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Abstract 

Can targeting information to network-central farmers induce more adoption of a new 
agricultural technology? By combining social network data and a field experiment in 
200 villages in Malawi, we find that targeting central farmers is important to spur the 
diffusion process. We also provide evidence of one explanation for why centrality 
matters: a diffusion process governed by complex contagion.  Our results are 
consistent with a model in which many farmers need to learn from multiple people 
before they adopt themselves. This means that without proper targeting of 
information, the diffusion process can stall and technology adoption remains 
perpetually low.  
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1 Introduction 

Technology diffusion is critical for growth and development (Alvarez et al. 2013, Perla and Tonetti 

2014). Information frictions are potential constraints to technology adoption, and social relationships 

can serve as important vectors through which individuals learn about, and are then convinced to adopt, 

new technologies.1  Adoption of apparently productive new technologies has often been frustratingly 

slow (Ryan and Gross 1943, Munshi 2007, Jack 2011, Qiao 2015).  This generates a policy priority: 

how can policy-makers effectively use social relationships to promote technological diffusion? In this 

paper, we implement a field experiment in which we choose entry points of information (seeds) into 

a social network and introduce a productive new agricultural technology via those seeds across 200 

villages in Malawi.  

 A rich empirical literature has documented faster diffusion when technologies were seeded 

with people who are central in the network (Banerjee et al. 2013 in the context of microfinance in 

India; Banerjee et al. 2019 in the context of immunization in India; Kim et al. 2015 looking at health 

behaviors in Honduras). Targeting information to central agents in a network can even work better 

than broadcasting information widely (Banerjee et al. 2020).  

      These empirical patterns that establish the importance of centrality may be surprising given recent 

theoretical discussion by Akbarpour, Malladi and Saberi (2020) (henceforth AMS) which shows that 

in many canonical diffusion models, adding a few additional seeds leads to more diffusion than 

targeting central people to serve as seeds. The class of models AMS consider require three conditions: 

first, agents must adopt a new behavior after a single exposure to someone else who has adopted in 

the network. This is called ‘simple contagion’ and is the base for workhorse models like the 

Susceptible-Infected-Recovered (SIR) model. Second, the time period for adoption is sufficiently long; 

                                                            
1 Large literatures in economics (Duflo and Saez 2003, Munshi 2008, Magruder 2010, Beaman 2012), finance (Bursztyn et 
al. 2013), sociology (Rogers 1962), and medicine and public health (Coleman et al. 1957, Flodgren et al. 2007, Oster and 
Thornton 2012) show that information and behaviors spread through inter-personal ties.  
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and finally, social interaction within the network is frequent. The intuition for the AMS result is 

straightforward: whether central or not, people are connected to their local network, so given enough 

time and enough talk, messages will spread through their connections and quickly reach the well-

connected people at the network’s center. Adding a few more seeds at random increases the 

probability that at least one of them will be close to the well-connected center to begin with, making 

targeting relatively unimportant.  However, if any of the three criteria fail, then targeting may be 

necessary to prevent information frictions from curbing widespread technological diffusion.  

 Our paper helps bridge the gap between these theoretical and empirical results.  We 

implemented a randomized controlled trial where we used different variants of the threshold model 

of diffusion (e.g. Granovetter 1978, Centola and Macy 2007, Acemoglu et al. 2011) to choose seeds. 

This creates a unifying framework which both generates variation in seed centrality across treatment 

arms and also helps us explore why targeting may matter for technology diffusion.  

Our experiment takes place in an important real-world context: agricultural extension services 

in developing countries. Agricultural productivity growth in Africa has stalled (World Bank 2008), in 

part because of a slow adoption rate of new technologies. Agricultural extension is the key policy tool 

governments use to promote technology adoption (Anderson and Feder 2007), and it often relies on 

social learning.2 We partnered with the Ministry of Agriculture in Malawi to run an experiment that 

could enhance the effectiveness of its extension services by partnering with two “seed” farmers in 

each study village who could induce widespread social learning. The experiment was implemented in 

200 villages, with 50 villages in each of the four treatment groups. The specific technology promoted, 

                                                            
2 A large literature has established that social learning about agricultural practices influences the uptake of new technologies 
among farmers (Griliches 1957, Foster and Rosenzweig 1995, Munshi 2004, Bandiera and Rasul 2006, Conley and Udry 
2010, Burlig and Stephens 2019, Islam et al. 2019). 
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‘pit planting’, has the potential to significantly improve maize yields in arid areas of rural Africa.3  It is 

a practice that was largely unknown in Malawi, and learning is therefore crucial for the diffusion of 

this technology.   

In the Benchmark treatment, extension agents chose the seeds as they normally would (status 

quo or picking by experts). In the remaining treatment groups, we strategically chose the seeds using 

detailed social network data we collected in every village. We ensured that selected seeds in different 

treatments would inhabit different parts of the network by exploiting variations on the threshold 

model of diffusion to suggest pairings of seeds that may be more or less effective, given different 

underlying diffusion processes. In the second treatment group, we selected seeds who would (in 

theoretical simulations) optimize diffusion over a 4-year period, if the diffusion process is 

characterized by a complex contagion. Complex contagion is a diffusion process in which technology 

only diffuses when individuals are connected to at least two knowledgeable farmers. The pair of seeds 

chosen by this complex contagion treatment are both central in the network. Seed selection in the 

third treatment is the result of simulations of the simple contagion variant of the threshold model, 

where farmers only need to know one knowledgeable farmer. In simple diffusion, a single central seed 

will diffuse to the dense part of the network so that a second seed is best used to diffuse to the more 

distant periphery. As a result, one of the seeds is network-central while the second person is typically 

more peripheral.  This variant of the model is similar to those considered in the AMS framework. In 

the final treatment group, we used geography to proxy for social network data, to create a cheaper, 

“scalable” approach coupled with the complex contagion model. These seeds are typically low 

centrality, but are close to each other in the network.   

                                                            
3 It has been shown to increase productivity by 40-100% in tests conducted under controlled conditions (Haggblade and 
Tembo 2003); in large-sample field tests conducted under realistic “as implemented by government” conditions 
(BenYishay and Mobarak 2019), and using experimental variation among villagers in the present study.   
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 During the 3-year period of the experiment, pit planting adoption grew from 0% to about 

11% in the villages with two highly central seeds. This rate of increase in adoption is comparable to 

the spread of some very profitable new agricultural technologies (e.g. Munshi 2007). Ryan and Gross 

(1943) show that it took 10 years for hybrid seed corn to be adopted in Iowa in the 1930s. The 

adoption rate is 3 percentage points lower in Benchmark villages in years 2 and 3, though only the 

year 2 differences are statistically significant.  

 We also test whether the initial advantage of central seeding will likely dissipate over time by 

examining another important metric: whether any farmers in the village other than the seeds adopt. If 

there is no diffusion within the first three years, it is unlikely that conversation and experience over 

longer time horizons will inspire broad technology adoption. We observe a critical failure of expert-

based seeding.  There is no diffusion of pit planting in 45% of the Benchmark villages after 3 years. 

In villages with two highly central seeds, there was a 56% greater likelihood (p<0.01) that at least one 

person other than the seeds adopts the technology in the village, relative to the Benchmark.  The 

results clearly indicate that targeting central seeds was necessary to generate adoption of pit planting 

in Malawi.  

 We then turn to understanding why central targeting was so important in this context. One 

potential explanation is that the variant of the threshold model that we used to select seeds captures 

the underlying diffusion process.  AMS and Jackson and Storms (2018) demonstrate that targeting on 

the basis of centrality is more important when there is complex contagion. We show that different 

thresholds for technology adoption are naturally micro-founded through a naive Bayesian learning 

model, as we discuss in section 5.1.  We anticipate that learning about a new agricultural technology 

in a developing country is precisely a context in which agents may have a high threshold.  This fact 

would have clear policy relevance: if farmers need to learn from more than one informed connection 

before they themselves adopt, this would generate a very slow and in many cases permanently stalled 
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adoption pattern, just as we observe in Benchmark villages. Overcoming this problem would 

necessitate targeting central individuals, as in Banerjee et al (2019). 

