta^*(x_{\omega}; \mathbf{x})$	$\zeta_{\omega} = \zeta^{D} \left(\frac{x_{\omega}}{\widehat{X}(\mathbf{x})} \right) = \zeta^{D} \left((\phi')^{-1} \left(\frac{p_{\omega}}{B(\mathbf{p})} \right) \right) > 1,$
Substitutability	$\sigma(V) \equiv \zeta(1; 1_{\Omega}^{-1}) = \zeta^*(1; 1_{\Omega})$	$\sigma(V) = \zeta^{D}(\phi^{-1}(1/V)) > 1$
Love-for-variety	$\mathcal{L}(V) \equiv \frac{d \ln z(V)}{d \ln V} = -\frac{d \ln y(V)}{d \ln V} - 1 > 0.$	$\mathcal{L}(V) = \frac{1}{\mathcal{E}_{\phi}(\phi^{-1}(1/V))} - 1 > 0.$

where

$$0 < \mathcal{E}_{\phi}(y) \equiv \frac{y\phi'(y)}{\phi(y)} < 1.$$

Notes:

• At symmetric quantity patterns, $\mathbf{x} = x \mathbf{1}_{\Omega}$,

$$\frac{\widehat{P}\left(\mathbf{1}_{\Omega}^{-1}\right)}{B(\mathbf{1}_{\Omega}^{-1})} = \frac{C^{*}(\mathbf{1}_{\Omega})}{\widehat{X}(\mathbf{1}_{\Omega})} = \int_{\Omega} \mathcal{E}_{\phi}\left(\frac{1}{\widehat{X}(\mathbf{1}_{\Omega})}\right) \phi\left(\frac{1}{\widehat{X}(\mathbf{1}_{\Omega})}\right) d\omega = \mathcal{E}_{\phi}\left(\phi^{-1}\left(\frac{1}{V}\right)\right) \Longrightarrow \frac{B\left(\mathbf{1}_{\Omega}^{-1}\right)}{\widehat{X}(\mathbf{1}_{\Omega}^{-1})} = \frac{\widehat{X}(\mathbf{1}_{\Omega})}{C^{*}(\mathbf{1}_{\Omega})} = \mathcal{L}(V) + 1.$$

• Since $\phi^{-1}(1/V)$ is decreasing in V,

$$\sigma(V) = \zeta^{D}(\phi^{-1}(1/V))$$

implies that Marshall's 2^{nd} law, $\zeta^{D'}(\cdot) < 0$, is equivalent to increasing substitutability, $\sigma'(\cdot) > 0$, under HDIA.

$$\sigma(V) = \zeta^{D}(\phi^{-1}(1/V)); \ \mathcal{L}(V) = \frac{1}{\mathcal{E}_{\phi}(\phi^{-1}(1/V))} - 1, \qquad \text{where} \qquad \zeta^{D}(y) \equiv -\frac{\phi'(y)}{y\phi''(y)}; \ \mathcal{E}_{\phi}(y) \equiv \frac{y\phi'(y)}{\phi(y)}$$

Hence,

Lemma 2:

$$\zeta^{D'}(y) \leq 0, \forall y \in (0, y_0) \implies \mathcal{E}'_{\phi}(y) \leq 0, \forall y \in (0, y_0).$$

Furthermore,

$$\zeta^{D'}(y) = 0 \iff \mathcal{E}'_{\phi}(y) = 0 \iff \text{CES}.$$

From this,

Proposition 2:

$$\zeta^{D'}(y) \leq 0 \ \forall y \in (0, y_0) \Leftrightarrow \sigma'(V) \geq 0, \forall V \in (1/\phi(y_0), \infty)$$

$$\mathcal{E}_{\phi}'(y) \lessgtr 0, \forall y \in (0, y_0) \Longleftrightarrow \mathcal{L}'(V) \lessgtr 0, \forall V \in (1/\phi(y_0), \infty).$$

Furthermore,

$$\zeta^{D'}(y) = 0 \iff \sigma'(V) = 0 \iff \mathcal{E}'_{\phi}(y) = 0 \iff \mathcal{L}'(V) = 0 \iff \text{CES}.$$

Thus, under HDIA,

- Marshall's 2^{nd} Law, $\zeta^{D'}(\cdot) < 0$ for all $\psi > 0$, is equivalent to increasing substitutability, $\sigma'(\cdot) > 0$ for all V.
- Increasing (decreasing) substitutability implies diminishing (increasing) love-for-variety. The converse is not true.
- Constant love-for-variety, constant substitutability, and constant price elasticity are all equivalent and occur iff CES.

