The Home Market Effect and Patterns of Trade Between Rich and Poor Countries

Kiminori Matsuyama
Northwestern University

MIT International Trade Workshop
March 28, 2016
Introduction

- Sectors differ widely in their income elasticities (Engel’s Law) and rich (poor) countries are net-exporters in high (low) income elastic sectors.

- Standard trade models assume *homothetic preferences* to focus on the supply side determinants of the patterns of trade

- Adding *nonhomothetic preferences* in the standard models would, *ceteris paribus*, make rich countries *importers* in high income elastic sectors

- To be empirically consistent, the existing GE models of trade with nonhomothetic preferences *assume* that the rich (poor) have CA in high (low) income elastic sectors
 - **Factor endowment**: Markusen(1986), Caron-Fally-Markusen(2014)

 In these models, the rich export in high income elastic sectors *despite* their domestic markets in these sectors are relatively large.

- In our model, the rich have CA in high income elastic sectors, *because* their domestic markets in these sectors are relatively large, due to *Home Market Effect*
Home Market Effect (HME): Krugman’s (1980) example

- Two Dixit-Stiglitz monopolistic competitive sectors, \(\alpha \) & \(\beta \), with iceberg trade costs
- One factor of production (labor)
- Two countries of equal size, A & B, mirror-images of each other
 - A is a nation of \(\alpha \)-lovers; with the minority of \(\beta \)-lovers.
 - B is a nation of \(\beta \)-lovers, with the minority of \(\alpha \)-lovers.

In equilibrium,
- In autarky, proportionately large share of labor in A employed in sector \(\alpha \).
- Under trade, disproportionately large share of labor in A employed in sector \(\alpha \).
- **HME:** A is a net-exporter in \(\alpha \). (And B is a net-exporter in \(\beta \)).
- Quantitatively, HME is more important with a smaller trade cost

Key Insight: With scale economies & small but positive trade costs, cross-country difference in the domestic market size distribution across sectors is a source of CA.

Notes: In Krugman (1980),
- Demand composition differs across countries due to *exogenous variations in taste*
- “Mirror-image” obscures that HME comes from the cross-country difference in the market size *distribution* across sectors, *not* in the *absolute* market size in each sector.
- Also restricts the range of comparative static exercises.
Our Model: GE HME with domestic demand composition difference due to nonhomothetic preferences. Also drops the mirror-images setup.
- 2 countries; differ in *per capita labor endowment* (*h*) & *population size* (*N*)
- *Continuum* of Dixit-Stiglitz monopolistic competitive sectors with iceberg trade costs
- Preferences across sectors: *Implicitly Additively Separable Nonhomothetic CES*, with sectors different only in their income elasticity, which is increasing in the sector index.

Patterns of Trade:
- Rich’s demand composition more skewed towards higher-income elastic sectors
- Rich’s labor disproportionately employed in higher-income elastic sectors
- Rich becomes a net-exporter in higher-income elastic sectors, *regardless of the relative country size*

Comparative Statics: *Due to endogenous demand compositions*, uniform productivity improvement and a trade cost reduction (globalization!) cause
- *Product cycles*: The Rich switches from a net exporter to a net importer in the middle
- *Welfare gaps to widen (narrow)*, if different sectors produce substitutes (complements)
 With unequal country sizes,
- *Endogenous Ranking of Countries: Leapfrogging and Reversal of the patterns of trade*;
 The country higher in *h* but smaller in *L = hN* may be poorer is a less globalized world, becomes richer with globalization, as it moves ToT in its favor.
Explicit vs. Implicit (Direct) Additive Separability: Hanoch (1975)

Explicit (Direct) Additivity: \(u = \int_{0}^{1} f_s(c_s)ds \); CES if \(u = \int_{0}^{1} \omega_s(c_s)^{1-1/\eta} ds \)

Pigou’s Law: Income elasticity of Sector \(s = \text{const.} \) (Bergson’s Law is a special case)

- Price elasticity of Sector \(s \)
 - Empirically false (Deaton 1974 and others)
 - Conceptually impossible to disentangle the effects of income elasticity differences from those of price elasticity differences

Implicit (Direct) Additivity: \(\int_{0}^{1} f_s(u, c_s)ds = 1 \); CES if \(\int_{0}^{1} \omega_s(u)(c_s)^{1-1/\eta} ds = 1 \)