The diffusion we observe demonstrates several empirical regularities consistent with complex 

contagion. Though, we note that it is difficult to differentiate complex contagion from other reasons 

that targeting multiple central farmers may improve technology adoption. We observe three patterns 

suggested by complex contagion. First, a key insight from the threshold model is that poor targeting 

could lead to a complete failure of adoption within the village, as we see in our data. Second, consistent 

with our theory, we show that treatment effects are largest (i) in villages where there is more to learn, 

because baseline knowledge was lowest, and (ii) among farmers whose land is most suited to pit 

planting. Third, we use our farmer-level data to provide direct evidence in support of complex 

contagion. We leverage the random treatment assignment to identify that farmers who are connected 

to two seeds are more likely to learn about and adopt pit planting than farmers connected to only one 

seed, holding network position constant.  

The targeting method used in this paper is a proof of concept, relying on an expensive method 

of collecting network data. As such, it is not intended to be practical or directly scalable. The next step 

is to use cheaper ways to identify highly central individuals. One could use gossips (Banerjee et al. 

2019); cell phone data (Bjorkegren 2018, Blumenstock et al 2019) or other administrative data (Bennett 

and Bergman 2020); or aggregated relational data from a sample of individuals (Breza et al. 2020) to 

achieve this.4  

                                                            
4 In our paper we did one lower cost method, the geography-based targeting strategy. It generated some gains in adoption 
relative to the benchmark. However, physical proximity does not appear to be a good proxy for social connections in this 
context. A variety of other papers test the ability of local institutions, such as nominations or focus groups,  to identify 
useful partners: Kremer et al. (2011) identify and recruit ‘ambassadors’ to promote water chlorination in rural Kenya, Miller 
and Mobarak (2015) first market improved cookstoves to ‘opinion leaders’ in Bangladeshi villages before marketing to 
others, and BenYishay and Mobarak (2018) incentivize ‘lead farmers’ and ‘peer farmers’ to partner with agricultural 
extension officers in Malawi. We also develop an intuitive algorithm to identify central farmers that can be implemented 
with a small number of interviews, and simulations on our data show that this method would generate large gains in 
technology adoption.       
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The rest of the paper is organized as follows.   We start with the experimental setting and 

design, along with details on the implementation of the intervention. Section 3 describes the data. 

Section 4 presents the average treatment effects on pit planting adoption. In section 5, we propose a 

theoretical model to explain the results, and provide supplemental evidence of the proposed 

mechanism. Section 6 discusses cost-effective and policy-relevant alternatives to the data-intensive 

network-theory based procedures we used in this paper, and discuss other options available in the 

literature.  Section 7 concludes. 

2 Field experiment 

2.1. Setting 

Our experiment on technology diffusion within an agricultural extension system takes place in 

200 villages randomly sampled from 3 Malawian districts with largely semi-arid climates (Machinga, 

Mwanza, and Nkhotakota).  Approximately 80% of Malawi’s population lives in rural areas (World 

Bank 2011), and agricultural production in these areas is dominated by maize:  97% of farmers grow 

maize, and over half of households grow no other crop (Lea and Hanmer 2009).  Technology adoption 

and productivity in maize is thus closely tied to welfare. 

The existing agricultural extension system in Malawi relies on Agricultural Extension 

Development Officers, henceforth extension agents, who are employed by the Ministry of Agriculture 

and Food Security (MoAFS).  Many extension agents are responsible for upwards of 30-50 villages, 

which implies that direct contact with villagers is rare.  According to the 2006/2007 Malawi National 

Agricultural and Livestock Census, only 18% of farmers participate in any type of extension activity.  

Extension agents cope with these staff shortages by relying on a small number of lead farmers, who 

are trained, but not incentivized, to disseminate knowledge via social learning.  Against this backdrop 

of staff shortages, maximizing the reach of social learning in the diffusion process may be a cost-

effective way to improve the effectiveness of extension.  
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2.2. Experimental design 

We partner with the Malawi Ministry of Agriculture to select the appropriate technologies to 

promote and engage extension staff to train exactly two seed farmers in each study village. Our 

experimental variation only changes how those seed farmers are chosen and holds all other aspects of 

the training constant.  

The experiment has four treatment arms. The Benchmark treatment is the status-quo 

benchmark, where extension agents were asked to select two seed farmers as they normally would in 

settings outside the experiment.  In the remaining three treatment groups, we strategically chose the 

seeds to ensure that partner farmers were located in different parts of the network. 

We identified farmers with different centrality characteristics in each of the study villages by 

choosing partners who would be the “theoretically optimal” choices as seeds under alternative 

formulations of the threshold model (e.g. Granovetter 1978, Centola and Macy 2007, Acemoglu et al. 

2011).  The threshold model of diffusion postulates that individuals adopt a behavior only if they are 

connected to at least a threshold number of adopters (𝜆𝜆).5  

The three treatment arms in which we selected the seeds using the threshold model are as 

follows:6  

2. Complex Contagion: this treatment identified seeds by maximizing simulated diffusion when 

𝐸𝐸[𝜆𝜆] ≈ 2 using network relationship data. The two selected seeds are usually both very central 

in the network.  

                                                            
5 In section 5.1, we will present a micro-foundation which demonstrates how a learning model can generate thresholds. 
In this version of the model, the threshold is based on the number of people informed about the technology, as opposed 
to the number of adopters directly.  
 
6 In other words, we randomly assign the “threshold model formulations” to different villages. Randomization was 
stratified by district, and implemented using a re-randomization procedure which checked balance on the following 
covariates: percent of village using compost at baseline; percent village using fertilizer at baseline, and percent of village 
using pit planting at baseline. Randomization was implemented in each district separately. 
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3. Simple Contagion: this treatment identified seeds by maximizing simulated diffusion when 

𝐸𝐸[𝜆𝜆] ≈ 1 using network relationship data. In most networks, this identifies one seed who is 

central and one who is not.  

4. Geo Treatment: this treatment typically identifies two seeds who are near each other in the 

network, but are not be central. This resulted from maximizing simulated diffusion when 𝐸𝐸[𝜆𝜆] ≈

2 using network data constructed using only geographic proximity.   

The intuition for why the different formulations of the threshold model generates these 

different targeting strategies is as follows. When many farmers have a threshold for adoption above 1, 

what this literature calls complex contagion, targeting becomes essential because one needs to seed 

information in part of the network that is dense and where the seeds have connections in common. 

In this model, identifying two seeds who are both central to the network is important for diffusion.7  

In contrast, when the threshold is generally equal to one, what the literature calls simple contagion, 

identifying a single seed in the central part of the network is sufficient to achieve widespread diffusion.  

In this case, a second seed is optimally located in a more distant part of the network, so that both the 

center and the periphery can achieve quick take-up.  Identifying the optimal seeds in each of these 

cases requires rich network data, described in section 3.  We also implemented a fourth treatment, 

“Geo”, which substitutes household locations for the network graph under the assumption that nearby 

households are likely to be connected.  

In Online Appendix A.1, we discuss in detail the algorithm used to choose the seeds. Note 

that in all villages, we can construct which farmers would have been chosen as Simple diffusion seeds, 

Complex diffusion seeds or Geo seeds, irrespective of the village’s assigned treatment condition. We 

                                                            
7 As we will see later, this feature has significant ramifications for targeting: while randomly selected seeds are quite likely 
to be relatively close to the center of any network, groups of randomly selected seeds remain unlikely to share ties in 
common.   
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call the counterfactual seed farmers “shadow” farmers. We also use the term ‘partner’ to refer to an 

individual who would be a Simple, Complex or Geo seed irrespective of whether they are trained and 

therefore become a seed.8 We do not observe shadow farmers for the Benchmark treatment.9 

Table 1 demonstrates the centrality of the two selected partner farmers in each treatment arm. 

The most central of the two partners (Rank 1 Partners) – as measured by eigenvector centrality10 in 

column (1) – is similarly central in both the Complex and Simple diffusion, but less central in Geo. 

