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Abstract

We consider a family of one-dimensional continuous piecewise smooth maps with

monotone increasing and monotone decreasing branches. It is associated with

a credit cycle model introduced by Matsuyama, under the assumption of the

Cobb-Douglas production function. We offer a detailed analysis of the dynamics

of this family. In particular, using the skew tent map as a border collision normal

form we obtain the conditions of abrupt transition from an attracting fixed point

to an attracting cycle or a chaotic attractor (cyclic chaotic intervals). These

conditions allow us to describe the bifurcation structure of the parameter space

of the map in a neighborhood of the boundary related to the border collision

bifurcation of the fixed point. Particular attention is devoted to codimension-

two bifurcation points. Moreover, the described bifurcation structure confirms

that the chaotic attractors of the considered map are robust, that is, persistent

under parameter perturbations.
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1. Introduction

The one-dimensional (1D for short) piecewise smooth (PWS for short) map

considered in the present paper defines an important credit cycle model first

introduced by Matsuyama in [20]. This model generates endogenous fluctuations

of borrower net worth and aggregate investment, following the same trend as

several micro-founded, dynamic general equilibrium models of financial frictions,

in which the steady state is unstable, and persistent fluctuations occur without

exogenous shocks (see, for example, [1], [3], [21]). Such an approach differs

from the basic ideas of a vast majority of the macroeconomics literature on

financial frictions that follows the seminal works [6] and [18], and continues to

study amplification effects of financial frictions within a setting that ensures the

existence of a stable steady state toward which the economy would gravitate

in the absence of recurring exogenous shocks. In fact, the idea that market

mechanisms are inherently dynamically unstable can be traced back at least to

Goodwin [12]. Recent events have also renewed interest in the hypothesis that

financial frictions are responsible not only for amplifying the effects of exogenous

shocks but also for causing macroeconomic instability (see, e.g., [17] and [25]).

A detailed description of the Matsuyama model can be found in [20] and [22]

(see also [23]). It is defined by a 1D map which consists of upward, downward,

and flat branches. Furthermore, as discussed in [23], when the production func-

tion is Cobb-Douglas, the map depends on four parameters. The bifurcation

structure of the parameter space of this map significantly depends on whether

the constant branch is involved into asymptotic dynamics or not. In our com-

panion paper [32] we study in detail the case where all three branches are in-

volved, demonstrating that it is characterized by periodicity regions related to

superstable cycles existing due the constant branch, and that these regions are

ordered according to the well known U-sequence distinctive for unimodal maps

(first described in [24], see also [13]), which is adjusted to the considered map.

In the present paper we analyse the dynamics of the map when the constant

branch does not participate in the asymptotic dynamics. Such a map belongs
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to a class of 1D PWS continuous unimodal maps possessing quite complicated

dynamics which, depending on the parameters, is characterized by attracting

cycles of any period, as well as cyclic chaotic intervals. The mechanisms gov-

erning the transitions between such attractors under parameter variation are

already described in our paper [23]. The main purpose of the present work

is to give detailed proofs of the related results and to describe the overall bi-

furcation structure of the parameter space of the map, evidencing the role of

codimension-two bifurcation points.

From the point of view of nonlinear dynamics theory the main feature of

the considered map is its nonsmoothness. In fact, as we mentioned above, the

map is given by two different smooth functions whose definition regions are

separated by a border point at which the system function is not differentiable.

As a result, under variation of a parameter it is possible to observe not only

bifurcations typical for 1D smooth maps (such as, for example, flip bifurcation

of a fixed point related to its eigenvalue crossing −1, or homoclinic bifurcation

related to a contact of a stable and unstable sets of a repelling fixed point), but

border collision bifurcations (BCB for short) as well, which are characteristic of

nonsmooth systems (see [15], [14], [26], [5]). Recall that a BCB occurs when

an invariant set, for example, a fixed point or cycle, collides with a border

point. The result of such a bifurcation can be a direct transition from an

attracting fixed point to a chaotic attractor that is impossible in smooth systems.

Such an abrupt transition to chaos in a 1D PWS map can be observed also

due to a degenerate bifurcation which is related to the eigenvalue of a fixed

point (or cycle) crossing 1 or −1 in presence of a particular degeneracy of the

system function. For example, a degenerate flip bifurcation (DFB for short)

of a fixed point occurs when its eigenvalue crosses −1 and the related branch

of the function at the bifurcation value is linear or linear fractional (see [31]).

Note that a general bifurcation theory for nonsmooth dynamical systems has

not yet such a complete form as the one established for smooth systems. As an

important advancement towards such a theory we refer to the books [34], [10].

Examples of PWS models coming from economic applications can be found in
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[9], [15], [7], [28], [11], to cite a few.

As one of the main contributions of the present paper we give the conditions

under which abrupt transitions via a BCB from an attracting fixed point to

an attracting cycle or to a chaotic attractor are observed. Such conditions are

obtained by using a 1D piecewise linear map defined by two linear functions,

called skew tent map. The dynamics of the skew tent map are completely

described depending on the slopes of the linear branches (see [16], [19]) that

makes it possible to use this map as a border collision normal form ([27], [5],

[29], [30]).

The skew tent map is used to classify not only the BCB of the fixed point,

mentioned above, but BCBs of the attracting n-cycles as well, n ≥ 3. More

precisely, we show that one boundary of the periodicity region related to an

attracting n-cycle is associated (at least in a certain neighbourhood) with the

so-called fold BCB. The crossing of this boundary leads to the appearance of a

couple of n-cycles, one attracting and one repelling. This bifurcation is to some

extent similar to the smooth fold bifurcation, being, however, not related to an

eigenvalue equal to 1. Another boundary of the n-periodicity region is related

to the smooth flip bifurcation, sub- or supercritical.

