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Abstract

We study a particular bifurcation structure observed in the parameter
space of a one-dimensional continuous piecewise smooth map generated by
the credit cycle model in [23] where the map is de�ned over the absorbing
interval via three functions, one of which is a constant. We show that
the �at branch gives rise to superstable cycles whose periodicity regions
are ordered according to a modi�ed U-sequence and accumulate to the
curves related to homoclinic cycles which represent attractors in Milnor
sense. The boundaries of these regions correspond to fold and �ip border
collision bifurcations as well as persistence border collisions of the related
superstable cycles.

1 Introduction

Piecewise smooth dynamical systems have recently become quite a popular topic
of research. Such an increasing interest towards nonsmooth dynamics comes
both from purely theoretical problems and from various applied �elds of sci-
ence. In fact, particular real processes characterized by "nonsmooth" phenom-
ena (such as sharp switching, impacts, friction, sliding and the like), are quite
often modeled by means of piecewise smooth functions, continuous or discon-
tinuous. Among numerous examples the most known are switching electronic
circuits, such as DC-DC converters, mechanical systems with impacts or stick-
slip motion, relay control systems, etc. (for the related references and further
examples from electronics, mechanics, control and other �elds see, e.g., the
books [9], [5], [39], [13]). Nonsmooth dynamical systems appear naturally also
in economics and other social sciences when, for instance, some decision-making
process is modeled using logic functions, or if an optimization problem is solved
taking into account limited resources or non-negativity constrains, and so forth.
For example, several oligopoly models with di¤erent kinds of constraints, de-
�ned by piecewise smooth maps are considered in the books [33] and [6]. It
is worth to mention also the papers dealing with nonsmooth maps related to
economic modeling ([11], [18], [23], [32], [14]), �nancial market modeling ([19],
[37], [38]), modeling of multiple-choice ([7], [16], [10]).
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The map considered in the present paper arises from an economic appli-
cation. Namely, we investigate dynamics of the credit cycle model which is a
particular case of the more generic model of credit cycles introduced in [23] (see
also [24] and [26]). It is described by a one-dimensional (1D for short) continu-
ous piecewise smooth map depending on four parameters and de�ned by three
smooth functions among which one is a constant. This map possesses quite a
rich dynamic behavior, and we are interested in understanding how the par-
ticular bifurcation structure, observed in its parameter space, is organized. By
bifurcation structure we mean the partition of the parameter space of a map into
regions related to qualitatively similar asymptotic dynamics (see, e.g., [4] where
di¤erent bifurcation structures characteristic for piecewise smooth 1D maps are
discussed). Clearly, the boundaries of such regions are de�ned by the parameter
values corresponding to certain bifurcations. In fact, one of the characteristic
features of nonsmooth dynamics is the occurrence of so-called border collision
bifurcation (BCB for short), �rst described in [30] (see also [31], [35]). The BCB
occurs when, under variation of some parameters, an invariant set (for example,
a �xed point or a cycle) collides with a border at which the system changes the
function in its de�nition, and this collision leads to a qualitative change in the
dynamics. Such a change can be quite drastic: for example, one can observe
the transition from an attracting �xed point to an attracting cycle of any pe-
riod, or directly to a chaotic attractor, that is impossible in smooth dynamical
systems. Thus, the bifurcation structure of the parameter space of a piecewise
smooth map may be de�ned, besides standard "smooth" bifurcations, by the
BCBs as well. The possible results of a generic BCB of an attracting cycle of a
1D continuous piecewise smooth map with one border point can be rigorously
classi�ed depending on the parameters using 1D BCB normal form, which is
the well known skew tent map de�ned by two linear functions. The dynamics
of the skew tent map are completely described depending on the slopes of the
linear branches, that makes it possible to use this map as a normal form (see,
e.g., [20], [22], [34]).
Besides nonsmoothness, another notable feature of the considered map is,

as already mentioned, the presence in its de�nition of a �at branch. Obviously,
for a piecewise smooth map with a �at branch any cycle with a point on that
branch is superstable (has 0 eigenvalue), moreover, any initial condition from
its basin of attraction is preperiodic to such a cycle, that means it is mapped
into the cycle in a �nite number of iterations, namely, as soon as the trajectory
reaches the �at branch. From an applied point of view it may be important that
superstable cycles related to a �at branch, di¤erently from "smooth" superstable
cycles, are persistent under parameter perturbations. That is, in the parameter
space there are open regions related to these cycles. Clearly, the boundaries of
such periodicity regions can be de�ned only by BCBs of the related cycles given
that the zero eigenvalue doesn�t allow any other bifurcation.
The overall bifurcation structure of the parameter space of a piecewise

smooth map with a �at branch obviously depends on the particular map (see,
e.g., [8], [2], [36]). Our aim is to show that in the parameter space of the consid-
ered map the periodicity regions of superstable cycles are organized according
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to the well known U-sequence (�rst described in [28], see also [17]) which is
characteristic for unimodal maps. It consists of two-letter symbolic sequences
ordered for monotonically increasing/decreasing parameter value according to
the appearance of the related cycles. We adjust the U-sequence to the consid-
ered map by introducing one more letter related to the �at branch, that doesn�t
in�uence the basic rule of formation of the U-sequence. However, it is important
to emphasize that in the U-sequence of our map the harmonics are related to
in�nite cascades of �ip BCBs (not of standard �ip, or period-doubling, bifurca-
tions), and that the �rst symbolic sequence in any of such a cascade is related to
the cycle born due to fold BCB (not to standard fold, or tangent, bifurcation).
Considering the overall bifurcation structure in two di¤erent parameter planes,
we notice that the periodicity regions, ordered in the U-sequence, are accumu-
lating to particular curves. It is natural to suppose that such curves are related
to the homoclinic bifurcations of the corresponding unstable cycles (cf. with
the parameter values of the logistic map related to the homoclinic bifurcations
of its unstable cycles, to which periodic windows are accumulating). However,
a homoclinic cycle (i.e., the cycle at the moment of its homoclinic bifurcation)
of the considered map, being locally unstable, is an attractor in Milnor sense
because almost all the initial points of the absorbing interval are mapped into
this cycle (see [3] for the discussion of similar attractors in a discontinuous map).
That di¤ers from a homoclinic cycle of the logistic map into which only a zero-
measure set of initial points (formed by all the preimages of the cycle and called
stable set) is mapped.
The plan of the work is as follows. In the next section we de�ne the map, its

�xed points and conditions of their stability, specify the region in the parameter
space corresponding to the case in which the map is de�ned over the absorbing
interval via all the three functions, introduce the symbolic sequences for the
superstable cycles and de�ne their basin of attraction. The main purpose of the
present paper is to describe the bifurcation structure in the parameter space of
the considered map related to its superstable cycles. In Section 3 we present
some numerical results, namely, the 1D and 2D bifurcation diagrams which illus-
trate the bifurcation structures formed by the periodicity regions related to the
superstable cycles. We show that the boundaries of these regions correspond to
the fold and �ip BCBs, as well as persistence border collisions. Then we present
the curves related to the �rst homoclinic bifurcations of the �xed point and of
the 2-cycle, obtained numerically using the conditions of these bifurcations. Ex-
amples of homoclinic cycles and their stable sets are also discussed. In Section
4 we recall some basic rules of the formation of the standard U-sequence, and
then adjust it to the considered map. In such a way we get the order in which
the periodicity regions of the superstable cycles are organized.
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2 Description of the map. Preliminaries.