Homothetic Indirect Implicit Additivity (HIIA)

Symmetric HIIA (Homothetic Indirectly Implicitly Additive) DS with Gross Substitutes

Definition: A symmetric CRS technology, $P = P(\mathbf{p}) = \hat{P}(\mathbf{p})/Z$, is called homothetic with indirect implicit additivity (HIIA) if it can be defined implicitly by:

$$\int_{\Omega} \theta \left(\frac{p_{\omega}}{ZP(\mathbf{p})} \right) d\omega = \int_{\Omega} \theta \left(\frac{p_{\omega}}{\widehat{P}(\mathbf{p})} \right) d\omega = 1,$$

where θ : $\mathbb{R}_{++} \to \mathbb{R}_{+}$ is independent of Z > 0, C^3 , with $\theta(z) > 0$, $\theta'(z) < 0$, $\theta''(z) > 0$, $-z\theta''(z)/\theta'(z) > 1$, for $\theta(z) > 0$ with $\lim_{z\to 0} \theta(z) = \infty$ and $\lim_{z\to \bar{z}} \theta(z) = 0$, where $\bar{z} \equiv \inf\{z > 0 | \theta(z) = 0\}$.

- By construction, $\hat{P}(\mathbf{p})$ is independent of Z > 0, TFP.
- If $\bar{z} < \infty$, $\hat{P}(\mathbf{p})\bar{z} = ZP(\mathbf{p})\bar{z}$ is the choke price. If $\bar{z} = \infty$, no choke price.
- CES with gross substitutes: $\theta(z) = (z)^{1-\sigma}$, $(\sigma > 1)$.
- CoPaTh: $\theta(z) = \sigma^{\frac{\rho}{1-\rho}} \int_{z/\bar{z}}^{1} \left((\xi)^{\frac{\rho-1}{\rho}} 1 \right)^{\frac{\rho}{1-\rho}} d\xi$ for $z < \bar{z} = \left(\frac{\sigma}{\sigma-1} \right)^{\frac{\rho}{1-\rho}}$; $0 < \rho < 1$, converging to CES as $\rho \nearrow 1$.

Inverse Demand Curve:	$\frac{p_{\omega}}{ZP(\mathbf{p})} =$	$=\frac{p_{\omega}}{\widehat{P}(\mathbf{p})}=(-\theta')$	$-1\left(\frac{x_{\omega}}{B^*(\mathbf{x})}\right)$	Demand Curve:	$\frac{x_{\omega}}{B^*(\mathbf{x})} = -\epsilon$	$\theta'\left(\frac{p_{\omega}}{\widehat{P}(\mathbf{p})}\right) = -\theta'\left(\frac{p_{\omega}}{ZP(\mathbf{p})}\right) > 0$
Production Function:		X	$Z(\mathbf{x}) = Z\hat{X}(\mathbf{x})$	$\equiv Z \int_{\Omega} (-$	$(\theta')^{-1} \left(\frac{x_{\omega}}{B^*(\mathbf{x})}\right)^{-1}$	$-\left(x_{\omega}d\omega\right)$

where $\hat{X}(\mathbf{x})$ and $B^*(\mathbf{x})$ are both independent of Z > 0 and

$$\int_{\Omega} \theta \left((-\theta')^{-1} \left(\frac{x_{\omega}}{B^*(\mathbf{x})} \right) \right) d\omega \equiv 1.$$