It is known that one more distinctive feature of PWS maps is associated with

robust chaotic attractors (see [4]), that means that in the parameter space of a

PWS map an open region may exist, called chaotic domain, related to chaotic

attractors persistent under parameter perturbations. Considering a chaotic at-

tractor which consists of n cyclic intervals, n ≥ 1, under parameter variation

inside a chaotic domain bifurcations can be observed at which the number of

intervals constituting the chaotic attractor changes. In particular, a merging

bifurcation is related to the transition from 2n- to n-cyclic chaotic attractor. It

is caused by the first homoclinic bifurcation of a repelling cycle with negative

eigenvalue, located at the immediate basin boundary of the attractor. An ex-

pansion bifurcation occurs when a chaotic attractor abruptly increases in size

filling the complete absorbing interval due to the first homoclinic bifurcation

of a repelling cycle with positive eigenvalue (see [2] for details). By using the
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skew tent map we get the conditions of the homoclinic bifurcations leading to

merging and expansion bifurcations in the considered map.

The paper is organized as follows. In Sec.2 we describe the map, its fixed

points and the conditions of their stability. The parameter region we are inter-

ested in is confined by three boundaries. One of them is related to a contact

of the absorbing interval with the border point (crossing this boundary the

constant branch becomes involved into asymptotic dynamics), and two other

boundaries are related to the bifurcations of a fixed point associated with the

downward branch of the map. Namely, crossing one of such boundaries a BCB

of this fixed point occurs, whose possible results are listed in Sec.3 (see Propo-

sition 1) and proved using the skew tent map as a border collision normal form.

The second boundary is related to the flip bifurcation described in Sec.4 (see

Proposition 2). In Sec.5 it is discussed the overall bifurcation structure of the

parameter space of the considered map, emphasizing the role of codimension-two

bifurcation points. Sec.6 concludes.

2. Description of the map, its fixed points and their bifurcations

We consider a 4-parameter family of 1D piecewise smooth maps defined as

T : w 7→ T (w) =


TL(w) = wα if 0 < w < wc,

TM (w) =
[

1
µβ

(
1− w

m

)] α
1−α

if wc < w < wµ,

TR(w) = β
α
α−1 if w ≥ max {wc, wµ} ,

(1)

where α, β, µ and m are real parameters such that

0 < α, µ < 1, β ≡ B 1− α
α

> 0, 1 < m <
1

1− α
, (2)

wc and wµ are the border points defined by

w1−α
c =

1

µβ
max

{
1− wc

m
,µ
}
, wµ = m(1− µ). (3)

Map T describes the dynamic trajectory of the entrepreneur net worth w in

a credit cycle model, first introduced in [20], under the additional assumption

that the aggregate production function is Cobb-Douglas (see [32], [23]).
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In the simplest case map T is defined only by the branches TL(w) and TR(w)

with the border point wc = (wB)
1/α

. The boundary in the parameter space

defined by

β = (m(1− µ))α−1 (4)

is related to the appearance of the middle branch in the definition of T . Namely,

for β > (m(1− µ))α−1 map T can be written in the following form:

T : w 7→ T (w) =


TL(w) = wα if 0 ≤ w ≤ wc,

TM (w) =
[

1
µβ

(
1− w

m

)] α
1−α

if wc < w < wµ,

TR(w) = wB if w > wµ.

(5)

Note that T maps (0, 1] into itself, so that we restrict T on (0, 1] from now on.

Let us first recall the simplest bifurcation conditions (see [32] and [23]) re-

lated to existence and stability of the fixed points of map T. We illustrate the

corresponding regions and bifurcation curves in Fig.1 which shows also examples

of map T associated with different parameter regions.

The fixed points related to the upward, downward and flat branches of map

T are denoted w∗L, w
∗
M and w∗R, respectively. The fixed point w∗L = 1 exists and

is globally attracting for the parameter values belonging to the region

A : β ≤ max

{
1

µ

(
1− 1

m

)
, 1

}
, (6)

two boundaries of which correspond to BCBs of w∗L, namely, for

BCLM : β =
1

µ

(
1− 1

m

)
, (7)

we have w∗L = 1 = w∗M , and for

BCLR : β = 1, (8)

the equality w∗L = 1 = w∗R holds. The fixed point w∗R = wB (which is obviously

superstable) exists for the parameter region

1 < β < (m(1− µ))1−
1
α .

At the boundary β = 1 (denoted as BCLR) we have w∗R = w∗L = 1. If the

parameter point crosses BCLR we observe a border collision leading from the
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superstable fixed point w∗R to the stable fixed point w∗L.1 The region of existence

of w∗R is divided by the boundary given in (4) in two subregions:

B : 1 < β < (m(1− µ))α−1,

C : (m(1− µ))α−1 < β < (m(1− µ))1−
1
α ,

(see Fig.1). While at the boundary

BCMR : β = (m(1− µ))1−
1
α (9)

we have w∗R = wµ = w∗M , so that BCMR is related to one more border collision

of w∗R. The fixed point w∗M exists if wc ≤ w∗M ≤ wµ that holds for

β ≥ max

{
1

µ

(
1− 1

m

)
, (m(1− µ))1−

1
α

}
. (10)

Both boundaries of this parameter region are related to the border collision of

w∗M , namely, at the boundary BCLM (see (7)) w∗M = 1 = w∗L, as already men-

tioned. The possible results of this BCB are described in Proposition 1 below.

While at the boundary BCMR (see (9)) we have w∗M = wµ = w∗R. Crossing

BCMR in the generic case we observe either a persistence border collision, or a

flip BCB2 (see [32]).

The fixed point w∗M may become unstable via a standard flip bifurcation

(see Proposition 2 below). The flip bifurcation curve of w∗M is given by

FBM : β =
α

µ
(m(1− α))1−

1
α . (11)

So, for parameter values belonging to the region

D : β > max

{
α

µ
(m(1− α))1−

1
α , (m(1− µ))1−

1
α

}

1We say that persistence border collision occurs if neither the kind nor the stability prop-
erties of the colliding invariant set change after the collision.