- Sector-specific income elasticities, unrelated to price elasticities
- If \(\partial \log \omega_s(u)/\partial u \) varies with \(s \), nonhomothetic CES. If sectors are indexed to make \(\partial \log \omega_s(u)/\partial u \) increasing in \(s \), \(\omega_s(u) \) is log-supermodular
- If \(\omega_s(u) \) is isoelastic in \(u \), \(\partial \log \omega_s(u)/\partial u \) depends only on \(s \), not on \(u \), consistent with the stable slope of the Engel curve; e.g., Comin-Lashkari-Mestieri (2015)
Fajgelbaum, Grossman, Helpman (2011)

- One monopolistic competitive industry, producing horizontally & vertically (quality)-differentiated, indivisible products with trade costs (e.g., Auto industry).
 ✓ with a numeraire sector in the background, large enough to kill GE and ToT effects
- A discrete choice a la McFadden, with nonhomotheticity. Each consumer buys a unit of one product with richer consumers more likely to buy a higher-quality product.
- Income distribution as a source of CA; the country with first-order stochastic dominant distribution become a net-exporter of higher-quality products, if it is not too small.

FGH: Intra-industry trade, designed to address IO issues
- Focus on within-industry quality specialization; on within-country inequality
- Abstract from patterns of trade across sectors, from cross-country inequality, from ToT effects; exogenous country ranking
- HME due to the absolute domestic market size difference

Here: Inter-industry trade, designed to address development/structural change issues
- Focus: patterns of trade across sectors producing very different (even complementary) goods; ToT effects; cross-country inequality; endogenous country ranking
- Abstract from within-industry quality specialization; from within-country inequality
- HME due to the relative domestic market size difference
Organization of the Paper

1. Introduction
2. HME with Nonhomothetic Preferences
 2.1 The Model
 2.2 Autarky Equilibrium
 2.3 Trade Equilibrium and Patterns of Trade
 2.4 Ranking the Countries
 2.5 Comparative Statics
 2.5.1 A Uniform Productivity Improvement
 2.5.2 A Trade Cost Reduction without ToT change: Equal Country Size
 2.5.3 A Trade Cost Reduction with ToT Change; Unequal Country Size
3. HME with Exogenous Taste Variations: A Comparison
4. Adding an Outside Goods Sector
5. Concluding Remarks

Appendix: Two Lemmas
Home Market Effect with Nonhomothetic Preferences
One Nontradeable Factor (Labor)

Two Countries: (j or $k = 1$ or 2)

- N^j: j identical households with labor endowment h^j, supplied inelastically at w^j.
- $w^j h^j = E^j$: Household Income (and Expenditure)
- $L^j = h^j N^j$: Total Labor Supply in j

N^j and h^j are the only possible sources of heterogeneity across the two countries.

Tradeable Goods:

- A continuum of monopolistically competitive sectors, $s \in [0,1]$,
- Each sector produces a continuum of tradable differentiated goods, $\nu \in \Omega_s = \Omega_s^1 + \Omega_s^2$, Ω_s^j: Disjoint sets of differentiated goods in sector s produced in country j in equilibrium
Household Preferences: Two-Tier structure

Lower-level, usual Dixit-Stiglitz aggregator (Homothetic within each sector)

\[
\tilde{C}_s^k \equiv \left[\int_{\Omega_s} \left(c_s^k(\nu) \right)^{\frac{1}{1-\sigma}} d\nu \right]^{\frac{\sigma}{\sigma-1}}; \quad \sigma > 1, \quad s \in [0,1]
\]

Upper-level, \(\tilde{U}^k = U(\tilde{C}_s^k, s \in [0,1]) \), implicitly given by

\[
\int_0^1 (\beta_s)^{\frac{1}{\eta}} \left(\tilde{U}^k \right)^{\frac{\varepsilon(s)-\eta}{\eta}} \left(\tilde{C}_s^k \right)^{\frac{\eta-1}{\eta}} ds \equiv 1; \quad \beta_s > 0 \text{ and } \sigma > \eta \neq 1
\]