However, the second partner highlights the key difference in the treatments. The second partner in 

the Complex treatment is much more central than the second partner in the Simple diffusion 

treatment. In Geo, neither partner is very central, but they are similarly central – highlighting that 

geography in this context was not a good proxy for social connectedness but that the targeting strategy 

was ex ante similar to the Complex diffusion strategy. If we use an alternative measure of social 

connectedness, degree (the number of contacts a person has) we see a similar pattern. Both Complex 

partners have many connections. The most connected partner in the Simple diffusion treatment is 

similar in the number of contacts to the most connected partner in Complex diffusion, but the second 

partner is much less connected.  

The Benchmark seeds – which were chosen by extension officers using their own criteria – 

show an intermediate level of centrality as measured by both eigenvector centrality and degree. 

Overall, this arm of the experiment constitutes a meaningful and challenging test for the network-

based targeting treatments since the extension agents were able to use valuable information not 

                                                            
8 As an example, a Simple partner is a seed if the village is randomized to be a Simple village or a shadow farmer if the 
village is Complex, Geo or Benchmark. 

9 We did not ask extension workers to name the seed farmers they would choose and then ask them to train other seeds, 
since we thought it would lead to high non-compliance.  

10 Eigenvector Centrality is weighted sum of connections, where each connection’s weight is determined by its own 
eigenvector centrality (like Google page-rank). 
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available to researchers, such as the individual’s motivation to take on the role. The Benchmark 

treatment is similar to what the Malawi Ministry of Agriculture and other policymakers would normally 

do, so this is the most relevant counterfactual.11 

2.3. Agricultural technologies 

 In this section, we describe the two technologies introduced to seed farmers and in Online 

Appendix A.2 we analyze data on crop yields to give further insights into the benefits of the 

technologies. 

Pit planting 

Maize farmers in Malawi traditionally plant seeds in either flat land or after preparing ridges. 

Ridging has been shown to deplete soil fertility and decrease agricultural productivity over time 

(Derpsch 2003, 2004).  In contrast, pit planting involves planting seeds in a shallow pit in the ground, 

in order to retain greater moisture for the plant in an arid environment, while minimizing soil 

disturbance.    In our sample, pit planting was not widely practiced at baseline: 9 out of 4,004 farmers 

(0.22%) planted with pits the year prior to treatment. The technique is practiced more widely in the 

Sahel, and has been shown to greatly enhance maize yields both in controlled trials and in field settings 

in East Africa, with estimated gains of 50-113% in yields (Haggblade and Tembo 2003, BenYishay 

and Mobarak 2019). In Online Appendix A.2, we present evidence that pit planting increased yields 

by 44% (a treatment on the treated estimate) for our trained seed farmers.  The enhanced productivity 

is thought to derive from three mechanisms: (1) reduced tillage of topsoil, which allows nutrients to 

remain fixed in the soil rather than eroding, (2) concentration of water around the plants, which aids 

in plant growth during poor rainfall conditions, and (3) improved fertilizer retention.   

                                                            
11 Normally the Ministry only trains one “Lead Farmer” per village, not two. In most villages, the Lead Farmer will already 
be established, except for villages in which there hasn’t been an extension officer assigned to the village for a long time. 
The extension agents would have had to select a second seed farmer in Benchmark villages due to the experiment. 
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 Practicing pit planting may involve some additional costs.  First, hand weeding or herbicide 

requirements may increase because less land is tilled, though focus groups undertaken by the authors 

suggest that weeding demands were actually reduced substantially relative to ridging. Second, digging 

pits is a labor-intensive task with large up-front costs. However, land preparation becomes easier over 

time, since pits should be excavated in the same places each year, and estimates suggest that land 

preparation time falls by 50% within 5 years (Haggblade and Tembo 2003). BenYishay and Mobarak 

(2019) find that in Malawi, labor time decreases while the change in other input costs are negligible in 

comparison.  Labor costs are minimized when pit planting is used on flat land. 

Crop residue management 

Seed farmers were also trained in crop residue management (CRM), a set of farming practices 

which largely focus on retention of crop residues in fields for use as mulch. Alternative practices 

commonly used by farmers include burning the crop residues in the fields and removing them for use 

as livestock feed and compost. The trainings emphasized the value of retaining crop residues as mulch 

to protect topsoil, reduce erosion, limit weed growth, and improve soil nutrient content and water 

retention.  There is little experimental evidence on the impacts of CRM on soil fertility, water retention, 

and yields in similar settings.   

2.4. Seed farmers: descriptive statistics, training, and take up 

Extension agents chose the seed farmers in the Benchmark villages, and the researchers chose 

the seeds in the remaining treatment villages. We already discussed in Table 1 how central the seeds 

are in different treatments. Online Appendix Table A2 provides some summary statistics describing 

how the chosen seeds differ in terms of farm size and a wealth index.12  The most striking pattern is 

                                                            
12  Table 1 is not demonstrating balance in the randomization of villages across treatment arms. Note that there are only 
100 Benchmark farmers since we never observe shadow Benchmark farmers. 
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that the farmers selected as seeds under the geographic treatment are significantly poorer than other 

seeds. This is because many households live on one of their plots in Malawi. Households who are 

geographically close to lots of people will mechanically have less land, and these households tend to 

be poorer overall.  

We observe that there are more households connected to both seeds in Complex villages than 

in other treatment arms. 35% of our random household sample has a connection to a Simple 

seedpartner, and 6% are connected to both Simple partners. By contrast, 18% of households are 

connected to two Complex partners. For the Geo-based partner, 10% of households are connected 

to two Geo partners. Online Appendix Table A3 displays the distribution of how far – in social 

distance – households are from the partner farmers in the different treatment arms.  

In addition to the names of the two seed farmers, we provided extension agents with 

replacement names in all non-Benchmark villages in case either of the chosen seeds refused to 

participate in the training.13 Refusal was uncommon: extension agents trained 93% of the selected 

seeds or their spouses. We conduct intent-to-treat analysis using the original seed assignment.  

The seed farmers received a small in-kind gift (valued at US$8) if they themselves adopted pit 

planting in the first year. There was no gift or incentive provided on the basis of others’ adoption in 

the village or the seeds’ own adoption in subsequent years. Online Appendix Table A4 demonstrates 

that the training (and incentive) was effective at inducing adoption, but not perfectly. Seed farmers, 

relative to the shadow farmers, are more likely to know how to do pit planting and more likely to 

adopt pit planting during the first agricultural year.14  30% of seed farmers adopted pit planting during 

                                                            
13 As the technologies themselves were new, the extension agents were themselves trained by staff from the Ministry’s 
Department of Land Conservation.   

14 Seed farmers are also more likely to adopt crop residue management (CRM) in year 1. However, by year 2 there is no 
longer a meaningful gap in the CRM adoption rate, and in fact the adoption rate among shadow farmers is declining over 
time. Given this pattern, and the fact that CRM was not a “new” technology in this area, we focus our analysis on the 
adoption of pit planting. We include CRM adoption results in Online Appendix Table A6.  
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year 1, compared to 5% of shadow farmers (p<.01). Moreover, the adoption rate among seed farmers 

is the same across all treatment arms: Complex, Simple, Geo, and Benchmark. 

Knowledge and adoption rates of pit planting increase among the shadow farmers over time. 

Knowledge of pit planting among the seeds is declining slightly between year 1 and years 2 and 3, but 

there remains a significant knowledge gap between seed and shadow farmers even in year 3. Adoption 

remains more or less constant among seed farmers. Online Appendix A.3 and the notes to Online 

Appendix Table A4 provide the details on the econometric specification used for these results.  

3 Data 
After training the seed farmers, we collected up to three rounds of household survey data.  

Online Appendix Figure A1 shows the timeline of these data collection activities. We describe each 

major data source in turn. 

Social Network Census Data 

Targeting based on different network characteristics requires relatively complete information 

on network relationships within the village (Chandrasekhar and Lewis 2016). More than 80% of 

households in every sample village participated in the census.15   

The main focus of the social network census was to elicit the names of people each respondent 

consults when making agricultural decisions. General information on household composition, 

socioeconomic characteristics of the household, general agriculture information, and work group 

membership was also collected.  Agricultural contacts were solicited through several prompts.16  These 

                                                            
15 We interviewed at least one household member from 89.1% of households in Nkhotakota, 81.4% in Mwanza and 88.6% 
in Machinga. We interviewed both a man and a woman in about 30% of households. 