2The border collision of a fixed point due to which the fixed point changes stability while
a 2-cycle emerges from the border point is called flip BCB. Similarly to the smooth flip
bifurcation a flip BCB can be sub- or supercritical. Note, however, that it is not related
to an eigenvalue passing through −1. Moreover, it may result in a chaotic attractor that is
impossible for a smooth flip bifurcation.
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Figure 1: Basic bifurcation curves of map T in (µ, β)-parameter plane at m = 1.2, α = 0.6.
Examples of map T in different parameter regions are also shown.

(see Fig.1) there exists the locally attracting fixed point w∗M .

We have the following two possibilities for an invariant absorbing interval J

of map T :

1) In the absorbing interval J only the functions TL(w) and TM (w) are

defined, that holds for parameter values belonging to the region

E-I :

 β < α
µ (m(1− α))1−

1
α ,

β > max
{

1
µ

(
1− 1

m

)
, 1− 1

µ + 1
µ (m(1− µ))1−

1
α

} (12)

In such a case J = [T 2(wc), T (wc)].

2) All the three functions, TL(w), TM (w) and TR(w), are involved in J , that

holds in the region

E-II :

 β > (m(1− µ))1−
1
α ,

β < min
{

1− 1
µ + 1

µ (m(1− µ))1−
1
α , α

µ (m(1− α))1−
1
α

} (13)

In such a case J = [T (wµ), T (wc)] = [wB , T (wc)].

The boundary between the two regions corresponds to the contact of J with

the border point wµ, occurring when the condition T (wc) = wµ is satisfied,

leading to the curve BCJ having the following equation:

BCJ : β = 1− 1

µ
+

1

µ
(m(1− µ))1−

1
α . (14)
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The bifurcation structure of the region E-II formed by the periodicity re-

gions related to superstable cycles of map T (existing due to its flat branch)

is described in [32]. In the following we first describe the border collision and

flip bifurcations of the fixed point w∗M in detail and then we discuss the overall

bifurcation structure of the region E-I.

3. Crossing the curve BCLM : BCB of the fixed point

Consider first the BCB of the fixed point w∗M , occurring when a parameter

point crosses the boundary BCLM given in (7) of the region E-I. To describe

the possible results of this BCB we can use the skew tent map defined by

q : x 7→ q(x) =

 alx+ ε if x ≤ 0,

arx+ ε if x > 0,
(15)

as a border collision normal form. This approach is based on the following

statement (see [27], [5], [30]): For a family of 1D piecewise smooth continuous

maps g : x 7→ g(x, c) depending smoothly on a parameter c and having a border

point x = d, suppose that

g(d, c∗) = d (16)

and let

a∗l = lim
x↑d

d

dx
g(x, c∗), a∗r = lim

x↓d

d

dx
g(x, c∗). (17)

Then in the generic case the border collision occurring in the map g as c varies

through c∗ is of the same kind as the one occurring in the skew tent map (15)

as ε varies through 0 at (al, ar) = (a∗l , a
∗
r).

Clearly, this statement refers to the border collision of a fixed point x = x∗

of the map g (its existence before or/and after the collision follows from the

conditions of the statement).3 Generic case means that at c = c∗ the fixed

point x = x∗ of the map g undergoes only one bifurcation, i.e. a codimension-one

3The skew tent map can be also used as a border collision normal form for a BCB of an
n-cycle of the map g, in which case the statement has to be applied to the map gn and its
fixed point corresponding to the periodic point of g colliding with the border point.
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BCB. An example of codimention-two bifurcation is when a border collision and

a flip bifurcation occur simultaneously at the same point in the parameter space

(in fact, this can happen also in map T , as we discuss later). For the detailed

classification of the possible BCBs in the skew tent map and explanation how

to use this map as a border collision normal form we refer to [30].

Let us recall in short the equations of the curves forming the bifurcation

structure in the (al, ar)-parameter plane of the skew tent map given in (15) for

any ε > 0. Let qn denote a cycle of period n, n ≥ 2, of the skew tent map. The

stability region of qn is bounded from above by the curve φn and from below

by the curve ψn defined as

φn : ar = −
1− an−1l

(1− al)an−2l

, (18)

ψn : ar =
−1

an−1l

, (19)

(see Fig.2a). The curve φn is related to the fold BCB4 leading to the appearance

of the basic cycle5 qn and its complementary cycle6 q̃n. The curve ψn is related

to the degenerated flip bifurcation (DFB) of qn leading to 2n-cyclic chaotic

intervals Qn,2n, n ≥ 3, where the first index n means that this chaotic attractor

is born due to a DFB of the n-cycle, while 2n indicates that the chaotic intervals

constituting the attractor are 2n-cyclic. The transitions Qn,2n ⇒ Qn,n (merging

bifurcation) and Qn,n ⇒ Q1 (expansion bifurcation) take place crossing the

curves γn and γ̃n, respectively, whose equations are given by

γn : a
2(n−1)
l a3r − ar + al = 0, (20)

γ̃n : an−1l a2r + ar − al = 0. (21)

4Fold BCB is a border collision at which two fixed points (one attracting and one repelling,
or both repelling) simultaneously collide with the border point and disappear after the colli-
sion. It is worth to emphasize that a fold BCB is not associated with an eigenvalue passing
through 1.

5For a 1D piecewise smooth map defined on two partitions, L and R, an n-cycle with
symbolic sequence LRn−1 or RLn−1 for any n ≥ 2 is called basic. The basic cycle qn of the
skew tent map (15) for ε > 0 has symbolic sequence RLn−1. It can be shown that only such
cycles can be stable (see [30]).

6The symbolic sequences of two complementary cycles differ by one symbol. The symbolic
sequence of the cycle q̃n which is complementary to the basic cycle qn is RLn−2R.
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For the description of merging and expansion bifurcations we refer to [2]. The

curves γn and γ̃n are related to the first homoclinic bifurcation of the cycles qn

and q̃n, respectively. There is also a set of curves σ2i , i ≥ 0, given by

σ2i :
(
aδil a

δi+1
r

)2
+ (al/ar)

(−1)i+1

− 1 = 0, (22)

where δi = (2i − (−1)i)/3. The curve σ2i for i ≥ 1 corresponds to the first

homoclinic bifurcation of harmonic 2i-cycle, causing the merging bifurcation

Q2,2i+1 ⇒ Q2,2i , and the curve σ1 (i = 0) is related to the first homoclinic

bifurcation of the fixed point leading to the merging bifurcation Q2,2 ⇒ Q1.