- \((\varepsilon(s) - \eta)/(1 - \eta) > 0\) for global monotonicity & quasi-concavity
- \(\int_0^1 \varepsilon(s) ds = 1\), without loss of generality.
- If \(\varepsilon(s) = 1\) for all \(s \in [0,1]\), standard homothetic CES
- If \(\varepsilon(s) \neq 1\), nonhomothetic. Index sectors so that \(\varepsilon(s)\) is increasing in \(s \in [0,1]\). Then,

\[
\omega(s, \tilde{U}^k) \equiv (\beta_s)^{\frac{1}{\eta}} \left(\tilde{U}^k \right)^{\frac{\varepsilon(s)-\eta}{\eta}} \text{ is log-supermodular in } s \text{ and } \tilde{U}^k.
\]
Lemma 1: For a positive value function, \(\hat{g}(\bullet; x) : [0,1] \rightarrow \mathbb{R}_+ \), with a parameter \(x \), define

\[
g(s;x) \equiv \frac{\hat{g}(s;x)}{\int_0^1 \hat{g}(t;x)dt} \quad \text{(a density function)} \quad \text{and} \quad G(s;x) \equiv \int_0^s g(t;x)dt = \frac{\int_0^s \hat{g}(t;x)dt}{\int_0^1 \hat{g}(t;x)dt} \quad \text{(its cumulative distribution function)}.
\]

If \(\hat{g}(s;x) \) is **log-supermodular** in \(s \) and \(x \), i.e. \(\frac{\partial^2 \log \hat{g}(s;x)}{\partial s \partial x} > 0 \),

i) \(\frac{g(s;x)}{g(s;x')} \) is decreasing in \(s \) for \(x < x' \); **Monotone Likelihood Ratio (MLR)**

ii) \(G(s;x) > G(s;x') \) for \(x < x' \). **First-Order Stochastic Dominance (FSD)**

The happier households put more weights on the higher-indexed sectors.
Household Maximization: Two-Stage Budgeting

1st Stage (Lower-level) Problem: Chooses $c^k_s(v)$ for $v \in \Omega_s$ to:

Max $\tilde{C}^k_s \equiv \left(\int_{\Omega_s} \left(c^k_s(v) \right)^{\frac{1}{\sigma}} dv \right)^{\sigma-1}$, subject to $\int_{\Omega_s} p^k_s(v)c^k_s(v)dv \leq E^k_s$,

$p^k_s(v)$ & $c^k_s(v)$: the unit consumer price and consumption of variety $v \in \Omega_s$;

E^k_s: Expenditure allocated to sector-s, taken as given.

Solution: $c^k_s(v) = \left(\frac{p^k_s(v)}{P^k_s} \right)^{-\sigma}$

$C^k_s = \left(\frac{p^k_s(v)}{P^k_s} \right)^{-\sigma} E^k_s$, where

$P^k_s \equiv \left(\int_{\Omega_s} \left(p^k_s(v) \right)^{1-\sigma} dv \right)^{1-\sigma}$; Dixit-Stiglitz price index in sector-s

$C^k_s = \text{Maximized } \tilde{C}^k_s$, satisfying $E^k_s = P^k_s C^k_s$.

Page 12 of 32
2nd stage (Upper Level) Problem: Choose $E^k_s = P^k_s C^k_s$ to:

$$\text{Max } \tilde{U}^k, \text{ subject to } \int_0^1 (\beta_s)^{\eta} (\tilde{U}^k)^{(\varepsilon(s)-\eta)} (C^k_s)^{\eta-1} ds \equiv 1 \text{ and } \int_0^1 P^k_s C^k_s ds = \int_0^1 E^k_s ds \leq E^k.$$

Solution:

$$m_s^k = \frac{E^k_s}{E^k} = \frac{P^k_s C^k_s}{E^k} = \frac{\beta_s (U^k)^{(\varepsilon(s)-\eta)} (P^k_s)^{1-\eta}}{\int_0^1 \beta_t (U^k)^{(\varepsilon(t)-\eta)} (P^k_t)^{1-\eta} dt}, \text{ sector-s share in k’s expenditure}$$

where $U^k = \text{Maximized } \tilde{U}^k$, given by (implicitly additive) indirect utility function:

$$(E^k)^{1-\eta} = \int_0^1 \beta_s (U^k)^{(\varepsilon(s)-\eta)} (P^k_s)^{1-\eta} ds. \quad (U^k \text{ is strictly increasing in } E^k.)$$

Notes:

- $\frac{\partial \log(m^k_s / m^k_{s'})}{\partial \log(U^k)} = \varepsilon(s) - \varepsilon(s')$. Higher-indexed more income elastic; Income elasticity differences are constant across different per capita income levels (unlike Stone-Geary).
- $\beta_s (U^k)^{(\varepsilon(s)-\eta)} (P^k_s)^{1-\eta}$ is log-supermodular in s and U^k. From Lemma 1, for fixed prices, a higher E^k (and U^k) shifts the expenditure share towards higher-indexed.
Rest of the model: Deliberately kept the same with Krugman (1980).