16 We first asked in general terms about farmers with whom they discuss agriculture. To probe more deeply, we also asked 
them to recall over the last five years if they had: (i) changed planting practices; (ii) tried a new variety of seed, for any 
crop; (iii) tried a new way of composting; (iv) changed the amount of fertilizer being used for any crop; (v) tried a new 
crop, such as paprika, tobacco, soya, cotton, or sugar cane; or (vi) started using any other new agricultural technology. If 
they responded affirmatively, we asked respondents to name individuals they knew had previously used the technique in 
the past and whether they had consulted these individuals. Finally, we asked them if they discussed farming with any 
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responses were matched to the village listing to identify links.  Individuals are considered linked if 

either party named each other (undirected graph), and all individuals within a household are considered 

linked.  

Sample Household Survey Data 

We collected survey data on farming techniques, input use, yields, assets, and other 

characteristics for a sample of approximately 5,600 households in the 200 sample villages.  We 

attempted to survey all seed and shadow farmers in each village, as well as a random sample of 24 

other individuals, for a total of about 30 households in each village.17  In villages with fewer than 30 

households, all households were surveyed.  Three survey rounds were conducted in Machinga and 

Mwanza in 2011, 2012 and 2013, and two survey rounds were conducted in Nkhotakota in 2012 and 

2013.18 The first round asked about agricultural production in the preceding year—thus capturing 

some baseline characteristics—as well as current knowledge of the technologies, which could reflect 

the effects of training. Since the data was collected at the start of a given agricultural season, but after 

land preparation was complete, we observe three adoption decisions for pit planting for farmers in 

Mwanza and Machinga, and two decisions for farmers in Nkhotakota. Since crop residue management 

(CRM) decisions are made the end of an agricultural season after harvest, we observe CRM decisions 

for two agricultural seasons in Mwanza and Machinga, and one in Nkhotakota. 

                                                            
relatives, fellow church or mosque members, or farmers whose fields they pass by on a regular basis, or if there are any 
others with whom they jointly perform farming activities. We also elicited their close friends and contacts with whom they 
share food, though we did not include these contacts as agricultural connections for the purposes of our network mapping. 

17 In Simple, Complex and Geo villages there were 6 (2x3) seed and shadow farmers to interview, while in Benchmark 
villages there were 8 (2x4) seeds and shadows. Recall we do not observe Benchmark farmers in Simple, Complex and Geo 
villages. 

18 Unanticipated delays in project funding required us to start training of extension agents and seed farmers in Nkhotakota 
in 2012 instead of 2011 as we did in Mwanza and Machinga. 
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Randomization and Balance 

Randomization was stratified by district, and implemented using a re-randomization procedure 

which checked balance on three village-level covariates.19 Online Appendix Table A5 shows how 

observable baseline characteristics from the social network census vary with the treatment status of 

the village. The table also shows p-values from the joint test of all treatment groups. The table notes 

provide details on the specification used. Few differences across treatment groups are statistically 

significant. Overall, the joint test reveals no differences for 10 out of 12 variables. Farm size is the 

most concerning: farmers in the Benchmark villages have larger farm sizes on average than farmers in 

Simple and Complex villages, and the joint test across the network treatment variables is significant at 

the 10% level. Additional analysis available from the authors controls for this variable in all 

specifications and finds that all results are robust to this control. 

4 Average treatment effects on diffusion 

In this section, we report experimental results on village-level outcomes across the four 

treatment arms.  

4.1 The advent of diffusion 

 We focus on the advent of diffusion in our sample villages as a key outcome. While the speed 

of diffusion may matter in some settings, we think that a key policy goal is to have diffusion start in 

as many villages as possible. If there is no diffusion in a village after 3 years, it is likely that the 

technology will never be widely adopted.  

Therefore, we first focus on ‘any adoption’ as an indicator for villages which have at least one 

household (other than the seeds) that adopted pit planting.  Our village-level regression is as follows: 

𝑌𝑌𝑣𝑣 = 𝛼𝛼 + 𝛽𝛽1𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑣𝑣 + 𝛽𝛽2𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑣𝑣 + 𝛽𝛽3𝐺𝐺𝐶𝐶𝐶𝐶𝑣𝑣 + 𝑋𝑋𝑋𝑋 + 𝜀𝜀𝑣𝑣 

                                                            
19 The three variables include: percent of village using compost at baseline; percent village using fertilizer at baseline, and 
percent of village using pit planting at baseline. We control for these variables in the analysis. 



17 
 

Where 𝑋𝑋𝑋𝑋 are variables used in the re-randomization routine, specified in the table notes, and district 

fixed effects. The results are reported in Table 2. First note that in year 2, we observe the start of the 

diffusion process in only 42% of Benchmark villages. This increases in year 3 to a modest 54%. This 

is evidence that this is an environment where igniting diffusion is challenging. The first two columns 

of Table 2 show that the propensity for ‘any adoption’ in year 2 is statistically significantly larger in 

villages where both seeds were highly central (Complex diffusion treatment) relative to Benchmark 

villages. The 25 percentage point gap is large relative to the ‘any adoption’ rate of 42% in our 

Benchmark villages. The ‘any adoption’ rate in Complex villages is also 15 percentage points larger 

than in Geo villages (p = 0.10) and 10 percentage points larger compared to villages assigned to the 

simple diffusion treatment (p = 0.30).  In year 3, Simple, Complex and Geo villages all attain a 

statistically higher rate of ‘any adoption’ than Benchmark villages.  85% of Complex villages had at 

least one non-seed adopter, compared to 73% of Simple and Geo villages and 54% of Benchmark 

villages. 

4.2 Adoption rates across treatment arms 

We also look at the speed of diffusion, captured by the adoption rate. Columns (3) and (4) in 

Table 2 document treatment effects on the adoption rate, which is defined as the proportion of non-

seed farmers who adopted pit planting in each agricultural season. Both Simple and Complex diffusion 

villages have higher adoption rates relative to the Benchmark in year 2. Compared to the Benchmark 

rate of 3.8%, Complex and Simple villages both experience a 3.6 percentage point higher adoption 

rate. We cannot reject that the adoption rates are the same in Simple, Complex and Geo villages. The 

adoption rate increases across all four types of villages in year 3. The adoption rate increases in the 

Benchmark villages, the reference category, from 3.8% to 7.5% from years 2 to 3. With the smaller 

sample size of 141 villages in year 3, we cannot reject that the adoption rate is the same across all 
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treatment types, though the point estimate on Complex remains the largest, and is equal in magnitude 

to the effect size observed in year 2.  The adoption rate in Complex villages in year 3 is 11%. 

4.3 Discussion: Why did targeting central seeds matter? 

 Targeting central seeds as in the Complex treatment led to higher adoption and was particularly 

important for avoiding the scenario in which no farmers adopted at all.  In many diffusion models, 

this total failure of adoption would be quite surprising: generically, nearly everyone is connected to 

the network, and so some diffusion should have taken place in Benchmark villages, too.  Akbarpour, 

Malladi and Saberi (2020) [AMS] describe characteristics of diffusion processes where targeting has an 

advantage.  First, in early stages of diffusion, targeting will speed up the adoption process. But with 

time, the diffusion process in Benchmark villages could catch up to Complex diffusion villages. 

However, the results in section 4.1 suggest that for many villages, a longer time horizon will not lead 

to substantially more adoption. With virtually no adoption after 3 years, it is unlikely those villages will 

ever have widespread adoption of pit planting. 

 Second, when information sharing is sufficiently infrequent, targeting may matter. We use data 

on conversations about pit planting that respondents had with others in the village to look directly at 

this explanation.  Each respondent was asked questions about their relationship and conversations 

with the two seed farmers, randomly selected shadow farmers, and a random sample of other village 

residents.  

Approximately 18% of farmers report talking about pit planting with trained seeds each year. 

This is a reasonably high rate of information passing, such that we would anticipate that the AMS 

dynamics of information eventually reaching the central farmers would be at play in a SIR-type model. 