We consider a 4-parameter family of 1D piecewise smooth maps f : [0; 1]! [0; 1]
de�ned as follows:

f : x 7! f(x) =

(
x� for 0 � x � xc;h
max

n
1
��

�
1� x

m

�
; 1�

oi�=(1��)
for x > xc;

(1)

where �; �; � and m are real parameters such that

0 < �; � < 1; � � B 1� �
�

> 0; 1 < m <
1

1� �; (2)

and xc is the border point de�ned by

x1��c =
1

��
max

n
1� xc

m
;�
o
: (3)

As we have mentioned in the Introduction, the map f describes a particular
case of more generic credit cycle model introduced in [23], namely, the credit
cycle model under the assumption of the Cobb-Douglas production function.
A preliminary description of the overall bifurcation structure of the map (1)
is discussed in [27]. In the present work we focus on the investigation of the
bifurcation structure of a particular parameter region related to the superstable
cycles of the map f .
Let us �rst summarize some simple properties of the map and specify the

parameter region we are interested in. Depending on the parameters, the map
f can be de�ned by at most three branches which we denote as follows:
fL(x) � x� (the monotone increasing branch),

fM (x) �
h
1
��

�
1� x

m

�i�=(1��)
(the monotone decreasing branch),

fR(x) �
�
1
�

��=(1��)
� bx (the �at branch).

The border point xc can be de�ned either from fL(xc) = fM (xc); in which case
we denote it as xl :

xc � xl : x1��l =

�
1

��

�
1� xl

m

��
; (4)

or from fL(xc) = fR(xc); in which case we get

xc � xm = (bx) 1� = � 1
�

�1=(1��)
: (5)

One more possible border point, denoted xr, is related to the max function and
obtained from fM (xr) = fR(xr); so that:

xr = m(1� �): (6)
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In the simplest case, de�ned by the condition xm � xr; that holds for � �
(m(1� �))��1; the map f is de�ned via the branches fL(x) and fR(x) only:

f : x 7! f(x) =

�
fL(x) = x

� for 0 � x � xm;
fR(x) = bx for x > xm:

(7)

The boundary in the parameter space denoted BC and de�ned as

BC : � = (m(1� �))��1; (8)

is related to the appearance of the middle branch in the de�nition of f: Namely,
for � > (m(1� �))��1 the map f can be written in the following form:

f : x 7! f(x) =

8><>:
fL(x) = x

� for 0 � x � xl;

fM (x) =
h
1
��

�
1� x

m

�i�=(1��)
for xl < x � xr;

fR(x) = bx for x > xr:

: (9)

It is easy to see that besides the unstable �xed point in the origin related
to the function fL(x), the map f has one more �xed point denoted x�i , i 2
fL;M;Rg ; which can be associated with any one of the functions fi; that is,
satisfying fi(x�i ) = x�i ; whose existence and stability properties are illustrated
in Fig.s 1 and 2 described below.

Figure 1: The map f and its �xed points at � = 0:4; � = 0:8 in a) on the left,
� = 0:05; � = 1:5 in a) on the right (these parameter values belong to the region
A, see Fig.2); b) � = 0:7; � = 1:2 (the region B); c) � = 0:7; � = 1:8 (the region
C); d) � = 0:6; � = 2 (the region D); e) � = 0:2; � = 1:5 (the region E-I). The
other parameter values are m = 1:2 and � = 0:6:
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Figure 2: Partition of the (�; �)-parameter plane at m = 1:2; � = 0:6: The
region A corresponds to the stable �xed point x�L; B [ C to the superstable
�xed point x�R; D to the stable �xed point x�M ; E-I is related to the map f
de�ned over the absorbing interval J = [f2(xl); f(xl)] by fL(x) and fM (x), and
for E-II in the absorbing interval J = [f(xr); f(xl) the �at branch fR(x) is
de�ned as well.

The second �xed point related to fL(x) is given by x�L = 1 (see Fig.1a). It
exists for the parameter values belonging to the region denoted A in Fig. 2 and
de�ned by

A : � � max
�
1

�

�
1� 1

m

�
; 1

�
: (10)

The two boundaries of A correspond to the BCBs of x�L at which x
�
L = xc,

namely, if the parameter point belongs to the boundary

BCL;1 : � =
1

�

�
1� 1

m

�
; (11)

we have x�L = xl, and for

BCL;2 : � = 1; (12)

we have x�L = xm: If x�L exists, it is globally attracting. Note that in such a
case we have xc � 1; so that the map f in the interval I = [0; 1] is de�ned by
the branch fL(x) only.
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The �xed point denoted x�R is related to the �at branch fR(x) and given by
x�R = bx. Clearly, x�R < 1; and x�R exists if bx � xm (as in Fig.1b) or if bx � xr (as
in Fig.1c) that holds for the parameter region de�ned by

1 < � < (m(1� �))1� 1
� : (13)

If x�R exists it is a superstable �xed point, globally attracting. At the boundary
� = 1 (denoted as BCL;2 in (12)) x�R = xm; moreover, x�R = x�L = 1: If the
parameter point crosses BCL;2 we observe the transition from the superstable
�xed point x�R to the stable �xed point x

�
L (for example, see the transition from

Fig.1b to Fig.1a (on the left)), so that it is the so-called persistence border
collision.1 While at the boundary

BCR : � = (m(1� �))1� 1
� (14)

we have x�R = xr; so that BCR is related to one more border collision of x�R:
The region of existence of x�R is divided by the boundary BC given in (8) in
two subregions, denoted B and C in Fig.2:

B : 1 < � < (m(1� �))��1; (15)

C : (m(1� �))��1 < � < (m(1� �))1� 1
� : (16)