Iceberg Trade Costs: Only $1/\tau < 1$ fraction of exports survives shipping, reducing the export revenue to its fraction, $\rho \equiv (\tau)^{-\sigma} < 1$

CES Demand for each good: \(D_s(\nu) = A_j^s (p_j^s(\nu))^{-\sigma}, \nu \in \Omega^j_s \), where

\[
A_j^s \equiv b_j^s + \rho b_k^j \ (k \neq j): \ \text{Aggregate demand shifter for the producers in } j \text{ in } s
\]

\[
b_k^s \equiv \beta_s^j (E^k)\eta (U^k)^{\varepsilon \nu(s) - \eta} N^k(P_k^s)^{-\eta}; \ k's \ demand \ shifter \ for \ sector \ s
\]

Standard CES demand curve, but \(U^k \) affects \(b_k^s \) and hence \(A_j^s \) differently across \(s \).

Constant Mark-Up: \(\psi_s \) units of labor to produce one unit of each variety in sector-\(s \)

\[
p_j^s(\nu) = \frac{w_j^s \psi_s}{1 - 1/\sigma} \equiv p_j^s \ \text{for } \nu \in \Omega^j_s
\]

Free Entry (Zero-Profit) Condition: \(\phi_s \) units of labor per variety to set up in sector-\(s \).

- **Labor Market Equilibrium:** \(\int_0^1 f_j^s ds = 1 \), \(f_j^s \): sectoral employment share (and value-added) and, if appropriately normalized, in the measure of firms (and varieties).
Autarky Equilibrium \((\rho = 0)\):

Define an increasing function, \(u(\bullet)\), implicitly by
\[
\left(x \right)^{(1-\eta)/\sigma-\eta} = \frac{1}{0} \left(\beta_s \left(u(x) \right)^{(\varepsilon (s)-\eta)/\sigma-\eta} \right)^{\sigma-1/\sigma-\eta} \, ds.
\]

Standard-of-Living: \(U_0^k = u(x_0^k)\), where \(x_0^k \equiv (h^k)^\sigma N^k = (h^k)^{\sigma-1} L^k\)

- \(U_0^k = u(x_0^k)\) increasing in \(h^k\) and \(N^k\).

Aggregate increasing returns
- Even if \(h^1 > h^2\), \(U_0^1 < U_0^2\) holds for \(L^1 / L^2 < (h^1 / h^2)^{1-\sigma} < 1\).

The smaller country is poorer in spite of higher per capita labor endowment.

Market Size Distributions:
\[
m_s^k = \frac{\left(\beta_s \left(u(x_0^k) \right)^{(\varepsilon (s)-\eta)/\sigma-\eta} \right)^{\sigma-1/\sigma-\eta}}{\int_0^1 \left(\beta_t \left(u(x_0^k) \right)^{(\varepsilon (t)-\eta)/\sigma-\eta} \right)^{\sigma-1/\sigma-\eta} \, dt}
\]

- Labor is distributed proportionately with market sizes; \(f_s^k = m_s^k\)
- \(\left(\beta_s \left(u(x_0^k) \right)^{(\varepsilon (s)-\eta)/\sigma-\eta} \right)^{\sigma-1/\sigma-\eta}\) is log-supermodular in \(s\) and \(x_0^k\).