Budget Share: $\frac{p_{\omega}x_{\omega}}{P(\mathbf{p})X(\mathbf{x})} = (-\theta')^{-1} \left(\frac{x_{\omega}}{B^*(\mathbf{x})}\right) \frac{x_{\omega}}{\widehat{X}(\mathbf{x})} = -\theta' \left(\frac{p_{\omega}}{\widehat{P}(\mathbf{p})}\right) \frac{p_{\omega}}{C(\mathbf{p})}$

where

$$C(\mathbf{p}) \equiv -\int_{\Omega} \theta' \left(\frac{p_{\omega}}{\widehat{P}(\mathbf{p})}\right) p_{\omega} d\omega > 0$$

satisfying the identity,

$$\frac{C(\mathbf{p})}{\widehat{P}(\mathbf{p})} = \int_{\Omega} \frac{p_{\omega}}{\widehat{P}(\mathbf{p})} \left[-\theta' \left(\frac{p_{\omega}}{\widehat{P}(\mathbf{p})} \right) \right] d\omega = \int_{\Omega} (-\theta')^{-1} \left(\frac{x_{\omega}}{B^*(\mathbf{x})} \right) \frac{x_{\omega}}{B^*(\mathbf{x})} d\omega = \frac{\widehat{X}(\mathbf{x})}{B^*(\mathbf{x})}.$$

Budget share under HIIA: A function of two relative prices, $p_{\omega}/\hat{P}(\mathbf{p})$ and $p_{\omega}/\mathcal{C}(\mathbf{p})$, or of two relative quantities, $x_{\omega}/\hat{X}(\mathbf{x})$ and $x_{\omega}/B^*(\mathbf{x})$, unless $\mathcal{C}(\mathbf{p})/\hat{P}(\mathbf{p}) = \hat{X}(\mathbf{x})/B^*(\mathbf{x})$ is a constant, which occurs iff CES.

Price Elasticity: $\zeta_{\omega} = \zeta(p_{\omega}; \mathbf{p}) = -\frac{z_{\omega}\theta''(z_{\omega})}{\theta'(z_{\omega})} \equiv \zeta^{I}(z_{\omega}) = \zeta^{I}\left((-\theta')^{-1}\left(\frac{x_{\omega}}{B^{*}(\mathbf{x})}\right)\right) = \zeta^{*}(x_{\omega}; \mathbf{x}) > 1$

Notes:

- Price Elasticity, unlike the budget share, is a function of a single variable, $z_{\omega} \equiv p_{\omega}/\hat{P}(\mathbf{p})$ or $x_{\omega}/B^*(\mathbf{x}) = -\theta'(z_{\omega})$.
- $\zeta^I(z_\omega) = \sigma > 1$ under CES, $\theta(z) = (z)^{1-\sigma}$, $(\sigma > 1)$.
- Marshall's 2nd law iff $\zeta^{I'}(z_{\omega}) > 0$, satisfied by $\zeta^{I}(z_{\omega}) = \frac{\sigma}{\sigma (\sigma 1)(z_{\omega})^{(1-\rho)/\rho}} = \frac{1}{1 (z_{\omega}/\bar{z})^{(1-\rho)/\rho}}$ under CoPaTh.

For symmetric price patterns, $\mathbf{p} = p\mathbf{1}_{\Omega}^{-1}$,

$$\theta\left(\frac{1}{\widehat{P}(\mathbf{1}_{\Omega}^{-1})}\right)V = 1 \implies \frac{1}{\widehat{P}(\mathbf{1}_{\Omega}^{-1})} = \theta^{-1}(1/V).$$

Hence,

	Definition	Under HIIA
Price Elasticity	$\zeta_{\omega} \equiv -\frac{\partial \ln x_{\omega}}{\partial \ln p_{\omega}} = \zeta(p_{\omega}; \mathbf{p}) = \zeta^*(x_{\omega}; \mathbf{x})$	$\zeta_{\omega} \equiv \zeta^{I} \left(\frac{p_{\omega}}{\widehat{P}(\mathbf{p})} \right) = \zeta^{I} \left((-\theta')^{-1} \left(\frac{x_{\omega}}{B^{*}(\mathbf{x})} \right) \right) > 1$
Substitutability	$\sigma(V) \equiv \zeta(1; 1_{\Omega}^{-1}) = \zeta^*(1; 1_{\Omega})$	$\sigma(V) = \zeta^{I}(\theta^{-1}(1/V)) > 1$
Love-for-variety	$\mathcal{L}(V) \equiv \frac{d \ln z(V)}{d \ln V} = -\frac{d \ln y(V)}{d \ln V} - 1 > 0.$	$\mathcal{L}(V) = \frac{1}{\mathcal{E}_{\theta}(\theta^{-1}(1/V))} > 0.$

where

$$\mathcal{E}_{\theta}(z) \equiv -\frac{z\theta'(z)}{\theta(z)} > 0.$$

Notes:

• At symmetric price patterns, $\mathbf{p} = p \mathbf{1}_{\Omega}^{-1}$,

$$\frac{\mathcal{C}\left(\mathbf{1}_{\Omega}^{-1}\right)}{\widehat{P}(\mathbf{1}_{\Omega}^{-1})} = \frac{\widehat{X}(\mathbf{1}_{\Omega})}{B^{*}(\mathbf{1}_{\Omega})} = \int_{\Omega} \mathcal{E}_{\theta}\left(\frac{1}{\widehat{P}(\mathbf{1}_{\Omega}^{-1})}\right) \theta\left(\frac{1}{\widehat{P}(\mathbf{1}_{\Omega}^{-1})}\right) d\omega = \mathcal{E}_{\theta}\left(\theta^{-1}\left(\frac{1}{V}\right)\right) \Longrightarrow \mathcal{L}(V) = \frac{\widehat{P}\left(\mathbf{1}_{\Omega}^{-1}\right)}{\mathcal{C}(\mathbf{1}_{\Omega}^{-1})} = \frac{B^{*}(\mathbf{1}_{\Omega})}{\widehat{X}(\mathbf{1}_{\Omega})}$$

• Since $\theta^{-1}(1/V)$ is increasing in V,

$$\sigma(V) = \zeta^{I}(\theta^{-1}(1/V))$$

implies that Marshall's 2^{nd} law, $\zeta^{I'}(\cdot) > 0$, is equivalent to increasing substitutability, $\sigma'(\cdot) > 0$, under HIIA.

$$\sigma(V) = \zeta^{I}(\theta^{-1}(1/V)); \ \mathcal{L}(V) = \frac{1}{\mathcal{E}_{\theta}(\theta^{-1}(1/V))}, \qquad \text{where} \qquad \zeta^{I}(z) \equiv -\frac{z\theta''(z)}{\theta'(z)}; \ \mathcal{E}_{\theta}(z) \equiv -\frac{z\theta'(z)}{\theta(z)}.$$

Hence,

$$\zeta^{I'}(z) \gtrless 0, \forall z \in (z_0, \overline{z}) \quad \Longrightarrow \quad \mathcal{E}_{\theta}'(z) \gtrless 0, \forall z \in (z_0, \overline{z}).$$

Furthermore.

$$\zeta^{I'}(z) = 0 \iff \mathcal{E}'_{\theta}(z) = 0 \Leftrightarrow \text{CES}.$$

From this,

Proposition 3:

$$\zeta^{I'}(z) \geq 0, \forall z \in (z_0, \overline{z}) \iff \sigma'(V) \geq 0, \forall V \in (1/\theta(z_0), \infty)$$

$$\Longrightarrow \mathcal{E}_{\theta}'(z) \gtrless 0, \forall z \in (z_0, \overline{z}) \Longleftrightarrow \mathcal{L}'(V) \leqq 0, \forall V \in (1/\theta(z_0), \infty).$$

Furthermore,

$$\zeta^{I'}(z) = 0 \iff \sigma'(V) = 0 \iff \mathcal{E}'_{\theta}(z) = 0 \iff \mathcal{L}'(V) = 0 \iff \text{CES}.$$

Under HIIA,

- Marshall's 2^{nd} Law, $\zeta^{I'}(\cdot) < 0$ for all $z < \overline{z}$, is equivalent to increasing substitutability, $\sigma'(\cdot) > 0$ for all V.
- Increasing (decreasing) substitutability implies diminishing (increasing) love-for-variety. The converse is not true.
- Constant love-for-variety, constant substitutability, and constant price elasticity are all equivalent and occur iff CES.

Summing Up

Question: How does love-for-variety (gains from increasing variety) depend on the underlying demand structure?

We define Price Elasticity, Substitutability, Love-for-Variety for general symmetric homothetic demand systems.

- Substitutability, $\sigma(V)$, Love-for-Variety, $\mathcal{L}(V)$, are both functions of the mass of available varieties, V, only.
- We can say little about their relations, unless we impose additional restrictions.

We turn to H.S.A., HDIA, and HIIA, under which the price elasticity can be written as a function of a single variable.