Finally, the �xed point x�M of the map f related to the middle branch fM (x)

is implicitly de�ned by x�M =
h
1
��

�
1� x�M

m

�i�=(1��)
(see Fig.1d). It exists if

xl � x�M � xr; and this is satis�ed for parameter values belonging to the region
de�ned by

� � max
�
1

�

�
1� 1

m

�
; (m(1� �))1� 1

�

�
: (17)

Both boundaries of this region are related to the border collision of x�M ; namely,
at the boundary BCL;1 (see (11)) we have x�M = xl; moreover, x�M = x�L = 1;
so that if the parameter point crosses BCL;1 we observe the transition from the
�xed point x�M to the stable �xed point x�L (for example, see the transition from
Fig.1e to Fig.1a (on the right)). While at the boundary BCR (see (14)) we have
x�M = xr, moreover, x�M = x�R so that crossing BCR we observe the transition
from the superstable �xed point x�R to the �xed point x�M (see, for example,
the transition from Fig.1d to Fig.1c). The slope of fM (x) at the �xed point
x�M is negative, so that it may become unstable via a �ip bifurcation (which is
subcritical for � < 0:5; degenerate for � = 0:5 and supercritical for � > 0:5).
The �ip bifurcation curve of x�M is given by

FBM : � =
�

�
(m(1� �))1� 1

� : (18)

1Recall that persistence border collision of a �xed point occurs when the �xed point crosses
the border without changing its stability.
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Thus for parameter values belonging to the region denoted D de�ned by

D : � > max

�
�

�
(m(1� �))1� 1

� ; (m(1� �))1� 1
�

�
(see Fig.2) there exists the locally attracting �xed point x�M .
Let us de�ne now an invariant absorbing interval of the map f given in

(9), denoted J . By de�nition of invariance we must have f(J) = J , while the
property to be absorbing means that any orbit of f enters J in a �nite number
of iterations (and stays there forever). Moreover, J has to be bounded either
by two critical points or by a critical point and its image. For the map f there
are two possibilities:

Figure 3: The invariant absorbing interval J = [f2(xl); f(xl)] in a) and J =
[f(xr); f(xl)] in b) of the map f for the parameter values belonging to the
regions E-I and E-II, respectively. Here m = 1:2; � = 0:6 � = 0:4 and � = 2
in a), � = 1:5 in b).

(1) In the absorbing interval J only the functions fL(x) and fM (x) are
de�ned, that holds for parameter values belonging to the region denoted E-I in
Fig.2 de�ned as

E-I :

(
� < �

� (m(1� �))
1� 1

� ;

� > max
n
1
�

�
1� 1

m

�
; 1� 1

� +
1
� (m(1� �))

1� 1
�

o
:

(19)

In such a case J = [f2(xl); f(xl)] (an example is shown in Fig.3a).
(2) All the three functions, fL(x); fM (x) and fR(x); are involved in J , that

holds in the region denoted E-II in Fig.2 given by

E-II :

(
� > (m(1� �))1� 1

� ;

� < min
n
1� 1

� +
1
� (m(1� �))

1� 1
� ; �

� (m(1� �))
1� 1

�

o
:

(20)

8



In such a case J = [f(xr); f(xl)] = [bx; f(xl)] (see Fig.3b for an example). The
contact of J with the border point xr; occurring when the condition f(xl) = xr
is satis�ed, corresponds to the boundary

BCJ : � = 1� 1

�
+
1

�
(m(1� �))1� 1

� : (21)

Preliminary description of the bifurcation structure of the region E-I de�ned
in (19) is discussed in [27], and it is a subject of the forthcoming paper. The
main object of the present paper is the bifurcation structure of the region E-II
given in (20), formed by the periodicity regions related to superstable cycles of
the map f existing due to its �at branch. From now on we shall consider the
parameter values belonging to the region E-II.
To distinguish between di¤erent cycles with the same period it is quite conve-

nient to use their symbolic representation. To write down the symbolic sequence
of an n-cycle 
n = fxig

n
i=1 of the map f given in (9) we need at most 5 symbols:

the symbol L is used for the periodic points xi : 0 < xi < xl; the symbol M is
reserved for xi : xl < xi < xr; the symbol R is used for xi : xi > xr; and the
symbols Cl and Cr are used for xi = xl and xi = xr, respectively. In such a way
the symbolic sequence, denoted �; of the cycle 
n consists of n symbols related
to the location of the periodic points: � = �1�2:::�n; �i 2 fL;Cl;M;Cr; Rg.
Let 
n be a superstable cycle of the map f , and let x1 > xr; so that the �rst

symbol of the symbolic sequence of 
n is R (given that any cycle can have at
most one point in the de�nition region of fR; the symbolic sequence of such a
cycle has only one symbol R). Then x2 = fR(x1) = bx; that is, any superstable
cycle of the map f consists of the point bx and its n� 1 images by f . Obviously,
two superstable cycles cannot coexist, while coexistence of a superstable cycle
and a stable cycle (with symbolic sequence consisting of symbols L andM only)
is possible, as well as coexistence of two stable cycles. The basin of attraction
of any superstable cycle 
n denoted S is given by the interval [xr;1) related to
the �at branch, and the preimages of any rank i > 0 of the interval [xr; fL(xl)]:

S = [1i=1f�i([xr; fL(xl)]) [ [xr;1): (22)

Obviously, any point of S is preperiodic to 
n; that is, it is mapped into 
n in
a �nite number of iterations. Note that due to noninvertibility of f , its inverse
function is not uniquely de�ned, so that constructing the set S one has to include
all the preimages of the interval [xr; fL(xl)] by all the three branches of the
inverse function. See, for example, Fig.4 which shows the map f , its superstable
3-cycle 
3 = ff2L(bx); bx; fL(bx)g with the symbolic sequence RL2; and the interval
[xr; fL(xl)] together with a few its preimages. In this case the set of preimages
of any rank �lls densely the absorbing interval J = [bx; f(xl)]: However, it is clear
that not all the points of J are mapped into 
3. There exist an invariant set
of points which are not mapped into the cycle 
3 de�ning its basin boundary,
which is a chaotic repeller (of zero Lebesgue measure) consisting of the points
of all the repelling cycles, their preimages of any rank and an uncountable set
of aperiodic orbits. Indeed, it can be shown that for any superstable cycle 
n
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its basin boundary has such a complicated structure, except for the superstable
2-cycle and its harmonics (that is, the 2k-cycles, k > 1, born due to a cascade
of �ip BCBs of the 2-cycle) as we clarify in next sections.