From **Lemma 1**, With a higher \(x_0^k \equiv (h^k)^\sigma N^k\), the households are happier and spend relatively more on higher-indexed sectors *in equilibrium*.
\[
\frac{\partial \log(m_s^k / m_s^{k'})}{\partial \log(u(x_0^k))} = \left(\frac{\sigma - 1}{\sigma - \eta}\right) \frac{\partial \log(m_s^k / m_s^{k'})}{\partial \log(U^k)} > (<) \frac{\partial \log(m_s^k / m_s^{k'})}{\partial \log(U^k)}, \text{ iff } \eta > (<) 1.
\]

Given price indices, \(U \uparrow \) shifts the expenditure toward the higher-indexed. In equilibrium, this causes entries (exits) and hence more (less) varieties in the higher (lower)-indexed sectors, reducing the effective relative prices of higher-indexed composites of goods, which amplifies (moderates) the shift if \(\eta > (<) 1. \)

Lemma 2ii: \(\frac{d \log u(\lambda x)}{d \log \lambda} = \frac{\lambda xu'(\lambda x)}{u(\lambda x)} = \zeta(\lambda x) \) is increasing (decreasing) in \(x \), if \(\eta > (<) 1. \)

Hence,

i) If \(\eta < 1 \), gains from a percentage increase in \(x \) is lower at a higher \(x \).

ii) If \(\eta > 1 \), gains from a percentage increase in \(x \) is higher at a higher \(x \).
Trade Equilibrium and Patterns of Trade
Figure 1: (Factor) Terms of Trade Determination

\[\frac{L^1}{L^2} = \Lambda(\omega; \rho) \equiv (\omega)^{2\sigma-1} \frac{1 - \rho(\omega)^{-\sigma}}{1 - \rho(\omega)^{-\sigma}}, \text{ where } \omega \equiv \frac{w^1}{w^2}. \]

- The factor price lower in the smaller economy (Aggregate increasing returns)
- Globalization (τ ↓ or ρ ↑) reduces the smaller country’s disadvantage and hence the factor price differences.
Standard-of-Living: summarized by a single index, x^k_ρ

$$U^1_\rho = u(x^1_\rho), \text{ where } x^1_\rho \equiv \frac{(1 - \rho^2)x^1_0}{1 - \rho(\omega)^{-\sigma}} > x^1_0; \quad U^2_\rho = u(x^2_\rho), \text{ where } x^2_\rho \equiv \frac{(1 - \rho^2)x^2_0}{1 - \rho(\omega)^{\sigma}} > x^2_0$$

$u(x)$, defined as before. **Gains from trade**

Market Size Distributions:

$$m^k_s = \frac{\left(\beta_s \left(\frac{u(x^k_\rho)}{x^k_\rho} \right)^{\frac{\epsilon(s)-\eta}{\sigma-\eta}} \right)^{\frac{\sigma-1}{\sigma-\eta}}}{\left(x^k_\rho \right)^{\frac{1-\eta}{\sigma-\eta}}} = \frac{\left(\beta_s \left(\frac{u(x^k_\rho)}{x^k_\rho} \right)^{\frac{\epsilon(s)-\eta}{\sigma-\eta}} \right)^{\frac{\sigma-1}{\sigma-\eta}}}{\int_0^1 \left(\beta_s \left(\frac{u(x^k_\rho)}{x^k_\rho} \right)^{\frac{\epsilon(s)-\eta}{\sigma-\eta}} \right)^{\frac{\sigma-1}{\sigma-\eta}} dt}$$

$$\left(\beta_s \left(\frac{u(x^k_\rho)}{x^k_\rho} \right)^{\frac{\epsilon(s)-\eta}{\sigma-\eta}} \right)^{\frac{\sigma-1}{\sigma-\eta}}$$ is log-supermodular in s & x^k_ρ. From **Lemma 1**, if $u(x^1_\rho) < u(x^2_\rho)$

i) **MLR:**

$$\frac{m^1_s}{m^2_s} = \left(\frac{x^1_\rho}{x^2_\rho} \right)^{\frac{\eta-1}{\sigma-\eta}} \left(\frac{u(x^1_\rho)}{u(x^2_\rho)} \right)^{\frac{\epsilon(s)-\eta}{\sigma-\eta}}$$ is strictly decreasing in s:

ii) **FSD:**

$$\int_0^1 m^1_t dt > \int_0^1 m^2_t dt$$

The Rich (Poor) has relatively larger domestic markets in higher(lower)-indexed sectors.
Employment Distributions: \[f_s^1 = \frac{m_s^1 - \rho(\omega)^{-\sigma} m_s^2}{1 - \rho(\omega)^{-\sigma}}; \quad f_s^2 = \frac{m_s^2 - \rho(\omega)^{\sigma} m_s^1}{1 - \rho(\omega)^{\sigma}} \]

\[\frac{f_s^1}{f_s^2} > \frac{m_s^1}{m_s^2} > 1; \quad \frac{f_s^1}{f_s^2} = \frac{m_s^1}{m_s^2} = 1; \quad \frac{f_s^1}{f_s^2} < \frac{m_s^1}{m_s^2} < 1. \]

Disproportionately large shares of labor are employed in the sectors, in which the country spend larger shares of its expenditure relatively to the ROW.