In fact we also observe that many (13-14% of respondents) are also having conversations with shadow 

partners about pit planting, likely because of those very dynamics. We can provide a lower bound on 

how much the experiment induced additional conversations about pit planting using the random 
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variation in the experiment itself.  For example, we compare the frequency of conversations with the 

Complex seed farmers in Complex diffusion villages, to the frequency of conversations with Complex 

shadow farmers in other villages.  This is a conservative, downwardly-based estimate as many (and 

perhaps most, given how unusual pit planting was at baseline) of the conversations with Complex 

shadow farmers will also have occurred because of the experiment. However, this conservative 

estimate is sufficient to argue that it is unlikely that farmers are not talking enough to generate an 

adoption cascade. 

Table 3 shows that the experiment indeed induced seed farmers to discuss pit planting with 

fellow villagers using the following econometric specification. 

𝑌𝑌𝑖𝑖𝑖𝑖 = 𝛼𝛼 + 𝛽𝛽1𝑇𝑇𝑇𝑇𝑇𝑇𝑆𝑆𝑇𝑇𝐶𝐶𝑑𝑑𝑖𝑖 + 𝛿𝛿1𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑜𝑜𝑇𝑇𝑇𝑇𝑜𝑜𝑇𝑇𝐶𝐶𝑇𝑇𝑖𝑖 + 𝛿𝛿2𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑜𝑜𝑇𝑇𝑇𝑇𝑜𝑜𝑇𝑇𝐶𝐶𝑇𝑇𝑖𝑖 + 𝛿𝛿3𝐺𝐺𝐶𝐶𝐶𝐶𝑜𝑜𝑇𝑇𝑇𝑇𝑜𝑜𝑇𝑇𝐶𝐶𝑇𝑇𝑖𝑖 + 𝑋𝑋𝑋𝑋 + 𝜀𝜀𝑣𝑣 

𝑌𝑌𝑖𝑖𝑖𝑖 is an indicator for whether respondent i discussed pit planting with partner (either seed or 

shadow) farmer j. 𝑇𝑇𝑇𝑇𝑇𝑇𝑆𝑆𝑇𝑇𝐶𝐶𝑑𝑑𝑖𝑖 is 1 if a partner was trained in pit planting20 and 0 otherwise. 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑜𝑜𝑇𝑇𝑇𝑇𝑜𝑜𝑇𝑇𝐶𝐶𝑇𝑇𝑖𝑖 is an indicator for whether the partner j is a complex partner (either seed or shadow) 

and 𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑜𝑜𝑇𝑇𝑇𝑇𝑜𝑜𝑇𝑇𝐶𝐶𝑇𝑇𝑖𝑖 and 𝐺𝐺𝐶𝐶𝐶𝐶𝑜𝑜𝑇𝑇𝑇𝑇𝑜𝑜𝑇𝑇𝐶𝐶𝑇𝑇𝑖𝑖 are defined analogously. 𝑋𝑋𝑋𝑋 are variables used in the re-

randomization routine, specified in the table notes, and district fixed effects. 𝛽𝛽1 is our coefficient of 

interest. Since we only consider conversations with treated partners and shadow partners, whether a 

potential conversation partner was actually trained is random and we can interpret the effect of training 

on conversations as exogenous. 

We find that about 5% (ranging from 3.7% in year 1 to 6.4% in year 3) more respondents report 

a conversation about pit planting with trained seeds than with untrained seeds. In Online Appendix 

A.4, we suppose that only these 5% of conversations are attributable to the training, and find that this 

                                                            
20 This arises for complex partners in Complex diffusion villages, Simple partners in Simple diffusion villages, and Geo 
partners in Geo villages. 
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lower bound exceeds the conversation threshold AMS establish in which random seeding should 

generate an adoption cascade in simple diffusion models. 

 An additional possibility that AMS highlight is that targeting may be more important in a range 

of diffusion models outside of the class of “simple diffusion” models they consider; in the next section, 

we consider an important model outside of this class: the threshold diffusion model.  

5 Complex contagion 

 In this section, we propose that the threshold model we used to select seeds offers a potential 

explanation for why targeting central seeds matters for diffusion. As AMS make clear and Jackson and 

Storms (2018) formalize, targeting will be advantageous relative to random seeding when diffusion is 

governed by a threshold model.  The intuition for the importance of targeting in the threshold model 

is illustrated with the example network shown in Figure 1. In this thought experiment, we train two 

seed farmers in period 0 such that they are fully informed about a new technology. Diffusion occurs 

as farmers become informed in subsequent periods.  

 
Suppose that farmers in this network become fully informed of a new technology if anyone 

they are connected to has been fully informed. This is what we call simple contagion. In this network, 

the ideal seed farmers will be farmer 6 and then either farmer 1, 2 or 3. With any of these 

configurations, all farmers are informed in period 1. In general, quickly diffusing information about 

the new technology will be easy: in 70% of all possible seed pairings, all farmers will be fully informed 

by the end of the second period. Targeted seeding is not necessary in this model.  
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However, if farmers need to know two other farmers before they have sufficient information 

to be fully informed, the diffusion process looks very different. Consider seeding farmers 5 and 8. 

During the first period, farmer 6 will become informed. In the second round, farmers 4 and 7 are 

informed. The diffusion process then stops with 3 out of a possible 6 non-seed farmers informed. 

There are 4 seed pairings which can achieve this 50% adoption rate, but it is not possible to get any 

higher.  

Crucially, without a focus on targeting, there is a good probability that there is no diffusion: 

in 40% of seed pairings, there is no diffusion whatsoever. Threshold models therefore generate the 

empirical result we observed: when non-central farmers are trained, there may be no diffusion at all. 

In the next subsections, we will provide a micro-foundation of the threshold model based on 

social learning. We then provide three pieces of empirical evidence that are consistent with the idea 

that complex contagion is a reason why targeting central seeds was effective in this setting. 

5.1 A micro-foundation for the threshold model of diffusion  

Social learning is known to be important in technology adoption decisions (e.g. Griliches 1957, 

Conley and Udry 2010). This section demonstrates how social learning naturally micro-founds the 

threshold model. Our theoretical framework considers a learning environment with three 

characteristics.  First, we suggest that adoption of a new technology takes place only when farmer 

beliefs about the profitability of the technology pass a critical threshold.  Second, there are limited 

inherent benefits to learning about a technology if farmers are not ultimately persuaded to adopt it.  

Third, learning is costly: farmers must invest time to learn about and master a new productive 

technology, and revealing ignorance may subject them to social costs (e.g. Banerjee et al. 2020; 

Chandrasekhar, Golub and Yang 2019).   

These facts together mean that technology diffusion will be characterized by rational 

ignorance: farmers will be unwilling to pay learning costs in environments where they are unlikely to 
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update their beliefs enough to adopt the new technology.  Moreover, if farmers aggregate multiple 

signals to update their beliefs via Bayes’ rule, technology adoption will be characterized by multiple 

equilibria: when few are informed about the technology, few will be willing to pay learning costs and 

few will adopt; when many are informed, more farmers will pay learning costs and ultimately adopt.   

In Online Appendix A.5, we adapt the naive learning model in Banerjee et al. (2016) to include 

small costs of learning.  We model technology diffusion as a learning process with three key phases: 

(1) the farmer has to decide whether to acquire information, (2) she combines the new information 

with her priors via Bayes’ rule , and (3) based on her revised information set, she then decides whether 

to adopt the new technology.  We demonstrate that farmers who learn in this way follow a threshold 

model (Granovetter 1978, Acemoglu et al. 2011): a farmer will become informed about a new 

technology once at least λ of her connections become informed.  Since uninformed farmers do not 

adopt, this means that farmers without sufficient informed connections will not adopt.     