Figure 4: The map f and its superstable cycle 
3 = fxig3i=1: The interval
[xr; fL(xl)] and several of its preimages are shown in red. Here m = 1:05;
B = 1:5; � = 0:5 and � = 0:15.

3 Numerical results

In this section we present numerical results illustrating the bifurcation structure
of the region E-II in the parameter space of the map f; related to its superstable
cycles.
The 2D bifurcation diagram in the (�; �)-parameter plane for m = 1:2,

� = 0:6 is shown in Fig.5a, and for m = 1:2, � = 0:5 in Fig.5b. Fig.6 presents
the 2D bifurcation diagram in the (�; �)-parameter plane and its enlargement
for m = 1:05; B = 1:5. In these �gures di¤erent colors correspond to the period-
icity regions related to attracting cycles of periods n � 30 (the correspondence
of the colors and periods is indicated at the color bar), and white color is related
to either higher periodicity regions or to chaotic attractors. Note that several
regions of the same color are related to attracting cycles having the same pe-
riod but di¤erent symbolic sequences, for example, in Fig.6b three 5-periodicity
regions are clearly visible. As we shown in the next section, the rightmost 5-
periodicity region is related to the superstable cycles with symbolic sequences
RLM3 and RLM2L, the middle region to RL2ML and RL2M2 and the left
region to RL3M and RL. The bifurcation curves BCL;1; BCL;2; BCR; FBM as
well as the curves BC and BCJ are plotted using their analytical expressions
derived in the previous section (note that the boundary BCL;2 in Fig.6 is de�ned
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by � = 0:6; obtained from � = B 1��
� at � = 1 and B = 1:5). Some periodicity

regions are additionally marked by the corresponding periods.
As we have already mentioned, two superstable cycles of the map f cannot

coexist, while a superstable cycle can coexist with a stable cycle. In Fig.s 5
and 6 the regions related to coexisting attractors cannot be seen (except for the
narrow green region bounded from above by the subcritical �ip bifurcation curve
FBM in Fig. 6a, related to coexisting attracting �xed point x�M and 2-cycle),
because only one initial condition has been used to plot these diagrams. The
problem of coexistence of di¤erent attractors is discussed in the forthcoming
paper.

Figure 5: 2D bifurcation diagram of the map f in the (�; �)-paramter plane at
m = 1:2 and � = 0:6 in a), � = 0:5 in b).

A �rst observation is related to the particular bifurcation point denoted O in
Fig.s 5 and 6, which is the intersection point of several border collision curves,
namely, BCL;1; BCL;2 and BCR: However, it can be clearly seen that not only
these bifurcation curves issue from O; but also in�nitely many curves bounding
periodicity regions which belong to the region E-II. Following the notation in
[1], the codimension-2 bifurcation point O is called organizing center, de�ned as
a bifurcation point from which an in�nite number of codimension-1 bifurcation
curves issue.
Let P� denote the periodicity region related to the cycle with the symbolic

sequence �. We �rst clarify which bifurcations de�ne the boundaries of the
regions P� using as an example the 3-periodicity region (see Fig.6b). This region
consists of three subregions, namely, the regions PRLM and PRL2 related to the
superstable 3-cycles with the symbolic sequences RLM and RL2; respectively,
and the region PML2 related to the stable 3-cycle with the symbolic sequence
ML2. Note that even if a part of the region PML2 belongs to the region E-II;
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Figure 6: 2D bifurcation diagram of the map f in the (�; �)-parameter plane at
m = 1:05; B = 1:5 in a) and its enlargment in b). The rectangle marked in a)
is shown enlarged in Fig.13.
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Figure 7: The 3-cycle 
3 at the moment of the border collision: in a) 
3 has the
symbolic sequence CrLM , in b) 
3 is represented by RLCl and in c) 
3 has the
symbolic sequence CrL2: Here m = 1:05; B = 1:5; � = 0:5 and � = 0:17 in a),
� = 0:1638 in b), � = 0:1394 in c) (the related parameter points are marked a;
b and c, resp., in Fig.6b).

for which the absorbing interval involves all the three branches of f , the stable
3-cycle ML2 is de�ned by the functions fL and fM only.2 The boundaries of
the regions PRL2 and PRLM shown in Fig.6b are plotted using the conditions
of the border collision of the related 3-cycle. Namely, the right boundary of
PRLM denoted BCCrLM is related to the 3-cycle CrLM as, for example, the
cycle shown in Fig.7a (the related parameter point is marked a in Fig.6b); the
left boundary BCRLCl of PRLM ; which is also the right boundary of PRL2 ,
is related to the 3-cycle RLCl; as, for example, the one shown in Fig.7b (the
related parameter point is marked b in Fig.6b) and the left boundary BCCrL2
of PRL2 corresponds to the 3-cycle CrL2; as in Fig.7c (the related parameter
point is marked c in Fig.6b). Note that all the three curves BCCrLM ; BCRLCl
and BCCrL2 issue from the point belonging to the curve BCJ and related to
the 3-cycle CrLCl:
In a similar way we can obtain the boundaries of the 2-periodicity region

shown in green in Fig.6a, consisting of three subregions, namely, the regions
PRM , PRL and PLM . The lower boundary of PRM (connecting the points
marked s1 and ClCr) is related to the 2-cycle CrM hence denoted as BCCrM ;
the right boundary of PRM (connecting s1 and O) is just the curve BCR; and
its left boundary which is also the right boundary of PRL (connecting ClCr and
O), corresponds to 2-cycle RCl; hence denoted as BCRCl : The left boundary of
PRL is related to the cycle CrL; hence denoted as BCCrL: The narrow region
bounded by the curves BCCrM ; BCRCl and FBM (note that � < 0:5 here,
thus, the �ip bifurcation is subcritical) is related to coexisting stable �xed point
x�M and superstable 2-cycle RM; while the region bounded by BCRCl , BCCrL
and FBM is related to the coexistence of the stable �xed point x�M and the
superstable 2-cycle LR: This bifurcation structure is schematically illustrated

2The region PML seen in Fig.6a and the region PML2 seen in Fig.6b belong to both regions
E-I and E-II: For di¤erent values of m other periodicity regions, related to stable but not
superstable cycles, belonging to E-I can extend to E-II as well.
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in Fig.8a where the bistability regions mentioned above, as well as the region of
coexistence of the stable �xed point x�M and the stable 2-cycle LM , are dashed.
Additionally it is indicated that stable 2-cycles with symbolic sequences LMs;
RLs and RMs (the index s means stability) born due the fold BCB in pair with
the unstable cycle MMu (the index u means that this cycle is unstable) coexist
with the stable �xed point x�M indicated by the symbol Ms. If the parame-
ter point crosses the curve FBM the �xed point Ms and the unstable 2-cycle
MMu merge, the �xed point losses stability, the 2-cycle MMu disappears, so
that above the curve FBM there exist the unstable �xed point x�M and the
related 2-cycle (stable or superstable). Such a bifurcation structure is observed
in the (�; �)-parameter plane if � < 0:5 at the point s1 and, thus, the �ip bi-
furcation is subcritical (as, for example, it occurs in Fig.6a). The bifurcation
structure in the case of a supercritical �ip bifurcation of x�M is schematically
illustrated in Fig.8b for � > 0:5 at the point CrCl: Note that it is possible to
have � < 0:5 at CrCl and � > 0:5 at s1, in which case FBM intersects with
BCCrM , and it is also possible that the curve FBM intersects with the curve
BCClM (for � > 0:5 at CrCl). In both cases we have � = 0:5 at the intersec-
tion point, and the �ip bifurcation is supercritical above the intersection and
subcritical below it.