	CES	H.S.A.	HDIA	HIIA
Price Elasticity: $\zeta_{\omega} = \zeta(p_{\omega}; \mathbf{p}) = \zeta^*(x_{\omega}; \mathbf{x}).$	σ	$\zeta\left(\frac{p_{\omega}}{A(\mathbf{p})}\right)$	$\zeta^D \left(\frac{x_\omega}{\widehat{X}(\mathbf{x})} \right)$	$\zeta^I \left(rac{p_\omega}{\widehat{P}(\mathbf{p})} \right)$
Substitutability: $\sigma(V) = \zeta(1; 1_{\Omega}^{-1}) = \zeta^*(1; 1_{\Omega}).$	σ	$\zeta\left(s^{-1}\left(\frac{1}{V}\right)\right)$	$\zeta^D\left(\phi^{-1}\left(\frac{1}{V}\right)\right)$	$\zeta^{I}\left(\theta^{-1}\left(\frac{1}{V}\right)\right)$
Love-for-variety: $\mathcal{L}(V) \equiv \frac{d \ln z(V)}{d \ln V} = -\frac{d \ln \psi(V)}{d \ln V} - 1.$	$\frac{1}{\sigma-1}$	$\Phi\left(s^{-1}\left(\frac{1}{V}\right)\right)$	$\frac{1}{\mathcal{E}_{\phi}(\phi^{-1}(1/V))}-1$	$\frac{1}{\mathcal{E}_{\theta}\big(\theta^{-1}(1/V)\big)}$

In each of these three classes,

- The substitutability is increasing in V, if and only if Marshall's 2^{nd} law of demand holds.
- Increasing (decreasing) substitutability implies diminishing (increasing) love-for-variety. The converse is not true.
- Constant love-for-variety, constant substitutability and constant price elasticity are equivalent and occur iff CES.

Thus, they offer a tractable way of capturing the intuition that gains from increasing variety is diminishing, if different varieties are more substitutable when more varieties are available.

Appendices

Appendix C: An Alternative (and Equivalent) Definition of H.S.A.

Definition: A symmetric CRS technology, $X = X(\mathbf{x})$ is called *homothetic single aggregator* (H.S.A.) if the budget share of ω depends solely on a single variable, $y_{\omega} \equiv x_{\omega}/A^*$, its own quantity x_{ω} , normalized by the common quantity aggregator, $A^* = A^*(\mathbf{x})$.

$$s_{\omega} \equiv \frac{p_{\omega} x_{\omega}}{\mathbf{p} \mathbf{x}} = \frac{\partial \ln X(\mathbf{x})}{\partial \ln x_{\omega}} = s^* \left(\frac{x_{\omega}}{A^*(\mathbf{x})}\right), \quad \text{where} \quad \int_{\Omega} s^* \left(\frac{x_{\omega}}{A^*(\mathbf{x})}\right) d\omega \equiv 1.$$

- $s^*: \mathbb{R}_{++} \to \mathbb{R}_+$: the budget share function, in $y_\omega \equiv x_\omega/A^*$ with $0 < \mathcal{E}_{s^*}(y) \equiv \frac{d \ln s^*(y)}{d \ln y} < 1$, $s^*(0) = 0$, $s^*(\infty) = \infty$.
- $A^* = A^*(\mathbf{x})$: the common quantity aggregator, defined by the adding-up constraint, $\int_{\Omega} s^*(x_{\omega}/A^*)d\omega \equiv 1$. By construction, the budget shares add up to one. $A^*(\mathbf{x})$ linear homogenous in \mathbf{x} for a fixed Ω . A larger Ω increases A^* .

Price Elasticity:	$\zeta_{\omega} = \zeta^*(x_{\omega}; \mathbf{x}) = \left[1 - \frac{d \ln s^*(y_{\omega})}{d \ln y}\right]^{-1} \equiv \zeta^*(y_{\omega}) > 1,$
	$\begin{bmatrix} a \ln y_{\omega} \end{bmatrix}$

Notes:

- Also a function of a single variable, $y_{\omega} \equiv x_{\omega}/A^*(\mathbf{x})$.
- $\zeta^*(y) = \sigma > 1$ under CES, $s^*(y) = \gamma^{1/\sigma}(y)^{1-1/\sigma}$.
- Marshall's 2^{nd} law, $\partial \zeta(x_{\omega}; \mathbf{x})/\partial x_{\omega} < 0$, holds iff $\zeta^{*'}(\cdot) < 0$.
- The choke price exists iff $\lim_{y\to 0} {s^*}'(y) < \infty$, which implies $\lim_{y\to 0} \frac{d \ln s^*(y)}{d \ln y} = 1$ and hence $\lim_{y\to 0} \zeta^*(y) = \infty$. For example, translog corresponds to $s^*(y)$, defined implicitly by $s^* \exp(s^*/\gamma) \equiv \bar{z}y$, for $\bar{z} < \infty$.

Production Function: By integrating $=\frac{\partial \ln X(\mathbf{x})}{\partial \ln x_{\omega}} = s^* \left(\frac{x_{\omega}}{A^*(\mathbf{x})}\right)$,

$$\ln\left[\frac{X(\mathbf{x})}{c^*A^*(\mathbf{x})}\right] = \int_{\Omega} s^*\left(\frac{x_{\omega}}{A^*(\mathbf{x})}\right) \Phi^*\left(\frac{x_{\omega}}{A^*(\mathbf{x})}\right) d\omega,$$

where

$$\Phi^*(y) \equiv \frac{1}{s^*(y)} \int_0^y \frac{s^*(\xi^*)}{\xi^*} d\xi^* = \frac{\int_0^y [s^*(\xi^*)/\xi^*] d\xi^*}{\int_0^y [s^*(y)/y] d\xi^*} > 1,$$

and $c^* > 0$ is a constant, proportional to TFP. $\Phi^*(y) > 1$ follows from $\mathcal{E}_{S^*}(y) \equiv \frac{d \ln s^*(y)}{d \ln y} < 1$ implying that $s^*(y)/y$ is decreasing in y.

Notes:

- $X(\mathbf{x})$, linear homogeneous, monotonic, and strictly quasi-concave, ensuring the integrability of H.S.A.
- $X(\mathbf{x})/A^*(\mathbf{x})$ is not constant and depends on \mathbf{x} , with the sole exception of CES, because

$$\frac{\partial \ln A^*(\mathbf{x})}{\partial \ln x_{\omega}} = \frac{y_{\omega} s^{*'}(y_{\omega})}{\int_{\Omega} s^{*'}(y_{\omega'}) y_{\omega'} d\omega'} = \frac{\left[1 - \frac{1}{\zeta^*(y_{\omega})}\right] s^*(y_{\omega})}{\int_{\Omega} \left[1 - \frac{1}{\zeta^*(y_{\omega'})}\right] s^*(y_{\omega'}) d\omega'} \neq \frac{\partial \ln X(\mathbf{x})}{\partial \ln x_{\omega}} = s^*(y_{\omega}),$$

unless $\zeta^*(y)$ is independent of y or $s^*(y) = \gamma^{1/\sigma}(y)^{1-1/\sigma}$ with $\zeta^*(y) = \sigma > 1$.

For symmetric quantity patterns, $\mathbf{x} = x \mathbf{1}_{\Omega}$,

$$1 = s^* \left(\frac{x}{A^*(x \mathbf{1}_{\Omega})} \right) V = s^* \left(\frac{1}{A^*(\mathbf{1}_{\Omega})} \right) V \Longrightarrow y_{\omega} \equiv \frac{1}{A^*(\mathbf{1}_{\Omega})} = s^{*-1} \left(\frac{1}{V} \right).$$

Hence,

	Definition	Under H.S.A.
Price Elasticity	$\zeta_{\omega} \equiv -\frac{\partial \ln x_{\omega}}{\partial \ln p_{\omega}} = \zeta(p_{\omega}; \mathbf{p}) = \zeta^*(x_{\omega}; \mathbf{x})$	$\zeta_{\omega} \equiv \zeta^* \left(\frac{x_{\omega}}{A^*(\mathbf{x})} \right) > 1$
Substitutability	$\sigma(V) \equiv \zeta(1; 1_{\Omega}^{-1}) = \zeta^*(1; 1_{\Omega})$	$\sigma(V) = \zeta^* \big(s^{*-1}(1/V) \big) > 1$
Love-for-variety	$\mathcal{L}(V) \equiv \frac{d \ln z(V)}{d \ln V} = -\frac{d \ln y(V)}{d \ln V} - 1 > 0.$	$\mathcal{L}(V) = \Phi^*(s^{*-1}(1/V)) - 1 > 0.$