The curves σ2i for i→∞ are accumulating to the point (al, ar) = (1,−1) (see

Fig.2a).

To construct a normal form for the border collision occurring in map T when

its fixed point collides with the border point wc (in which case w∗M = w∗L = wc =

1) we have to evaluate the left- and right-side derivatives of T at w = 1 for the

parameter values belonging to the boundary BCLM given in (7):

a∗l = lim
w↑1

d

dx
T (w) = α, a∗r = lim

w↓1

d

dx
T (w) = − α

(1− α)(m− 1)
. (23)

The relation between a point belonging to BCLM and the parameters al, ar of

the skew tent map is given by

(al, ar) =

(
α,− α

(1− α)(m− 1)

)
,

so, if a parameter point moves along the boundary BCLM the related point in

the (al, ar)-parameter plane moves along the curve denoted Bm:

Bm : ar = − al
(1− al)(m− 1)

. (24)

Recall that the curve BCLM is valid for β = B 1−α
α > 1, i.e., for α < B

B+1 .

Moreover, α > 1− 1
m (see (2)). So, the curve Bm is valid in the range

1− 1

m
< al <

B

B + 1
, or

−B
m− 1

< ar < −1, (25)

which is nonempty for B > m− 1.

Using the bifurcation curves of the skew tent map we can state the following
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Proposition 1. Consider map T given in (5) for some fixed parameter values
satisfying (2), and let β = (1 − 1/m)/µ (the boundary BCLM ). Consider the
bifurcation structure of the (al, ar)-parameter plane of the skew tent map given
in (15) for ε > 0, defined by the curves (18)-(22), and let (al, ar) = (a∗l , a

∗
r) as

defined in (23). Then the BCB occurring in map T when its parameter point
crosses transversely the boundary BCLM leads from the attracting fixed point
w∗L to the following attractor:

• n-cycle gn, n ≥ 2, if (a∗l , a
∗
r) is below the BCB curve φn and above the flip

bifurcation curve ψn;

• 2n-cyclic chaotic intervals Gn,2n, n ≥ 3, if (a∗l , a
∗
r) is below the BCB curve

φn, the flip bifurcation curve ψn, and above the merging bifurcation curve
γn;

• n-cyclic chaotic intervals Gn,n, n ≥ 3, if (a∗l , a
∗
r) is below the BCB curve

φn, the merging bifurcation curve γn and above the expansion bifurcation
curve γ̃n;

• 2i-cyclic chaotic intervals G2,2i , i ≥ 1, if (a∗l , a
∗
r) is below the BCB curve

φ2, the flip bifurcation curve ψ2, the merging bifurcation curve σ2i and
above the merging bifurcation curves σ2i−1 ;

• Otherwise, the attractor is chaotic interval G1 = [T 2(wc), T (wc)].

To illustrate this proposition we present in Fig.2a the bifurcation structure

of the (al, ar)-parameter plane of the skew tent map together with the curves Bm
for different values of m, and in Fig.2b it is shown the 2D bifurcation diagram

in the (µ, α)-parameter plane for m = 1.05, B = 1.5, where the curve BCLM

corresponds to the curve B1.05.

Let us associate the regions which are crossed by the curve B1.05 (see Fig.2a

and equations (18)-(22)) with the attractors which appear when the curve

BCLM is crossed (see Fig.2b). First note that due to (25) the curve B1.05
is valid for −30 < ar < −1. Starting from the point p′0 of B1.05 with ar = −1,

the curve B1.05 intersects (moving from above to below) the curve ψ2 at the

point p′1, the curves σ2 and σ1 at the points p′2, p
′
3, the curve φ3 at the point

p′4, ψ3 at p′5, γ3 at p′6, γ̃3 at p′7, and so on, up to the intersection with the curve

γ̃5 at the point p′15. It can be checked that B1.05 does not intersect any other

bifurcation curve. Substituting (24) to the related equation (18)-(22), we obtain

the al-coordinates of the intersection points, that is, al = α ≡ αj , j = 0, ..., 15,
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Figure 2: a) Bifurcation structure of the (al, ar)-parameter plane of the skew tent map, where
the border collision curves Bm are shown for m = 1.05, 1.2, 2, 3 and 8; b) Bifurcation structure
of the (µ, α)-parameter plane of the map T at m = 1.05, B = 1.5.

which then can be substituted to (7) (recall that β = B 1−α
α ). In such a way we

obtain the corresponding points pi of the curve BCLM (see Fig.2b). Namely, the

α-coordinates of the points pj are the following: α0 = 0.047619, α1 ≈ 0.199961,

α2 ≈ 0.201786, α3 ≈ 0.203248, α4 ≈ 0.218205, α5 ≈ 0.322973, α6 ≈ 0.324797,

α7 ≈ 0.326245, and so on. The intersection point of BCLM and BCLR is

(µ, α) = (0.047619, 0.6) related to the end point of B1.05 with ar = −30.

Let BCLM |
pj+1
pj denote an open arc of the curve BCLM bounded by the

points pj and pj+1. Now we can state, for example, that if the parameter point

crosses the arc BCLM |p1p0 then an attracting 2-cycle g2 is born due to this BCB,

because the related arc B1.05|
p′1
p′0

belongs to the stability region of the 2-cycle of

the skew tent map. Similarly we can conclude that crossing BCLM |p2p1 , BCLM |
p3
p2

and BCLM |p4p3 leads to chaotic intervals G2,4, G2,2 and G1, respectively, while

crossing BCLM |p5p4 leads to an attracting 3-cycle g3, and so on.