Figure 8: Schematic structure of the regions PRM ; PRL and PLM in the (�; �)-
parameter plane. With � < 0:5 at s1; a) shows the case of a subcritical �ip
bifurcation of x�M with the bistability regions dashed; with � > 0:5 at CrCl b)
shows the case of supercritical �ip bifurcation of x�M .

To see what kind of bifurcation occurs when parameter point crosses bound-
aries of a periodicity region related to superstable n-cycle, recall �rst that the
only bifurcation which is possible for a superstable cycle, is a BCB. Using the
skew tent map as the BCB normal form (see, e.g., [35]), it is easy to show that
a superstable n-cycle 
n can undergo either a fold BCB or a �ip BCB or a per-
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sistence border collision. In fact, evaluating the left- and right-side derivatives,
denoted a and b, of the function fn at the border-crossing superstable �xed
point of fn at the bifurcation parameter value, we have that one such deriva-
tive is obviously 0, say, a = 0; and, depending on the other derivative, b, the
following cases can be distinguished:

Figure 9: The map f3 and its border-crossing �xed points related to the 3-cycle
of the map f . Here the parameter values in a), b), c) are as in Fig.7, and
� = 0:435; � = 0:1358 in d) (the related parameter points are indicated by a;
b; c and d; resp., in Fig.6b).

(1) if b > 1 then a fold BCB (also referred to as nonsmooth fold bifurcation)
occurs at which one point of 
n and one point of the repelling complementary

3

n-cycle collide with the border point simultaneously and both cycles disappear
after the bifurcation (an example of f3 together with the border-crossing �xed
points at the moment of the fold BCB is shown in Fig.9a; the related parameter
point is marked by a in Fig.6b);
(2) if jbj < 1; then a persistence border collision occurs at which the super-

stable cycle 
n is transformed into the complementary cycle which is either again
superstable, or stable (see Fig.s 9b and 9d, respectively; the related parameter
points are marked by b and d in Fig.6b).

3Two cycles of a continuous piecewise smooth map, born at a fold BCB are so-called
complementary cycles: their symbolic sequences di¤er by the one, colliding, symbol.
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(3) if b < �1 then a supercritical �ip BCB occurs at which 
n is transformed
into the complementary repelling n-cycle, while a superstable 2n-cycle 
2n is
born (see Fig.9c and the related parameter point marked by c in Fig.6b).

Figure 10: 1D bifurcation diagram of the map f at m = 1:05; B = 1:5; � = 0:5
and � 2 [0:12; 0:18] in a) (the related parameter path is indicated in Fig.6b
by the horizontal line with an arrow), and � 2 [0:12; 0:125] in b), which is the
enlarged window indicated in a).

The results of these bifurcations are illustrated in the 1D bifurcation diagram
shown in Fig.10a, corresponding to the parameter path for �xed � = 0:5 varying
�; as indicated in Fig.6b by the horizontal line with an arrow. In particular, it
can be seen that at � � 0:17 the boundary BCCrLM is crossed (see the point a
in Fig.6b) and the fold BCB occurs at which for decreasing � the superstable
cycle RLM is born together with the complementary repelling cycle MLM
(which is not shown). At the moment of the fold BCB these cycles coincide
and have the symbolic sequence CrLM (see also Fig.7a). At � � 0:1638 the
parameter point crosses the boundary BCRLCl (see the point b in Fig.6b) and
the persistence border collision occurs: the cycle RLM is transformed into the
cycle RL2 (the persistence border collision occurs also if the boundary BCCrL2
is crossed below the point marked by s3 in Fig.6b, e.g., at the point d, in which
case we observe the transition from RL2 to ML2). At � � 0:1394 the boundary
BCCrL2 is crossed (see the point c in Fig.6b) and the �ip BCB occurs leading
to the superstable 6-cycle with the symbolic sequence RL2ML2.
Fig.10b shows an enlargement of the window indicated in Fig.10a, where it

can be seen that the superstable 6-cycle RL2ML2 for decreasing � �rst under-
goes the persistence border collision, at � � 0:123, being transformed into the
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superstable cycle RL2MLM: Both the sequences RL2ML2 and RL2MLM are
the so-called �rst harmonics of RL2; as explained in the next section. We con-
tinue to decrease the value of �; and at � � 0:122 the �ip BCB occurs, leading to
the superstable 12-cycle with the symbolic sequence RL2MLM2L2MLM: The
12-cycle in its turn also �rst undergoes the persistence border collision, at � �
0:12197, leading to the cycle RL2MLM2L2ML2 (both RL2MLM2L2MLM
and RL2MLM2L2ML2 are the second harmonics of RL2), which then, at
� � 0:1216, undergoes the �ip BCB resulting to the 24-cycle whose symbolic
sequence RL2MLM2L2ML2ML2MLM2L2ML2 (the third harmonic of RL2).
Indeed, an in�nite cascade of �ip BCBs occurs for decreasing � which is di¢ cult
to observe numerically due to the high rate of the compression of the related
parameter ranges. The sequence of superstable cycles described above can be
written schematically as follows:

:::
CrLM! RLM

RLCl! RL2
CrL

2

! RL2ML2
RL2MLCl!

RL2MLM
CrL

2MLM! RL2MLM2L2MLM:::

Figure 11: 1D bifurcation diagram of the map f at m = 1:05, B = 1:5, � = 0:5;
and � 2 [0:175; 0:4] in a) (the related parameter path is indicated in Fig.6a by
the horizontal line with an arrow); � 2 [0:184; 0:19] in b) (it is an enlargment of
a)).