Notes:

• At the symmetric quantity patterns,

$$\ln\left[\frac{X(\mathbf{x})}{c^*A^*(\mathbf{x})}\right] = \Phi^*\left(s^{*-1}\left(\frac{1}{V}\right)\right) = \mathcal{L}(V) + 1.$$

• Since $s^{*-1}(1/V)$ is decreasing in V,

$$\sigma(V) = \zeta^* \left(s^{*-1} \left(\frac{1}{V} \right) \right)$$

implies that Marshall's 2^{nd} law, $\zeta^{*'}(\cdot) < 0$, is equivalent to increasing substitutability, $\sigma'(\cdot) > 0$.

$$\sigma(V) = \zeta^* \left(s^{*-1} \left(\frac{1}{V} \right) \right); \ \mathcal{L}(V) = \Phi^* \left(s^{*-1} \left(\frac{1}{V} \right) \right) - 1, \qquad \text{where} \quad \zeta^*(y) \equiv \left[1 - \frac{d \ln s^*(y)}{d \ln y} \right]^{-1}; \ \Phi^*(y) \equiv \frac{1}{s^*(y)} \int_0^y \frac{s^*(\xi^*)}{\xi^*} d\xi^*.$$

Lemma 1*

$$\zeta^{*'}(y) \leq 0, \forall y \in (0, y_0) \Longrightarrow \Phi^{*'}(y) \geq 0, \forall y \in (0, y_0).$$

Furthermore,

$$\zeta^{*'}(y) = 0 \iff \Phi^{*'}(y) = 0 \iff CES.$$

From this,

Proposition 1*

$$\zeta^{*'}(y) \leq 0, \forall y \in (0, y_0) \Leftrightarrow \sigma'(V) \geq 0, \forall V \in (1/s^*(y_0), \infty)$$

$$\Rightarrow \Phi^{*\prime}(y) \geq 0, \forall y \in (0, y_0) \Leftrightarrow \mathcal{L}'(V) \leq 0, \forall V \in (1/s^*(y_0), \infty)$$

Furthermore,

$$\zeta^{*\prime}(y) = 0 \iff \sigma'(V) = 0 \iff \Phi^{*\prime}(y) = 0 \iff \mathcal{L}'(V) = 0 \iff \text{CES}.$$

Thus, under H.S.A.,

- Marshall's 2^{nd} Law, $\zeta^{*'}(\cdot) < 0$ for all y > 0 is equivalent to increasing substitutability, $\sigma'(\cdot) > 0$ for all V.
- Increasing (decreasing) substitutability implies diminishing (increasing) love-for-variety. The converse is not true.
- Constant love-for-variety, constant substitutability, and constant price elasticity are all equivalent and occur iff CES.

Equivalence of the Two Definitions of H.S.A.

Under the isomorphism given by the one-to-one mapping btw $s(z) \leftrightarrow s^*(y)$, defined by:

$$s^*(y) = s\left(\frac{s^*(y)}{y}\right); \qquad s(z) = s^*\left(\frac{s(z)}{z}\right).$$

From this,

$$\zeta^*(y) \equiv \left[1 - \frac{d \ln s^*(y)}{d \ln y}\right]^{-1} = \zeta(z) \equiv 1 - \frac{d \ln s(z)}{d \ln z} > 1,$$

$$0 < \mathcal{E}_{s^*}(y) \equiv \frac{d \ln s^*(y)}{d \ln y} < 1 \iff \mathcal{E}_s(z) \equiv \frac{d \ln s(z)}{d \ln z} < 0.$$