Analyzing Fig.2a one can conclude also that for larger values of m less

periodicity regions are intersected by Bm. For example, the curve B2 intersects

only the 2-periodicity region (which is in fact intersected by Bm for any m),
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Figure 3: 1D bifurcation diagrams illustrating subcritical a), degenerate b) and supercritical
c) flip bifurcation of the fixed point w∗

M . Here m = 1.2 and α = 0.47, β = 2.25 in a), α = 0.5,
β = 2.25 in b), α = 0.6, β = 2 in c).

thus, besides an attracting 2-cycle only chaotic attractors can appear due to the

BCB. It is clear also that for fixed B the interval of valid values of α (see (25))

decreases for increasing m.

4. Crossing the curve FBM : flip bifurcation of the fixed point

Let us consider now the flip bifurcation of the fixed point x∗M which occurs if

the parameter point crosses the boundary of the region D, the curve FBM given

in (11). As we show below, this bifurcation can be supercritical, subcritical or

degenerate as illustrated in Fig.3 by means of 1D bifurcation diagrams.

Namely, in Fig.3a one can see that decreasing µ a pair of 2-cycles (g2 at-

tracting and g̃2 repelling) are born due to a fold BCB before the subcritical

flip bifurcation of the fixed point. So, in the interval between these two bi-

furcations the attracting fixed point w∗M coexists with the 2-cycles g2 and g̃2.

Then, if we continue to decrease µ, at the subcritical flip bifurcation the fixed

point w∗M loses stability merging with g̃2 so that after the bifurcation the map

T has the attracting 2-cycle g2 and the repelling fixed point. The DFB of w∗M

illustrated in Fig.3b also leads to an attracting 2-cycle g2, but the characteris-

tic feature of this bifurcation is that at the bifurcation value any point of the

interval [wc, T (wc)], except for the fixed point w∗M , is 2-periodic, including the
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end points of this interval. Thus, we have T 2(wc) = wc, that is, the BCB of the

2-cycle g2 occurs simultaneously with the DFB of w∗M . As for the supercritical

flip bifurcation (see Fig.3c) note that soon after this bifurcation the attracting

2-cycle g2 changes its symbolic sequence, from MM to LM, due to a persistence

border collision. That is, one periodic point of the 2-cycle crosses the boundary

wc (from the region M to the region L) so that a border collision occurs, but

the attractor is a 2-cycle before the bifurcation with symbolic sequence MM

and persists as a 2-cycle after the bifurcation, with symbolic sequence LM .

The conditions of degenerate, sub- and supercritical flip bifurcations of w∗M

are stated in the following

Proposition 2. The flip bifurcation of the fixed point w∗M of the map T defined
in (5) occurs for parameter values satisfying (2) and (10) at β = α(m(1 −
α))1−

1
α /µ (the boundary FBM ). The flip bifurcation of w∗M is supercritical for

α > 0.5, subcritical for α < 0.5 and degenerate for α = 0.5.

To prove this proposition we have to check the sign of (T 2
M )′′′(w) evalu-

ated at the fixed point w∗M for the bifurcation parameter value, namely, if

we have (T 2
M )′′′(w∗M ) < 0 then the flip bifurcation is supercritical, while for

(T 2
M )′′′(w∗M ) > 0 it is subcritical (see, e.g., [33]). In the case of a DFB (when it

is (T 2
M )′′′(w∗M ) = 0), it is enough to show that T 2

M (w) ≡ w occurs in an interval

around w∗M (see [31]).

In order to simplify the calculations let us introduce a change of variable,

x := (1 − w/m), and let also γ = α/(1 − α), C = (µβ)γ/m. Now the middle

branch TM of map T has the form t(x) = 1 − Cxγ , and its fixed point sat-

isfies x∗M = 1 − C(x∗M )γ . It is easy to see that at the flip bifurcation value

we have x∗M = α. Using this equality after some algebraic computations and

rearrangements we get

(t2)′′′(x∗M ) = (γC)2(1− γ)(x∗M )2(γ−2)(1 + γ),

so that the sign of this expression depends on γ, namely, (t2)′′′(x∗M ) < 0 for

γ > 1, and (t2)′′′(x∗M ) > 0 for γ < 1. Coming back to the map T and the original

parameters we conclude that for α > 0.5 we have (T 2
M )′′′(w∗M ) < 0, thus, the
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flip bifurcation is supercritical, while for α < 0.5 the inequality (T 2
M )′′′(w∗M ) > 0

holds, so that the flip bifurcation is subcritical. For α = 0.5 corresponding to

γ = 1 we have C = 1, so that

t2(x) = 1− C(1− Cxγ)γ |C=1,γ=1 ≡ x.

Thus, the flip bifurcation is degenerate. For map T this means that any point

of the absorbing interval, except for the fixed point w∗M , is 2-periodic. The

absorbing interval in such a case is J = [wc, T (wc)] for the parameter region

E-I, and J = [wB , T (wB)] for the region E-II.

As we can see in Fig.3, all the bifurcation sequences associated with the flip

bifurcation of the fixed point w∗M include a border collision of a 2-cycle. Let us

consider it in more details. The condition which is to be satisfied is

TM ◦ TL(wc) = wc

and the related boundary in the parameter space is denoted BC2:

BC2 :

[
1

µβ

(
1− wαc

m

)] α
1−α

= wc. (26)

(See, for example, the curve BC2 shown in case of subcritical flip bifurcation of

w∗M in Fig.2b). To see the result of this bifurcation we can use the skew tent map

as a normal form for the border collision of the related fixed point of the map T 2.

For this we need to evaluate the left- and right-side derivatives of T 2 at w = wc

for the parameter values belonging to BC2. Obviously, a∗l = (TM ◦TL)′(wc) < 0

and a∗r = (T 2
M )′(wc) > 0, and the skew tent map (15) with ε < 0 can be used

as a normal form. However, it is easy to show that bifurcation structure of the

(al, ar)-parameter plane for ε < 0 is symmetric with respect to al = ar to the

one for ε > 0. Thus, we can use the results related to dynamics of the skew

tent map presented in the previous section considering the symmetric point

(al, ar) = (a∗r , a
∗
l ). In particular, one can check that a∗l = (TM ◦ TL)′(wc) > −1

for

wαc

(
1 +

α2

1− α

)
< m (27)
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and a∗r = (T 2
M )′(wc) > 1 for α < 0.5. The point (al, ar) = (a∗r , a

∗
l ) with al > 1

and 0 < ar < 1 belongs to the region at which the skew tent map has an

attracting and repelling fixed points (in Fig.2a a small part of this region can

be seen), and a fold BCB occurs in the skew tent map if ε passes through 0.