Sectoral Trade Balances: From \[NX_s^1 = -NX_s^2 \equiv V_s^1 \rho b_s^2 (w^1)^{1-\sigma} - V_s^2 \rho b_s^1 (w^2)^{1-\sigma}, \]

HME; \[NX_s^1 = -NX_s^2 = \frac{\rho w_s^2 L_s^2}{(\omega)^{-\sigma} - \rho} (m_s^1 - m_s^2) = \frac{\rho w_s^1 L_s^1}{(\omega)^{\sigma} - \rho} (m_s^1 - m_s^2) \propto (m_s^1 - m_s^2). \]

Due to the cross-country difference in _the domestic market size distribution across sectors, not in the domestic market size in each sector_

\[U_{\rho}^1 = u(x_{\rho}^1) < U_{\rho}^2 = u(x_{\rho}^2) \rightarrow m_s^1 / m_s^2 \text{ is strictly decreasing in } s \rightarrow \]

a unique cutoff sector, \(s_c \in (0,1) \), such that

\[NX_s^1 = -NX_s^2 > 0 \text{ for } s < s_c; \quad NX_s^1 = -NX_s^2 < 0 \text{ for } s > s_c. \]
Figure 2: Home Market Effect and Patterns of Sectoral Trade Balances:

For \(U_{\rho}^1 = u(x_{\rho}^1) < U_{\rho}^2 = u(x_{\rho}^2) \)

The Rich (Poor) runs surpluses in higher (lower) income elastic sectors.
Ranking the Countries: Trade-off between human capital & country size:

Smaller country with higher \(h \) can be poorer at a low \(\rho \) but is richer at high \(\rho \)

Figure 3:

Red Curve: \(U_0^1 < U_0^2 \) below, \(U_0^1 > U_0^2 \) above

Black Curve: \(U_\rho^1 < U_\rho^2 \) below, \(U_\rho^1 > U_\rho^2 \) above

At \(\rho = 0 \), Black curve coincides with Red curve.
A higher \(\rho \) rotates Black curve clockwise,
At \(\rho = 1 \), it becomes vertical at \(h^1 / h^2 = 1 \)
Comparative Statics
Uniform Productivity Improvement: \((\partial \log(h^1) = \partial \log(h^2) \equiv \partial \log(h) > 0)\)

\(h^1 / h^2,\ L^1 / L^2,\ \omega = w^1 / w^2,\ x_0^1 / x_0^2,\ x_\rho^1 / x_\rho^2\) all unchanged, with \(\partial \log(x_\rho^1) = \partial \log(x_\rho^2) = \sigma \partial \log(h) > 0\).

- Both \(U_\rho^1 = u(x_\rho^1)\) and \(U_\rho^2 = u(x_\rho^2)\) go up. Since \((\beta_s (u(x_\rho^k))^{(e(s) - \eta)} \frac{\sigma - 1}{\sigma - \eta})\) is log-supermodular in \(s\) and \(x_\rho^k\), from Lemma 1, the market size distributions shift toward higher-indexed sectors in both countries, in the sense of MLR and FSD.

- \(\text{sgn} \frac{\partial \log(U_\rho^1 / U_\rho^2)}{\partial \log(h)} = \text{sgn}(\eta - 1) \text{sgn}(x_\rho^1 - x_\rho^2)\), from Lemma 2.

Welfare gaps widen (narrow) if sectors produce substitutes (complements).