 $y_{\omega} \equiv x_{\omega}/A^*(\mathbf{x})$, and $z_{\omega} \equiv p_{\omega}/A(\mathbf{p})$, are negatively related as

$$z_{\omega} = \frac{s^{*}(y_{\omega})}{y_{\omega}} \iff y_{\omega} = \frac{s(z_{\omega})}{z_{\omega}},$$

$$\frac{dy_{\omega}}{y_{\omega}} = -\zeta(z_{\omega}) \frac{dz_{\omega}}{z_{\omega}} \iff \frac{dz_{\omega}}{z_{\omega}} = -\frac{1}{\zeta^{*}(y_{\omega})} \frac{dy_{\omega}}{y_{\omega}}$$

and

$$\frac{z_{\omega}\zeta'(z_{\omega})}{y_{\omega}\zeta^{*'}(y_{\omega})} = -\zeta(z_{\omega}) = -\zeta^{*}(y_{\omega}) < 0.$$

If $\lim_{y\to 0} s^{*'}(y) < \infty$, $\lim_{y\to 0} \zeta^{*}(y) = \infty$ and the (normalized) choke price is:

$$\lim_{y \to 0} \frac{s^*(y)}{y} = \lim_{y \to 0} s^{*'}(y) = \bar{z} \equiv \inf\{z > 0 | s(z) = 0\} < \infty$$

Moreover,

$$\frac{p_{\omega}x_{\omega}}{A(\mathbf{p})A^{*}(\mathbf{x})} = y_{\omega}z_{\omega} = s(z_{\omega}) = s^{*}(y_{\omega}) = \frac{p_{\omega}x_{\omega}}{P(\mathbf{p})X(\mathbf{x})}$$

hence we have the identity,

$$c \exp \left[\int_{\Omega} s(z_{\omega}) \Phi(z_{\omega}) d\omega \right] = \frac{A(\mathbf{p})}{P(\mathbf{p})} = \frac{X(\mathbf{x})}{A^*(\mathbf{x})} = c^* \exp \left[\int_{\Omega} s^*(y_{\omega}) \Phi^*(y_{\omega}) d\omega \right]$$

which is a constant iff CES.

Furthermore, using

$$s(\xi) = s^*(\xi^*) = \xi \xi^* \to \frac{d\xi^*}{\xi^*} = \left[\frac{\xi s'(\xi)}{s(\xi)} - 1 \right] \frac{d\xi}{\xi} \to s^*(\xi^*) \frac{d\xi^*}{\xi^*} = \left[s'(\xi) - \frac{s(\xi)}{\xi} \right] d\xi$$
$$\xi = z \longleftrightarrow \xi^* = y; \ \xi = \overline{z} \longleftrightarrow \xi^* = 0,$$

$$\Phi^*(y) - \Phi(z) \equiv \frac{1}{s^*(y)} \int_0^y \frac{s^*(\xi^*)}{\xi^*} d\xi^* - \frac{1}{s(z)} \int_z^{\overline{z}} \frac{s(\xi)}{\xi} d\xi = \frac{1}{s(z)} \int_{\overline{z}}^z \left[s'(\xi) - \frac{s(\xi)}{\xi} \right] d\xi - \frac{1}{s(z)} \int_z^{\overline{z}} \frac{s(\xi)}{\xi} d\xi = 1.$$

Since

$$w(\xi) \equiv \frac{s(\xi)/\xi}{\int_{z}^{\overline{z}} [s(\xi')/\xi'] \, d\xi'} \iff s(z)\Phi(z)w(\xi) = \frac{s(\xi)}{\xi}$$
$$w^{*}(\xi^{*}) \equiv \frac{s^{*}(\xi^{*})/\xi^{*}}{\int_{0}^{y} [s^{*}(\xi^{*}')/\xi^{*}'] \, d\xi^{*}'} \iff s^{*}(y)\Phi^{*}(y)w^{*}(\xi^{*}) = \frac{s^{*}(\xi^{*})}{\xi^{*}},$$

this implies

$$\frac{\xi w(\xi)}{\xi^* w^*(\xi^*)} = \frac{\Phi^*(y)}{\Phi(z)} = 1 + \frac{1}{\Phi(z)} = \frac{\Phi^*(y)}{\Phi^*(y) - 1},$$

$$\frac{c}{c^*} = \exp\left[\int_{\Omega} \left[s^*(y_\omega)\Phi^*(y_\omega) - s(z_\omega)\Phi(z_\omega)\right]d\omega\right] = \exp\left[\int_{\Omega} s(z_\omega)d\omega\right] = e.$$

and

$$\mathcal{L}(V) = \Phi(s^{-1}(1/V)) = \Phi^*(s^{*-1}(1/V)) - 1.$$