Thus, in the map T 2 also a fold BCB occurs. For map T this means that the

border collision occurring at BC2 is also a fold BCB leading to a pair of 2-

cycles, an attracting g2 and a repelling g̃2, with symbolic sequences LM and

MM, respectively. We can check also that crossing BC2 for α = 0.5 always leads

to one attracting 2-cycle. To see this, note that the curve FBM at α = 0.5 is

defined by

FBM |α=0.5 : µβ =
1

m
,

and the branches of map T are TL(w) =
√
w and TM (w) = m − x with the

border point wc =
(
−1 +

√
1 + 4m

)2
/4. We have (T 2

M )′(wc) = 1, while (TM ◦

TL)′(wc) > −1, where the last inequality holds for m > 3/4, that is always

true given that m > 1. Thus, the 2-cycle born due to this bifurcation (with

symbolic sequence LM) is attracting. For α > 0.5 we have (T 2
M )′(wc) < 1

and (TL ◦ TM )′(wc) > −1 (for the parameter values satisfying (27)), so that

due to collision with w = wc the 2-cycle remains attracting and only changes

its symbolic sequence from MM to LM (persistence border collision). If the

condition (27) does not hold, that is, if (TL ◦ TM )′(wc) < −1, then the crossing

of the curve BC2 leads to two repelling 2-cycles and to a chaotic attractor. An

example of such a bifurcation is shown in Fig.4.

Suppose that map T has an attracting 2-cycle g2 = {w1, w2} with symbolic

sequence LM. Let us obtain the condition of its flip bifurcation. First, from

TM ◦ TL(w1) = w1 we get that w1 = [(1 − wα1 /m)/µβ]
α

1−α . Then, from (TM ◦

TL)′(w)|w=w1
= −1 we get wα1 = m(1 − α)/(α2 − α + 1), so that the flip

bifurcation of g2 occurs for

FB2 : µβ =
α2

α2 − α+ 1

(
(α2 − α+ 1)

m(1− α)

) 1−α
α2

. (28)
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Figure 4: 1D bifurcation diagram in the map T for α = 0.9,m = 1.005, β = 1.315, µ ∈
[0.86, 0.885] is shown in a), and its enlargements are in b). Here the BCB of the 2-cycle leads
to 8-cyclic chaotic intervals.

Note that for α = 0.5 the curve FB2 is given by

FB2|α=0.5 : µβ =
3

4m2
.

5. Overall bifurcation structure of the region E-I

In this section we discuss the overall bifurcation structure of the region

E-I defined in (12). The bifurcation structure of the region E-II defined in

(13) is studied in detail in [32]. Recall that the region E-I is confined by the

boundaries BCLM (7), FBM (11) and BCJ (14). Using Proposition 1 which

describes the dynamics of map T in a neighborhood of the curve BCLM we can

state which bifurcation curves issue from this boundary, namely, from the points

pj , j = 0, ..., l (where l depends on the parameters). Recall that these points

correspond to the intersection points of the curve Bm (24) with the bifurcation

curves (18)-(22) of the skew tent map.

Note that all the points pj are codimention-two bifurcation points, for which,

as we have already mentioned, the skew tent map does not help to state precisely

which attractor appears after the BCB. Consider, for example, the codimension-

two bifurcation point p0, at which the BCB of the fixed point occurs simultane-

ously with its flip bifurcation, that is, the fixed point is (one-side) nonhyperbolic.
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Such a point is called border-flip codimention-two bifurcation point. It is shown

in [8], focusing, in particular, on the geometric shapes of the bifurcation curves

around a border-flip point, that in general three bifurcation curves are issuing

from such a point, among which one is a curve related to the smooth bifurcation

and the other two curves are BCB curves. In fact, in Fig.2b we see that besides

the curve BCLM two more curves issue from the border-flip point p0, namely,

the curve FBM corresponding to the subcritical flip bifurcation of the fixed

point w∗M and the curve BC2 related to the fold BCB of the 2-cycle. Clearly, if

the curve BCLM is crossed at the point p0, then the parameter point can enter

to the narrow region bounded by the curves BC2 and FBM , where an attracting

2-cycle coexists with the attracting fixed point. Such a coexistence obviously

cannot be classified using only the skew tent map. In fact, any border-flip point

of BCLM corresponding to the intersection of the BCB curve Bm and DFB

curve ψn, n ≥ 2 (as, e.g., the points p1 and p5 indicated in Fig.2b), is an issuing

point of two curves, namely, a flip bifurcation curve FBn and a border collision

curve BC2n.

Let us suppose that the curve Bm crosses an n-periodicity region of the skew

tent map, for n ≥ 3, that is, there is an arc Bm|
p′j+1

p′j
belonging to this region (as

shown in Fig.2a for several values of m). A neighborhood of the curve BCLM

in such a case is shown schematically in Fig.5. According to Proposition 1 in

the one-side neighborhood of the arc BCLM |
pj+1
pj there must be a region related

to an attracting n-cycle gn of map T (to simplify, the region related to the

attracting cycle gn is denoted in Fig.5 in the same way as the cycle, that is,

gn. Similar notations are used for the regions related to other attractors). Its

boundary issuing from the point pj is related to the fold BCB satisfying the

condition

BCn : Tn−2L ◦ TM ◦ TL(wc) = wc.

Note that due to continuity of map T at w = wc an equivalent condition of BCn

is Tn−2L ◦ T 2
M (wc) = wc. Crossing the boundary BCn (from the right to the left

in Fig.5) two n-cycles are born, an attracting cycle gn and a repelling cycle g̃n.
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Figure 5: A neighborhood of the curve BCLM shown schematically in case when the BCB
curve Bm given in (24) related to BCLM crosses an n-periodicity region of the skew tent map.
The flip bifurcation at FBn is subcritical in a) and supercritical in b). The point pj+1 is a
border-flip codimention-two bifurcation point.