Taking the model to the data, the micro-foundation is useful for a few purposes.  First, it 

demonstrates that agricultural learning can lead to diffusion with thresholds.  In our micro-foundation, 

thresholds arise because farmers rationally choose not to learn when there is insufficient information 

in the network to change their behavior.  This suggests that the learning problem could generate the 

results in section 4.1: because farmers need to be exposed to multiple informed agents to make an 

informed adoption decision.  As a result, targeting central farmers is critical for diffusion:  poor 

targeting may lead to no diffusion at all.  Second, we can characterize the learning problems which 

lead to higher thresholds: thresholds are higher when the expected benefits are lower, or when signals 

are noisier.  We therefore learn that seeding matters more in contexts where (in expectation) the 

benefits of adoption are relatively low; or in cases where a given signal is quite likely to be noisy.  We 

return to this prediction in section 5.3. 
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5.2 Complex contagion model simulations compared to empirical results 

 There are three main pieces of evidence that suggest that complex contagion may have led to 

higher diffusion in the villages in which both seeds had high centrality. First, a key consequence of 

not targeting the right seeds in an environment where a sizeable fraction of agents have a threshold 

above 1 is that the diffusion process can be completely stalled. We will discuss this evidence in this 

subsection. Second, we show heterogeneous treatment effects to argue that the complex diffusion 

treatment was particularly effective in exactly the contexts in which we would anticipate the treatment 

to be effective. And finally, we analyze individual-level data to show that farmers who were directly 

connected to two seeds – as opposed to just one seed – are most likely to adopt pit planting. 

Table 2 already demonstrated that that complex diffusion led to a higher rate of “any non-

seed adoption.” Figure 2 presents the same evidence but side by side with what our simulations 

predicted. The left part of Figure 2 shows the predicted fraction of villages with ‘any adoption’ from 

simulating the model for all sample villages when λ=1 (Simple contagion) and λ=2 (Complex 

contagion).21  Since the goal is to compare these simulations to the actual data, we design the 

simulations to reflect the fact that we only observe a random sample of households in these villages.22  

The right part of Figure 2 shows the empirical counterpart: ‘any adoption’ rates in the data in years 2 

and 3.  

                                                            
21 These simulations exclude 12 villages where at least one of the extension worker chosen seeds (Benchmark) was not 
observed in our social network census.  This occurred because the spatial boundaries of villages are not always clearly 
delineated in Nkhotakota.  

22 The simulations use the full social network to predict becoming informed, measured here through adoption.  We then 
sample from the full network to better mimic our data. In the model, the rate of any adoption is identical in years 2 and 
years 3. If there was no adoption by year 2, there is no way there will be any additional adoption taking place in year 3. 
The sampling process, however, generates the increase over time observed in the figure. If the rate of adoption is low, as 
is empirically the case, then a random sample may miss all adopters. As the number of adopters increases over time, the 
random sample is more likely to pick up an adopter and hence the rate of any adoption increases over time in the figure.  
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When the threshold is set to λ=1, diffusion is predicted to be widespread. In year 2, 85% of 

villages where Geo and Benchmark partners were trained are predicted to have some sampled 

diffusion, and that rate goes up to 94% with Simple and Complex partners. The predicted rates of 

‘any diffusion’ are even higher in year 3.  

The risk of no diffusion increases if the diffusion process is characterized by complex 

contagion. In that case, the model predicts that more than half of the villages assigned Simple, Geo 

or Benchmark partners will not see any sampled diffusion at all in year 2.  In contrast, when Complex 

seeds are trained, 70% of villages are predicted to experience some diffusion in year 2.  

Comparing the theoretical simulations to the data on the right side of Figure 2 shows that the 

data are more consistent with the patterns generated by a complex (rather than simple) learning 

environment in three distinct ways.  First, simple contagion simulations suggest that we should observe 

a much higher fraction of villages with some adoption than is true in the data. Second, simple 

contagion predicts that the ‘any adoption’ outcome should not be very sensitive to the identity of the 

seed farmer who is initially trained.  In contrast, the identity of the seed farmer dramatically alters this 

outcome in the data. Finally, the complex contagion simulations predict that the Complex partners 

will maximize the fraction of villages with some adoption, which we observe in the data.  

5.3 Heterogeneity analysis 

The micro-foundation of the threshold model suggests that targeting Complex diffusion seeds 

will be particularly effective in contexts in which the information about pit planting will be most 

valuable.  We use two different approaches to identify groups of such farmers. First, the Ministry of 

Agriculture recommends pit planting only for flat land, and labor costs of pit planting are lower on 

flat land.23  Focus group discussions in our sample villages confirmed that villagers thought pit planting 

                                                            
23 Pit planting is possible on land with some slope, but in those cases, the pits need to be constructed differently, and our 
extension workers were not trained on that technique. 
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was more suitable for flat rather than sloped land. We therefore expect farmers who own flat land will 

be most interested in information about pit planting. The second heterogeneity test we do exploits 

variation in knowledge about pit planting at baseline. While pit planting is in general a new technology 

in Malawi, there is heterogeneity across villages in how novel it is.  In the median village, 4.3% of 

farmers reported having ever tried pit planting at baseline while 0.2% were currently practicing pit 

planting across all villages.  

Table 4 explores the heterogeneity in treatment effects across these two dimensions, by 

interacting the randomized treatments with an indicator for “Farmer likely to receive a Good Signal.” 

This “Good Signal” variable is first defined as the farmer having flat land in columns (1) and (2), and 

then re-defined as “Village with lower-than-median familiarity with the technology at baseline” in 

columns (3) and (4). “Bad signal” refers to the converse of these characteristics. The equation 

estimated:  

𝑦𝑦𝑖𝑖𝑣𝑣𝑣𝑣 = 𝛽𝛽0 + 𝛽𝛽1𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑣𝑣 ∗ 𝐵𝐵𝑇𝑇𝑑𝑑 𝑆𝑆𝑆𝑆𝑆𝑆𝑇𝑇𝑇𝑇𝐶𝐶 + 𝛽𝛽2𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑣𝑣 ∗ 𝐵𝐵𝑇𝑇𝑑𝑑 𝑆𝑆𝑆𝑆𝑆𝑆𝑇𝑇𝑇𝑇𝐶𝐶 + 𝛽𝛽3𝐺𝐺𝐶𝐶𝐶𝐶𝑣𝑣 ∗
𝐵𝐵𝑇𝑇𝑑𝑑 𝑆𝑆𝑆𝑆𝑆𝑆𝑇𝑇𝑇𝑇𝐶𝐶 + 𝛽𝛽4𝐺𝐺𝐶𝐶𝐶𝐶𝑑𝑑 𝑆𝑆𝑆𝑆𝑆𝑆𝑇𝑇𝑇𝑇𝐶𝐶 + 𝛽𝛽5𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑣𝑣 ∗ 𝐺𝐺𝐶𝐶𝐶𝐶𝑑𝑑 𝑆𝑆𝑆𝑆𝑆𝑆𝑇𝑇𝑇𝑇𝐶𝐶 +  𝛽𝛽6𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑣𝑣 ∗

𝐺𝐺𝐶𝐶𝐶𝐶𝑑𝑑 𝑆𝑆𝑆𝑆𝑆𝑆𝑇𝑇𝑇𝑇𝐶𝐶 + 𝛽𝛽7𝐺𝐺𝐶𝐶𝐶𝐶𝑣𝑣 ∗ 𝐺𝐺𝐶𝐶𝐶𝐶𝑑𝑑 𝑆𝑆𝑆𝑆𝑆𝑆𝑇𝑇𝑇𝑇𝐶𝐶 + 𝛿𝛿𝑋𝑋𝑣𝑣 + 𝜖𝜖𝑖𝑖𝑣𝑣𝑣𝑣  

The reference group comprises of farmers who are likely to receive a bad signal in Benchmark villages. 

Our hypothesis is that among those who receive a positive signal, we will observe more diffusion in 

Complex villages if the true model is Complex. 

Columns (1) and (2) show that adoption in year 2 is higher for farmers who have flat land in 

Simple, Complex and Geo villages compared to farmers with flat land in Benchmark villages. In year 

3, we see that Complex villages continue to have a larger adoption rate than Benchmark villages for 

farmers with flat land.  Columns (3) and (4) show that the Complex treatment performs best in villages 

where the technology was relatively novel. In this sub-sample, the adoption rate is statistically 

significantly higher in Complex diffusion treatment villages compared to both the Simple and the 

Benchmark treatments in year 3.   
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 To summarize, these heterogeneity tests indicate that targeting central seeds is most effective 

precisely in the types of villages and for the types of farmers where information was most valuable, as 

the theoretical model helped us predict.  