As one more example, let us consider the cascade of �ip BCBs of the 2-
cycle. It is illustrated in Fig.11 by means of the 1D bifurcation diagram (the
related parameter path for �xed � = 0:5 and varying � is indicated by the

17



horizontal line with an arrow in Fig.6a). Namely, the following sequence of
�ip BCBs (related to the collision with the border point xr) and persistence
border collisions (due to the collision with the border point xl) can be observed
for decreasing �. The superstable �xed point x�R whose symbolic sequence
is just one symbol R, undergoes the �ip BCB (the parameter point crosses
the boundary BCR above the point s1, see Fig.6a), that leads to a 2-cycle
with symbolic sequence RM: Then this cycle is transformed into the one with
symbolic sequence RL due to the persistence border collision (the parameter
point crosses the boundary BCRCL). Note that the sequences RM and RL
are the �rst harmonics of R. Then the 2-cycle RL undergoes the �ip BCB (the
parameter point crosses the boundaryBCCrL above the point s2) leading to a 2

2-
cycle whose symbolic sequence is RLML. Then this cycle changes its symbolic
sequence to RLM2 due to persistence border collision (RLML and RLM2 are
the second harmonics of R). Then it undergoes the �ip BCB leading to a 23-cycle
with the symbolic sequence RLM3LM2 which is transformed into RLM3LML
due to the persistence border collision (RLM3LM2 and RLM3LML are the
third harmonics of R), so on, as schematically represented as follows:

R
Cr! RM

RCl! RL
CrL! RLML

RLMCl! RLM2 CrLM
2

! RLM3LM2::: (23)

As we have mentioned in the previous section, in the case of the superstable
2-cycle RL or any of its harmonics, the basin of attraction de�ned in (22) has a
simpler structure than in the generic case, being not associated with a chaotic
repeller on the basin boundary. For example, it is easy to see that in case of the
2-cycle RL shown in Fig.12a, any point of the absorbing interval J = [bx; f(xl)];
except for the unstable �xed point x�M ; is mapped into this cycle in a �nite
number of iterations while in case of the 4-cycle RLM2 shown in Fig.12b, any
point of J is mapped into this cycle except for the unstable �xed point x�M ,
unstable 2-cycle LM and its preimages (converging in backward iterations by
f�1M to x�M ). In general, for a superstable cycle whose symbolic sequence is the
k-th harmonic of R, k > 0; the basin boundary includes the �xed point x�M , the
points of all the m-harmonic cycles for any m < k (which are unstable due to
�ip BCBs), as well as their preimages. Such a structure of the basin boundary
is qualitatively similar to the one of an attracting 2k-cycle of the logistic map
born during the �rst cascade of period-doubling bifurcations.
Let us now consider the sets in the parameter space to which the periodicity

regions of the superstable cycles are accumulating, and the dynamics related to
these sets. Such accumulation parameter values are visible in the 1D bifurcation
diagrams as those related to the "bodies of the spiders", like, for example, the
value � = 0:1215 indicated by a red arrow in Fig.10b. For the logistic map it is
known that the periodicity windows at the well-known 1D bifurcation diagram
are accumulating to the parameter values related to homoclinic bifurcations of
the unstable cycles. Moreover, on the other side of any accumulation point of
a cascade of period-doubling bifurcations, a cascade of the homoclinic bifurca-
tions is accumulating. To see that for the map f the periodicity regions are
accumulating on the parameter sets related to homoclinic bifurcations of the
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Figure 12: In a) the cycle 
2 = fxig2i=1 and in b) the cycle 
4 = fxig4i=1 which
is the �rst harmonic of 
2; are shown. Any point of J = [bx; f(xl)] is mapped into
the attractor except for x�M in a), and except for x�M , the 2-cycle LM (shown
by white circles) and its preimages in b). Here m = 1:05; B = 1:5; � = 0:5 and
� = 0:25 in a), � = 0:186 in b).

corresponding cycles, we �rst present in Fig.13 the enlargement of the window
marked by the rectangle in Fig.6a, and in Fig.14 the 1D bifurcation diagram
related to the parameter path indicated in Fig.13 by the horizontal line with
an arrow which pierces the red circle on the line H2: In this diagram the ac-
cumulation points � = �H1

and � = �H2
are clearly visible, related to the

�rst homoclinic bifurcations of the �xed point x�M and of the 2-cycle with the
symbolic sequence LM; respectively.
Let us �rst consider the 2-cycle with the symbolic sequence LM; that is, the

cycle 
2 = fx1; x2g where x1 < xl, xl < x2 < xr; fL(x1) = x2 and fM (x2) = x1:
Its �rst homoclinic bifurcation is de�ned by the condition of the border point xl
to be preperiodic to this cycle, namely, as illustrated in Fig.15, this condition
can be written as

fM � fM � fL � fR � fL(xl) = x2; (24)

or, taking into account that for the parameter region E-II we have fR�fL(xl) =
fR(xr); the condition in (24) becomes

fM � fM � fL � fR(xr) = x2;

or also, considering that fR(x) = bx; we have:
fM � fM � fL(bx) = x2: (25)

The bifurcation curve numerically obtained corresponding to the condition in
(25) is denoted H2 in Fig.13. In Fig.15 we present the map f at the moment
of the �rst homoclinic bifurcation of the 2-cycle (the related point of the curve
H2 is marked by red circle in Fig.13). It can be seen that even if this cycle is
locally repelling almost all the points of the absorbing interval J = [bx; f(xl)] are
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Figure 13: An enlargment of the window indicated in Fig.6a by the rectangle.
The curves marked H1 and H2 are related to the �rst homoclinic bifurcations
of the �xed point x�M and 2-cycle with the symbolic sequence LM , resp.

Figure 14: 1D bifurcation diagram of the map f at m = 1:05, B = 1:5, � = 0:41
and � 2 [0:145; 0:165] (the related parameter path is indicated in Fig.13 by the
horizontal line with an arrow). The values � = �H1

and � = �H2
correspond to

the �rst homoclinic bifurcations of the �xed point and 2-cycle, resp.
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Figure 15: The map f for the parameter values corresponding to the �rst ho-
moclinic bifurcation of the 2-cycle 
2 = fx1; x2g : Here m = 1:05, B = 1:5,
� = 0:41 and � = 0:160635 � �H2

: The related parameter point belongs to the
curve H2 and is marked by the red circle in Fig.13.