- \(\text{sgn} \frac{\partial \log(m_s^1 / m_s^2)}{\partial \log(h)} = \text{sgn}(x_\rho^2 - x_\rho^1) \rightarrow s_c\) goes up.
Figure 4: Product Cycles Due to Uniform Productivity Improvement

- As the world becomes more productive, the spending shifts towards the higher-indexed.
- The relative weights of the sectors in which the Rich runs surpluses go up.
- To keep the overall trade account between the two countries in balance, the Rich’s trade account in each sector must deteriorate.
- The Rich switches from being the net-exporter to the net-importer in the middle.
Globalization, a higher \(\rho = (\tau)^{1-\sigma} \), when two countries are equal in size: \(L^1 = L^2 = L \)

\[
\omega = 1 \rightarrow x^k_\rho = (1 + \rho)x^k_0 = (1 + \rho)(h^k)^\sigma N^k = (1 + \rho)(h^k)^{\sigma-1} L
\]

The relative factor price fixed at \(\omega = 1 \) and independent of \(\rho \). No ToT change

- The country with higher per capita labor endowment is richer.
- A higher \(\rho \) is isomorphic to a uniform increase in \(h^k \).

Figure 4: Product Cycles Due to Globalization
Globalization, a higher $\rho = (\tau)^{1-\sigma}$, when two countries are unequal in size:

Globalization causes the ToT to change in favor of the smaller country

Leapfrogging and Reversal of the Patterns of Trade

For $h^1 / h^2 > 1$ and below the Red curve,

$U^1_\rho < U^2_\rho$ at a low ρ,
Closer to autarky, Country 1 is poorer due to its disadvantage of being smaller, running surpluses in lower-indexed.

$U^1_\rho > U^2_\rho$ at a high ρ,
Globalization leads to a factor price convergence, which makes the smaller but smarter 1 richer, running surpluses in higher-indexed.

Figure 5
HME with Exogenous Taste Variations: A Comparison
An Extension of Krugman (1980):

Keep the same structure, except the upper-level preferences are *homothetic* CES,

\[
\tilde{U}^k \equiv \left[\int_0^1 (\beta_s^k)^{\frac{1}{\eta}} \left(\tilde{C}_s^k \right)^{\frac{1}{\eta}} ds \right]^\eta
\]

normalized to \(\int_0^1 (\beta_s^k)^{\frac{\sigma-1}{\sigma-\eta}} ds = 1 \)

with *exogenously different* weights \(\beta_s^k \), and \(\beta_s^1 / \beta_s^2 \) strictly decreasing in \(s \).

Then,

Standard-of-living: \(U^k_{\rho} = (x_{\rho}^k)^{\frac{1}{\sigma-1}} \)

Market Size Distribution: \(m_s^k = (\beta_s^k)^{\frac{\sigma-1}{\sigma-\eta}} \) \(\Rightarrow m_s^1 / m_s^2 = (\beta_s^1 / \beta_s^2)^{\frac{\sigma-1}{\sigma-\eta}} \)

strictly decreasing in \(s \).

Otherwise, the same
Notes:

- m_s^1 / m_s^2 depends solely on the exogenous preferences parameters. Independent of ρ and h^k. Effects on s_c in the previous model are entirely due to nonhomotheticity.
- Uniform productivity growth cannot change the welfare gap.
- Leapfrogging can occur; Reversal of Patterns of Trade cannot.
- Krugman (1980), a special case with $\eta = 1$, $L^1 = L^2$, and $\beta_s^1 / \beta_s^2 = \gamma > 1$ for $0 \leq s < 1/2$; $\beta_s^1 / \beta_s^2 = 1/\gamma < 1$ for $1/2 < s \leq 1$.
Concluding Remarks
• Empirically, sectors differ widely in their income elasticity; rich (poor) countries tend to be an exporter in higher (lower) income elastic sectors.

• In our model, the rich (poor) have CA in high (low) income elastic sectors due to *Nonhomothetic Preferences & Home Market Effect*
 ✓ Rich’s domestic market size distribution more skewed towards high income elastic.
 ✓ With scale economies and positive but small trade costs, such cross-country differences in the domestic market size distribution become a source of CA.

• **Comparative Statics:** *Due to endogenous demand compositions,*
 ✓ **Product cycles:** The Rich switches from an exporter to an importer in the middle
 ✓ **Welfare gaps to widen (narrow),** if sectors produce substitutes (complements)
 ✓ **Leapfrogging and reversal of the patterns of trade:** The smaller but smarter country is poorer is a less globalized world, but becomes richer in a more globalized world.

• No previous studies allow for such a variety of comparative statics, because GE models with *imperfect competition, scale economies, positive but finite trade costs* would be intractable with Stone-Geary, CRIE or other explicitly additively separable nonhomothetic preferences, which are too inflexible and too restrictive.

• **Implicitly additively separable nonhomothetic CES** help us overcome this difficulty