5.4 Knowledge and adoption of farmers by social distance to seeds   

In this subsection, we provide more direct evidence in line with the Complex Contagion model. 

We look at knowledge of pit planting and adoption decisions by individuals, as a function of how 

many seeds they are connected to.  If thresholds are larger than one, those with connections to 2 seeds 

should be the most likely to adopt pit planting. We estimate the following equation:  

𝑌𝑌𝑖𝑖𝑣𝑣 = 𝛼𝛼 + 𝛽𝛽11𝑇𝑇𝑆𝑆𝐶𝐶𝐶𝐶𝑑𝑑𝑠𝑠𝑖𝑖𝑣𝑣 + 𝛽𝛽22𝑇𝑇𝑆𝑆𝐶𝐶𝐶𝐶𝑑𝑑𝑠𝑠𝑖𝑖𝑣𝑣 + 𝛽𝛽31𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖𝑣𝑣 + 𝛽𝛽42𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖𝑣𝑣 + 𝛽𝛽51𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖𝑣𝑣
+ 𝛽𝛽62𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖𝑣𝑣 + 𝛽𝛽71𝐺𝐺𝐶𝐶𝐶𝐶𝑖𝑖𝑣𝑣 + 𝛽𝛽82𝐺𝐺𝐶𝐶𝐶𝐶𝑖𝑖𝑣𝑣 + 𝜃𝜃𝑣𝑣 + 𝜀𝜀𝑖𝑖𝑣𝑣 

1𝑇𝑇𝑆𝑆𝐶𝐶𝐶𝐶𝑑𝑑𝑠𝑠 is an indicator for the respondent being directly connected to exactly one seed farmer, and 

2𝑇𝑇𝑆𝑆𝐶𝐶𝐶𝐶𝑑𝑑𝑠𝑠 indicates the respondent was directly connected to two seed farmers. Seeds and shadows are 

removed from the analysis. Since network position is endogenous, we also control for whether an 

individual is connected to one or two Simple, Complex or Geo (actual or shadow) partners, but these 

coefficients are not displayed in the table.  Identification therefore comes from variation in the 

experiment.  As an example, we can compare two farmers who are both connected to two Simple 

partners, but where one farmer is in a village randomly assigned to the Simple treatment and his friend 

is trained as the seed, while the other farmer’s friend was not trained.     

 In the theoretical model, individuals have to become informed prior to adopting. As an 

empirical matter, it is unclear what level of knowledge is associated with “being informed” as used in 

the model.  In Table 5 we therefore consider three variables which represent increasing levels of 

information: whether the respondent has heard of pit planting; whether the respondent knows how 

to implement pit planting; and whether the respondent adopted pit planting (which implies not only 

knowledge but also that the signals that the respondent received were sufficiently positive). In year 1, 

the training led to more information transmission to those directly connected to seeds. In particular, 
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those who have a direct connection to both seed farmers had the most knowledge. This is true for 

both measures of “knowledge”: whether the respondent had heard of pit planting and whether they 

reported being capable of implementing it. Respondents with two connections are 8.4 percentage 

points more likely to have heard of pit planting than those with no connection to a seed. This 

represents a 33% increase in knowledge relative to the mean familiarity among unconnected 

individuals. This effect is also statistically significantly different from the effect of being connected to 

one seed (p = 0.02).  They are also 6.2 percentage points more likely to report knowing how to pit 

plant, a 108% increase over unconnected individuals and again significantly different from the effect 

of being connected to one seed (p = 0.072). These knowledge effects are suggestive – but not 

conclusive – of a complex contagion process (λ=2) rather than simple contagion.  The increased 

awareness of pit planting and knowledge of pit planting among households connected to two seeds 

persists into year 2 (columns 2 and 5), and two connections is again significantly more advantageous 

than one connection (p = 0.04 and 0.095, respectively).  

We see no effect on adoption in the first year (column 7) among individuals directly connected 

to either one or two seeds. However, we do observe an adoption effect in year 2. This temporal pattern 

of results is consistent with the set-up of our theoretical model: individuals become informed in year 

1 and then some choose to adopt in year 2. Column (8) shows that households with two connections 

to trained seeds are 3.9 percentage points more likely to adopt in the second year than those with no 

connections, which represents a 90% increase in adoption propensity. Though the point estimate of 

the effect of 2 connections is considerably larger than the effect of a connection to one seed (3.9 pp 

compared to 1.2 pp), we cannot statistically reject that households with a connection to only one 

treated seed adopt less frequently (p = 0.16).  We also observe that individuals who are within path 

length 2 of at least one seed (that is, a friend of a friend) are 2.2 percentage points more likely to adopt. 
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The predictions of the model for which individuals learn about pit planting are weakened as 

time passes and knowledge diffuses through the network. In all three of our dependent variables, this 

diffusion can be observed through large increases in knowledge and adoption over time in our 

reference category: individuals with no direct connections to a seed.  Among this group awareness 

increases from 22% to 39% from year one to three, while “knowing how” to pit plant increases from 

6% to 15% and adoption increases from 1% to 4%.  In principle, this diffusion should reduce power 

on our exogenous variation, as the number of connections to informed individuals becomes less 

correlated with the number of signals available to farmers.  In practice, by year 3 we still see 

significance on the effects of two direct connections on one of our two knowledge variables (“knowing 

how” to pit plant, column 6), but we no longer see significant differences from direct connections in 

adoption or awareness of pit planting.  Consistent with the hypothesis that this loss in precision is due 

to diffusion in the network, we see that adoption increases among those at moderate distance to the 

seeds in year 3: column (9) shows that households within path length 2 are more likely (3.7 pp) to have 

adopted over those who are socially more distant.24  

In summary, analysis using individual-level data demonstrates that individuals who are initially 

close to the trained seeds are more likely to adopt than individuals with no direct connections – as one 

would expect if the experiment is inducing social network-based diffusion. The data also suggest that 

having two direct connections – and not just one – is important for diffusion. This is further evidence 

consistent with the complex contagion model: farmers may need to know multiple informed 

connections before becoming informed, and then subsequently adopting, themselves.   

 

                                                            
24 This is a lower power test of the model than the direct connections test as it is imperfectly correlated with the number 
of informed, indirect connections to seeds (which is unobserved). We do not see a significant effect of this variable on 
knowledge outcomes, though coefficients are positive. 
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6 Cost-effective, policy-relevant alternatives to data-intensive targeting methods 

Our experiment was designed to be a proof of concept. We showed that targeting multiple highly 

central farmers improves technology diffusion, but eliciting the social network map to achieve these 

gains is expensive. Our geography-based treatment arm was an attempt to assess how much of the 

diffusion benefit derived from applying network theory could be achieved without having to resort to 

expensive data collection methods (since each household’s physical location is much easier to observe 

than network relationships).  This specific approach was not an unqualified success. Online Appendix 

Table A2 showed that Geo seeds tended to have less land and were therefore poorer. Therefore, while 

the idea of using geography as a proxy for one’s network may be intuitive, the implications of 

geographic centrality may be context-specific, and inappropriate as a network-based targeting proxy 

in some cases.   

Combining our experimental results with research on other inexpensive procedures to identify 

the optimal seeds under complex contagion theory would make network-based targeting more policy 

relevant and scalable. A few recent papers have suggested promising, less expensive methods for 

inferring network characteristics.  Banerjee et al. (2019) suggests that despite the implicit challenges in 

learning about network structure, the simple question of “if we want to spread information about a 

new loan product to everyone in your village, to whom do you suggest we speak?” is successful in 

identifying individuals with high eigenvector centrality and diffusion centrality, who ultimately 

improve the diffusion process.  Breza et al. (2020) suggest that aggregate relational data collected from 

a smaller sample combined with a census can yield accurate estimates of network characteristics. 

Mobile phones may also be a way to inexpensively identify highly central individuals (Bjorkegren 2008, 

Blumenstock et al. 2019). 