mapped into this cycle, so it is an attractor in Milnor sense4 . This occurs due to
the �at branch fR; namely, the complete interval [xr;1) is ultimately mapped
to the point x2; as well as in�nitely many preimages of the interval [xr; fL(xl)]
marked by red in Fig.15. Its preimages of increasing rank �ll densely the interval
J and de�ne the stable set, given in (22), of the locally repelling 2-cycle 
2. We
notice that any homoclinic cycle of the map f for the considered parameter
range has the stable set as given in (22). Clearly in J there exist also in�nitely
many points which are not attracted to the cycle 
2; which belong to the chaotic
repeller of zero Lebesgue measure consisting of the points of all the repelling
cycles, their preimages of any rank and their limit sets.
One more example is shown in Fig.16 where the function f is plotted at the

parameter values corresponding to the �rst homoclinic bifurcation of the �xed
point x�M (the related parameter point belongs to the curve H1 and marked by
green circle in Fig.13), which in our case also leads to an attractor in Milnor
sense, whose stable set is as given in (22). A few preimages of the interval
[xr; fL(xl)] are shown in red in Fig.16 and all the existing preimages are �lling
densely the interval J . The condition of the �rst homoclinic bifurcation of x�M

4Denoting by !(x) the set of accumulation points of the orbit under the forward iterations
of x, called !-limit set of x; we recall that a Milnor attractor is de�ned as a closed invariant
set A � J such that the set �(A) consisting all the points x 2 J for which !(x) � A has
strictly positive measure, and there is no strictly smaller closed subset A0 of A such that �(A0)
coincides with �(A) up to a set of measure zero [29].
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Figure 16: The function f for the parameter values related to the �rst homoclinic
bifurcation of the �xed pointM: Here m = 1:05; B = 1:5; � = 0:16; � = 0:4285:
This parameter point belongs to the curve H1 and marked by the green circle
in Fig.13.

is given by
fL � fR(xr) = x�M ; (26)

where we recall that the �xed point x�M is implicitly de�ned from x�M = fM (x
�
M ):

The bifurcation curve related to the condition in (26) is denoted H1 in Fig.13.

4 Modi�ed U-sequence

The numerical results presented in the previous section suggest that the peri-
odicity regions of the superstable cycles of the map f given in (9) are ordered
according to the well-known U-sequence. Recall that the U-sequence (where
"U" stands for "universal") was �rst described in [28] and referred to symbolic
sequences of superstable cycles of maps of a particular class. Namely, it was
established for 1D continuous piecewise di¤erentiable maps g : I ! I depend-
ing on a parameter, with a unique maximum gmax assumed either at a point
or in an interval, and such that to the left or right of this point (or interval)
the map is strictly increasing or strictly decreasing, respectively. Additionally it
was assumed that at any x such that g(x) = gmax the derivative of g exists and
is equal to 0; and the condition de�ning the parameter range. The most known
example of maps whose superstable cycles are ordered on parameter according
to the U-sequence are unimodal maps5 with "smooth" maximum, in which case

5A 1D continuous map g : I ! I is called unimodal if there exists exactly one point of
local extrema in the interior of I, moreover, g is strictly increasing on one side of the point of
local extrema and strictly decreasing on the other side.
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the U-sequence can be easily extended to the sequence of stable cycles (as we
clarify below using the logistic map as an example). However, in [28] it was
also mentioned, that the conditions listed above are su¢ cient to guarantee the
existence of the U-sequence, but not necessary. In fact, it is known (see, e.g.,
[17]) that the U-sequence is valid also for the unimodal maps which are not
di¤erentiable at the point of maximum (as, for example, the considered map f
for parameter values belonging to the region E-I given in (19), or the skew tent
map), in which case the U-sequence may be related to not only stable but also
unstable cycles, or even unstable cycles only (in [28] the U-sequence in the tent
map was mentioned as an example of such a case). Obviously, the considered
map f for parameter values belonging to the region E-II given in (20) does not
belong to the classes of maps mentioned above. To see why the U-sequence is
nevertheless valid for our map, let us consider the map g : I ! I de�ned as
follows:

g : x 7! g(x) =

8>>><>>>:
fL(x) = x

� for 0 < x � xa;
fC(x) = x

�
c for xa < x � xc;

fM (x) =
h
1
��

�
1� x

m

�i�=(1��)
for xc < x � xr;

fR(x) = bx for x > xr;

(27)

where xa = f�1L (xr); xc = f�1M (xr); bx = �
1
�

��=(1��)
, xr = m(1 � �); and

parameters �; �; � and m satisfy (2) and (20) (see an example of the map g
in Fig.17). The map g is constructed from the map f by introducing a new
�at branch fC(x) de�ned on the interval bounded by two preimages of the
border point xr; so that the absorbing interval of g is J = [bx; xr] and the �at
branch fR(x) plays no role for the dynamics. Clearly, the map g belongs to
the class of maps considered in [28], thus, the U-sequence is valid for such a
map (of course, to discuss the U-sequence in the map g we need to specify the
related parameter path). On the other hand, it is easy to see that the map g is
topologically conjugate to the considered map f; thus, the U-sequence is valid
for it as well.
Before we describe the U-sequence of the map f let us recall in short how the

standard U-sequence is formed using the logistic map g : x 7! g(x) = ax(1�x);
3 < a < 4; as an example. In [28] the U-sequence is constructed for the su-
perstable cycles, for which the �rst letter in the symbolic sequence is C (corre-
sponding to the point of maximum, separating the two partitions, L and R), and
it is omitted. For example, the symbolic sequence of the superstable 3-cycle is
RL � CRL. Note that due to the fold bifurcation two 3-cycles are born, stable
and unstable, with the same symbolic sequence, namely, RRL. Then, increasing
a, at a suitable value the stable cycle becomes superstable, that is, it has the
symbolic sequence CRL, and after we have the stable cycle with LRL sequence
(which soon after becomes unstable via the �ip bifurcation) while the unstable
cycle, born in pair with the stable one, always persists with the sequence RRL.
We can say that the sequence RL of the superstable 3-cycle represents both the
3-cycles, with the sequences LRL and RRL. As a di¤erent example consider the
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Figure 17: The map g de�ned in (27) at m = 1:05; B = 1:5; � = 0:5 and
� = 0:15.