The cycle gn has a periodic point wn which satisfies Tn−1L ◦TM ◦ TL(wn) = wn,

while the cycle q̃n has a periodic point w̃n satisfying Tn−2L ◦ T 2
M (w̃n) = w̃n.

The boundary of the n-periodicity region issuing from the point pj+1 is

related to the flip bifurcation of gn defined by the condition

FBn : (Tn−2L ◦ TM ◦ TL)′(wn) = −1. (29)

As already mentioned, one more bifurcation curve issues from pj+1, namely, the

curve BC2n related to the border collision of a 2n-cycle g2n (as show in [8], it

is tangent to the flip bifurcation curve). The curve BC2n satisfies the condition

BC2n :
(
Tn−2L ◦ TM ◦ TL

)2
(wc) = wc. (30)

Given that the arc Bm|
p′j+2

p′j+1
belongs to the region related to a 2n-cyclic chaotic

intervals Qn,2n of the skew tent map, in the one-side neighborhood of the arc

BCLM |
pj+2
pj+1 there is a region related to 2n-cyclic chaotic intervals Gn,2n (see

the dashed region in Fig.5). There are two possibilities: if the flip bifurcation

FBn is subcritical, as in Fig.5a, then in the region between FBn and BC2n

an attracting n-cycle gn coexists with a chaotic attractor Gn,2n, while if the

flip bifurcation FBn is supercritical, as in Fig.5b, the region between BC2n and

FBn is related to an attracting 2n-cycle g2n. More precisely, in Fig.5a the curve

BC2n belongs to the stability region of gn, and the bifurcation occurring at

BC2n is a fold BCB leading to a pair of repelling 2n-cycles, g2n, g̃2n, and to a
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chaotic attractor Gn,2n coexisting with the n-cycle gn (in fact, as we illustrate

in Fig.8b, or Fig.9b, the cycle g̃2n separates the basins of Gn,2n and gn, while

the cycle g2n belongs to Gn,2n). Then, moving from the right to the left the

curve FBn is crossed at which the repelling cycle g̃2n merges with the attracting

cycle gn due to a subcritical flip bifurcation, so that after this bifurcation the

attractor is Gn,2n. In case of supercritical flip bifurcation, the crossing of the

curve BC2n leads from an attracting cycle g2n to a chaotic attractor Gn,2n (see

Fig.5b).

Next, we can state that the one-side neighborhood of the arc BCLM |
pj+3
pj+2

(see Fig.5) is related to n-cyclic chaotic intervals Gn,n of map T because the

related arc Bm|
p′j+3

p′j+2
belongs to the region of n-cyclic chaotic intervals Qn,n of

the skew tent map. Its boundary issuing from the point pj+2 is related to the

first homoclinic bifurcation of the cycle gn, which satisfies the conditions

Hn :

 (Tn−2L ◦ TM ◦ TL)2(wc) = wn,

Tn−2L ◦ TM ◦ TL(wn) = wn.
(31)

So, crossing the curve Hn we observe the merging bifurcation Gn,2n ⇒ Gn,n.

See, for example, the curve H3 in Fig.6 and the related merging bifurcation

G3,6
H3⇒ G3,3 in Fig.9a. The boundary issuing from the point pj+3 corresponds

to the first homoclinic bifurcation of the cycle g̃n and satisfies the conditions

H̃n :

 Tn−2L ◦ TM ◦ TL(wc) = w̃n,

Tn−2L ◦ T 2
M (w̃n) = w̃n.

(32)

Thus, crossing the curve H̃n an expansion bifurcation Gn,n ⇒ G1 occurs. An

example of the curve H̃3 is shown in Fig.6, and the related expansion bifurcation

G3,3
H̃3⇒ G1 is illustrated in Fig.9a.

As we have seen, the curve Bm may not intersect the n-periodicity regions for

n ≥ 3, of the skew tent map (see Fig.2a). The description presented above can

be easily adjusted to such a case. However, the 2-periodicity region is intersected

for any m, and this case differs from the one described above. In fact, we know

that from the border-flip point p0 of the curve BCLM the boundaries FBM

and BC2 issue related to the flip bifurcation of the fixed point w∗M and border
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Figure 6: 2D bifurcation diagram in the (m,µB)-parameter plane at α = 0.5. 1D bifurcation
diagram at m = 1.2 and its enlargements are shown in Fig.8 and Fig.9.

collision of the 2-cycle g2, as we show schematically in Fig.7. Differently from

the generic case we have three possibilities as stated in Proposition 2 (see also

Fig.3):

1) if the flip bifurcation is subcritical, that holds for α < 0.5, then the curve

BC2 is related to a fold BCB leading to a pair of 2-cycles, an attracting one

(g2) and a repelling one (g̃2), in which case the region between BC2 and FBM

is related to coexisting attractors, the fixed point w∗M and the 2-cycle g2 (see

Fig.7a);

2) if the flip bifurcation is supercritical, that holds for α > 0.5, then the curve

BC2 is a persistence border collision curve crossing which the 2-cycle g2 born

before due to supercritical flip bifurcation just changes its symbolic sequence,

remaining attracting (see Fig.7b);

3) if the flip bifurcation is degenerate that holds for α = 0.5, we have
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Figure 7: A neighborhood of the curve BCLM shown schematically near the border-flip point
p0. The flip bifurcation at FBM is subcritical in a) and supercritical in b). The point p1 is
also a border-flip codimention-two bifurcation point.

FBM = BC2, so that crossing this boundary one attracting cycle g2 appears

(with symbolic sequence LM).