sequence RLR � CRLR of the superstable 4-cycle. It represents only one cycle,
namely, the 4-cycle with the symbolic sequence RRLR. Indeed, the sequence
RLR is the �rst harmonic of R, that is, it represents the cycle born due to the
period-doubling bifurcation of the 2-cycle.
The symbolic sequence of a superstable cycle of the logistic map which rep-

resents the one born at the fold bifurcation is called fundamental, while the
symbolic sequences of the superstable cycles representing the cycles appearing
due to the cascade of k period-doubling bifurcations, are called k-harmonics,
k > 0. From [28] we recall that the (�rst) harmonic of a symbolic sequence � is
the sequence ���, where � = L if the number of R in � is odd while � = R if this
number is even. The k-harmonic is constructed by k consecutive applications
of the same rule.
If we consider all the symbolic sequences of the logistic map related to its

superstable cycles up to some period m, then these symbolic sequences belong
to the U-sequence (the complete U-sequence includes all the admissible symbolic
sequences of the superstable cycles of a unimodal map), and they are ordered
for increasing values of the parameter a according to the following rule. For two
di¤erent symbols � 6= �, the order of � and � is in the sense of the natural order:
L < C < R. Given two symbolic sequences �1 = �� and �2 = �� with common
string � and next symbol � 6= �, the order of �1 and �2 is the same (opposite)
as the order of � and � if the number of R in � is even (odd). For example,
comparing two symbolic sequences of the superstable 4-cycles, �1 = RL2 and
�2 = RLR, we see that the number of R in their common string � = RL is odd,
while the next symbols are L in �1 and R in �2, and L < R. Thus, we have
that RL2 > RLR.
The rule described above implies, in particular, that the symbolic sequence

of the so-called basic n-cycle is the largest among the symbolic sequences of the
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other n-cycles.6 Recall that a basic n-cycle has only one symbol R in its symbolic
sequence, that is, this sequence is RLn�2. It can also be shown (see [28]) that
the k- and (k+1)-harmonics of some symbolic sequence for any integer k > 0 are
adjacent in the U-sequence (i.e., there are no any other symbolic sequences in
between them). For example, the order of the symbolic sequences of the cycles
of period 2 � n � 6 of a unimodal map is the following :

R < RLR < RLR3 < RLR2 < RL < RL2RL < RL2R < (28)

RL2R2 < RL2 < RL3R < RL3 < RL4;

where the �rst or, equivalently, the last symbol, is C (which is omitted). Note
that other symbolic sequences of higher periods exist between any two consec-
utive sequences but not between a sequence and its harmonic.
Let us now turn to the U-sequence observed in the map f: As we have al-

ready mentioned, we need �rst to specify an appropriate parameter path, which,
roughly speaking, has to cross all the existing periodicity regions. Consider �rst
the region E-I. As an appropriate parameter path in the (�; �)-parameter plane
(for values of � and m �xed as, for example, in the case shown in Fig.5) we can
consider a cross-section of E-I from the right boundary FBM to the left bound-
ary BCL;1: In the (�; �)-parameter plane (for the values of B and m �xed as,
for example, in the case shown in Fig.6) an appropriate parameter path can be
the one connecting a point of the boundary FBM with the organizing center
O. Given that the map f for parameter values belonging to the region E-I is
unimodal (and its cycles have symbolic sequences consisting of symbols L and
M only), the order (28) is valid for f as well: we simply have to substitute the
symbol R by M; while the �rst (omitted) symbol C corresponds to the symbol
Cl :

M < MLM < MLM3 < MLM2 < ML < ML2ML < (29)

ML2M < ML2M2 < ML2 < ML3M < ML3 < ML4:

Note, however, that di¤erently from the logistic map, the sequence given above
is not related to the superstable cycles, but to the cycles one point of which is
xl. Some of these cycles can be stable (if the parameter path crosses the related
periodicity region) and the other unstable.
Now we adjust the standard U-sequence to describe the cycles which can be

observed in the map f when the parameters belong to the region E-II. An ap-
propriate parameter path has to cross all the periodicity regions of superstable
cycles. For example, we can vary the parameter values along an arc connecting
the point marked by s1 in Fig.6a with the organizing center O. In each of the
symbolic sequences constituting the order (29), the �rst symbol M correspond-
ing to the maximal periodic point, has to be substituted by R (and, as we have

6For a prime period n > 2 the number of stable n-cycles having di¤erent symbolic sequences
is k(n) = (2n�1 � 1)=n: For the generic case see, e.g., [17].
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already noticed, only one point R can exist in a symbolic sequence):

R < RLM < RLM3 < RLM2 < RL < RL2ML < (30)

RL2M < RL2M2 < RL2 < RL3M < RL3 < RL4:

Such a sequence corresponds to the order of the superstable cycles of f one point
of which is xl; with the symbol Cl omitted in the above order. The generic rule
recalled above to determine the order of such sequences, has to be modi�ed
taking into account that one letter R takes the place of one letter M in the
standard U-sequence. So, the rule for the order (30) is as follows. Given two
di¤erent symbols � 6= �, the order of � and � is, as before, in the sense of
the natural order: L < Cl < M . Given two symbolic sequences �1 = �� and
�2 = �� with common string � and next symbol � 6= �, the order of �1 and �2
is the same (opposite) as the order of � and � if the number of M in � is odd
(even).
Let us now extend the order (30) to all the superstable cycles of the map

f (i.e., not only those with periodic point xl). As we have seen, the curves
corresponding to the cycles with point xl are related to the persistence border
collisions and located inside the periodicity regions of the corresponding super-
stable cycles. In some sense, these curves constitute a skeleton of the overall
"superstable" bifurcation structure, quite similar to the parameter values of
the superstable cycles of the logistic map, located inside the related periodicity
windows. To construct the complete sequence we can substitute each symbolic
sequence � by two new sequences, �L and �M; ordered according to the rule
stated above. For example, the sequence R related to the superstable 2-cycle
RCl can be substituted by two sequences, RM and RL (representing the related
superstable 2-cycles) ordered as RM < RL. The sequence RLM representing
superstable 4-cycle RLMCl can be substituted by RLML and RLMM ordered
as RLML < RLMM (cf. with (23)). One more example is the sequence
RL � RLCl representing the superstable 3-cycle which can be substituted by
RLM < RLL:
Thus, the complete order of the superstable cycles periods 2 � n � 6 of the

map f is the following:

RM < RL < RLML < RLM2 < RLM3L < RLM4 <
RLM3 < RLM2L < RLM < RL2 < RL2ML2 < RL2MLM <
RL2ML < RL2M2 < RL2M3 < RL2M2L < RL2M < RL3 <
RL3ML < RL3M2 < RL3M < RL4 < RL4M < RL5:

(31)

To summarize, we have obtained an analogue of the U-sequence according
to which the periodicity regions related to the superstable cycles of the map f
de�ned in (9) are ordered. These periodicity regions belong to the parameter
region E-II given in (20) related to the map f de�ned over the absorbing interval
via three functions one of which is a constant. The bifurcation structure in the
parameter region E-I given in (19) as well as the periodicity regions belonging
to E-II but not related to the superstable cycles, is discussed in a forthcoming
paper.
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