Thus, in the one-side neighborhood of the arc BCLM |p1p0 there is a region

related to an attracting 2-cycle g2 of map T . From the border-flip point p1 the

boundaries FB2 and BC4 originate related to the flip bifurcation of g2 and BCB

of g4. The next point p2 corresponds to the intersection of Bm with the curve

σ2i (22) for some i ≥ 1. From p2 a curve denoted H2i issues (see Fig.7), related

to the first homoclinic bifurcation of the harmonic 2i-cycle of the map T. For

the skew tent map the crossing of the curve σ2i leads to the merging bifurcation

Q2,2i+1 ⇒ Q2,2i . Thus, in the one-side neighborhood of the arc BCLM |p2p1 there is

a region related to 2i+1-cyclic chaotic intervals G2,2i+1 , and the crossing of BC4

leads to a chaotic attractor G2,2i+1 . Similarly, the point p3 is an issuing point

for the curve H2i−1 related to the first homoclinic bifurcation of the harmonic

2i−1-cycle of map T, and so on, up to the point pi+2 which is an issue point of

the curve H1 related to the first homoclinic bifurcation of the fixed point w∗M

(see Fig.7). For example, from the point pi+1 of the curve BCLM related to the

intersection of Bm with the curve σ2 (see (22) for i = 1), the curve H2 issues
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which corresponds to the first homoclinic bifurcation of the cycle g2, satisfying

the conditions

H2 :

 (TM ◦ TL)2(wc) = w2,

TM ◦ TL(w2) = w2.
(33)

The crossing of this curve leads to the merging bifurcation G2,4
H2⇒ G2,2 (see,

e.g., Fig.8a and the curve H2 in Fig.6 issuing from the point p2). From the

point pi+2 the curve H1 issues corresponding to the first homoclinic bifurcation

of the fixed point w∗M , satisfying the conditions

H1 :

 TL ◦ TM ◦ TL(wc) = w∗M ,

TM (w∗M ) = w∗M .
(34)

The crossing of this curve leads to the merging bifurcation G2,2
H1⇒ G1 (see, e.g.,

Fig.8a and the corresponding curve H1 in Fig.6 issuing from the point p3).

The bifurcation structure described above is illustrated in Fig.6 in the (m,µB)-

parameter plane at α = 0.5. The curve BCLM in such a case is defined by

BCLM |α=0.5 : µB = 1− 1

m

(note that for α = 0.5 we have B = β). The curve Bm (24) in the (al, ar)-

parameter plane of the skew tent map represents a vertical line al = 0.5 where

−B
m−1 < ar < −1 (see (25)):

Bm|α=0.5 : al = 0.5, ar = − 1

m− 1
. (35)

Using the equations (18)-(22) we can obtain the points p′j , j = 0, ..., 15, related

to the intersection of Bm|α=0.5 with the bifurcation curves of the skew tent map.

Then, substituting the related values ar into (35) we obtain the m-coordinates of

the point pj of the curve BCLM (see Fig.6). The curves issuing from the points

pj in Fig.6 are obtained numerically using the related conditions (29)-(34).

To illustrate the bifurcations (29)-(34) we present in Fig.8a a 1D bifurcation

diagram related to the vertical line with an arrow indicated in Fig.6. Enlarge-

ments of this diagram are shown in Fig.8b and Fig.9. The sequence of observed
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Figure 8: In a) 1D bifurcation diagram of the map T is shown for α = 0.5, m = 1.2 and
µB ∈ [0, 1] related to the vertical line with an arrow in Fig.6. In b) the window I indicated in
a) is shown enlarged.

bifurcations for decreasing µB can be summarized as follows:

w∗M
FBM=BC2⇒ g2

BC4⇒ {g2, G2,4}
FB2⇒ G2,4

H2⇒ G2,2
H1⇒ G1

BC3⇒ g3
BC6⇒ {g3, G3,6}

FB3⇒ G3,6
H3⇒ G3,3

H̃3⇒ G1
BCLM⇒ w∗L

6. Conclusion

In the present paper we have studied the dynamics of a credit cycle model

introduced in [20], under the additional assumption that the production function

25



Figure 9: In a) an enlargement of window II indicated in Fig.8a is shown, and in b) the
window indicated in a) is enlarged.

is Cobb-Douglas. In the generic case this model is defined by a 4-parameter

family of 1D piecewise smooth maps with upward, downward and flat branches.

We have considered the cases for which the flat branch is not involved in the

asymptotic dynamics, that correspond to the region E-I given in (12).

The bifurcation structure of the region E-I is described in detail. It is

formed by the boundaries related to border collision bifurcations characteristic

for nonsmooth systems, as well as flip bifurcations and homoclinic bifurcations
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(causing merging and expansion of the chaotic attractors). These boundaries

separate regions corresponding to different attractors of the map, namely, at-

tracting cycles and chaotic attractors (cyclic chaotic intervals). In particular,

possible results of a BCB of the fixed point are classified in Proposition 1 using

skew tent map as a border collision normal form. The conditions are obtained

under which this BCB leads directly to an attracting cycle of period n, or to an

n-cyclic chaotic attractor, n ≥ 1. The skew tent map helps also to describe the

overall bifurcation structure of the region E-I in a neighborhood of the BCB

boundary. Proposition 2 states that the flip bifurcation of the fixed point is

supercritical for α > 0.5, subcritical for α < 0.5 and degenerate for α = 0.5.

It is shown that an attracting 2-cycle which appears due to the supercritical

flip bifurcation soon after collides with the border point. In fact, a cascade of

flip bifurcations characteristic for smooth unimodal maps is not realized in the

considered map. The subcritical flip bifurcation is characterized by bistabil-

ity related to coexistence of an attracting fixed point and an attracting 2-cycle

which is born, together with a repelling 2-cycle, due to a fold BCB before the

flip bifurcation. From an economic point of view this implies corridor stability,

i.e., the steady state of the economy is stable against small shocks but unstable

against large shocks. Furthermore, when the steady state loses its stability via

such a subcritical flip bifurcation, the effect is catastrophic and irreversible in

that restoring the stability of the steady state by reversing the parameter change

is not enough for the economy to return to the steady state. Examples of an

attracting cycle coexisting with a cyclic chaotic attractor are also presented.

It is important to emphasize that chaotic attractors of the considered map are

robust, that is, they are persistent under parameter perturbations.
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