While we cannot test the viability of these approaches with our data, we can explore via 

simulations some alternate strategies that extension officers could use to identify useful partners.  We 
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suppose that an extension agent enters a village and randomly selects a small number of farmers to 

interview, and only asks one question from our social network census: “Do you discuss agriculture 

frequently with anyone in the village? What is the name of the person you speak with about agriculture 

frequently?” The response to this question generates a small list of names. The extension agent can 

then use the responses to select any follow-up interviews. Using simulations, we predict that strategies 

which leverage the highest degree respondent from the random sample can approach the performance 

of the optimal targeting. More specifically, we can achieve 73% of the optimal adoption rate with just 

2 total interviews and 84-90% of the targeting gains with around 7 interviews.25  

7 Concluding remarks 

    This paper provides evidence that diffusion of a new technology is accelerated by targeting 

information to central nodes within a social network. In a field experiment conducted in collaboration 

with the Ministry of Agriculture in Malawi, we selected farmers at different positions in the village 

network, leveraging threshold theory to suggest useful partners under different diffusion mechanisms.  

We found that farmers were most likely to adopt pit planting in villages where the two trained seed 

farmers were centrally located within their villages’ social network.  These partners were chosen to 

optimize diffusion under complex contagion: when thresholds for diffusion were larger than one. 

 Because two central partners may be optimal under several diffusion models, we also explore 

whether the underlying diffusion process is well-characterized by complex contagion. We present 

multiple pieces of evidence consistent with this mechanism. In particular, we demonstrate that a total 

failure of diffusion occurs frequently in villages where experts selected the seed farmers.  High 

thresholds can generate this risk.  Moreover, farmers who are connected to two seed farmers are also 

                                                            
25 See Online Appendix A.6 for more details and alternative targeting strategies. 



31 
 

most likely to adopt pit planting in the second year of the experiment. This is consistent with the fact 

that under complex contagion, multiple connections to seeds are needed before farmers adopt.  

 The methodological approach in this paper is not directly scalable for policy because of the 

high costs of collecting network data. But there is very promising work in the literature on ways to 

cost-effectively identify central individuals within social networks (Banerjee et al. 2019). Our 

simulations also suggest that with only about 7 interviews per village, it is possible to identify 

individuals who can trigger the diffusion process.  There are also additional options available to 

identify central nodes within a network depending on the context, including new approaches such as 

cell phone data. 

Our paper also suggests a direction for future research.  We provide evidence that agricultural 

technologies need to be seeded with multiple, central individuals to encourage adoption; this and other 

evidence in this paper is inconsistent with “simple” diffusion models.  In contrast, the evidence in this 

paper is consistent with models where diffusion requires a concentration of information, such as 

complex contagion.  Further research is needed to understand if farmers often face high thresholds 

to adoption. Our micro-founded diffusion model suggests a key dimension to consider when assessing 

if contagion is likely to be simple or complex: the noise of the signal. Rosenzweig and Udry (2020) 

highlight the importance of aggregate stochastic shocks in distinguishing the returns to agricultural 

investment, microenterprise investment, and human capital from large-scale survey data.  Farmers, 

entrepreneurs, and parents likely have access to far fewer data points than these large-scale surveys 

when they attempt to infer the returns to investments and schooling, which – together with our model 

– may suggest that high thresholds bind for a number of problems of interest to economists. However, 

in contexts in which agents are learning about concepts that are less noisy than returns – say the 

availability of microfinance, how to enroll in welfare, or whether a firm is hiring – simple contagion 

may be the right model.  Characterizing which productive investments should diffuse easily through 



32 
 

social networks – and which need extensive and targeted diffusion – is crucial but beyond the scope 

of this paper.    
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Rank 1 Partner Rank 2 Partner Rank 1 Partner Rank 2 Partner
        (1) (2) (3) (4)
Treatment arm:
Complex diffusion 0.28 0.19 17.49 13.39
Simple diffusion 0.27 0.07 16.59 6.70
Geo 0.15 0.10 9.48 6.34
Benchmark 0.21 0.13 13.29 9.80

1

Table 1: Centrality of partner farmers across treatments
DegreeEigenvector Centrality

The sample includes all partner farmers, including seeds and shadows. However, benchmark partners are 
restricted to only seed farmers (and hence the sample size is smaller) because Benchmark shadow farmers 
are not observed in Complex, Simple or Geo villages. 



(1)    (2) (3)    (4)    
Complex Diffusion Treatment 0.252 0.304 0.036 0.036    

(0.093)    (0.101)    (0.016)    (0.026)    
Simple Diffusion Treatment 0.155    0.189 0.036 0.006    

(0.100)    (0.111)    (0.017)    (0.022)    
Geographic treatment 0.107    0.188 0.038    0.013    

(0.096)    (0.110)    (0.027)    (0.034)    

Year 2 3 2 3
N       200    141    200    141    

Mean of Benchmark Treatment 
(omitted category) 0.420    0.543    0.038    0.075    

SD of Benchmark 0.499    0.505    0.073    0.109    

p-values for equality in coefficients:
Simple = Complex 0.300    0.240    0.981    0.173    
Complex = Geo 0.102    0.220    0.937    0.491    
Simple = Geo 0.623    0.990    0.950    0.783    

Notes
1

2

3

4

Table 2: Village-Level Regressions of Adoption Outcomes Across Treatment Arms

The reference group is the Benchmark treatment.

All columns include controls used in the re-randomization routine (percent of village using compost at 
baseline; percent village using fertilizer at baseline; percent of village using pit planting at baseline); 
village size and its square; and district fixed effects.  Standard errors are clustered at the village level.

Any Non-Seed Adopters Adoption Rate

The "Any non-seed adopters" indicator in columns (1)-(2) excludes seed farmers. The adoption rate in 
columns (3)-(4) include all randomly sampled farmers, excluding seed and shadow farmers.  

Sample for year 3 (columns 2 and 4) excludes Nkhotakota district.



        
        (1) (2)    (3)
Trained 0.037 0.050 0.064
        (0.008)    (0.008)    (0.009)    

% convo with trained seed 0.179    0.181    0.190
% convo with shadow partner 0.141    0.130    0.127

N       15,115    16,704    11,607    
Year 1 2 3

Notes
1

2

3

4

Table 3: Conversations Farmers Report Having about Pit Planting with Seed and Shadow Partners

The following indicator variables are also included: whether the contact that the respondent was 
asked about was a simple partner, complex partner or geo partner, irrespective of whether they 
were trained. All columns include controls used in the re-randomization routine (percent of 
village using compost at baseline; percent village using fertilizer at baseline; percent of village 
using pit planting at baseline); village size and its square; and district fixed effects. 

Conversation about pit planting

Standard errors are clustered at the village level. 

Sample excludes seeds and counterfactual / shadow farmers.

In our survey, we asked respondents about conversations they had with the seed farmers and 
randomly selected counterfactual/shadow farmers. In this table we refer to farmers who would be 
seeds under the different treatments as partners, whether they are trained seeds or are shadow 
farmers.  An observation is a respondent-partner-year pair.



(1) (2) (3) (4)
0.006    -0.027    0.013    -0.045    

(0.024)    (0.036)    (0.015)    (0.033)    
-0.008    -0.036    0.019    -0.008    
(0.024)    (0.037)    (0.017)    (0.034)    
0.002    -0.068 0.031    -0.054

(0.031)    (0.031) (0.035)    (0.032)
-0.037 -0.062 -0.007    -0.064
(0.017) (0.024) (0.022)    (0.038)
0.059 0.067 0.054 0.083

(0.018) (0.025)    (0.024)    (0.030)    
0.064 0.029 0.054 0.021

(0.021) (0.020) (0.029) (0.020)
0.042 0.022    0.026    0.031    

(0.020)    (0.023)    (0.022)    (0.029)    

Good Signal Type Flat Land Flat Land
Unfamilliar 

Tech
Unfamilliar 

Tech
Year 2 3 2 3
N       3546    2645    3954    3023    
Mean of Bad Signal in 
Benchmark Treatment (omitted 0.066    0.123    0.046    0.104    
SD 0.248    0.33    0.21    0.305    

Simple, Good = Complex, 
Good 0.828    0.113    0.986    0.032    
Complex, Good = Geo, 
Good 0.482    0.103    0.297    0.138    
Simple, Good = Geo, Good 0.364    0.755    0.351    0.680    

Notes
1

2

3
4 All columns include controls used in the re-randomization routine (percent of village using compost at baseline; 

percent village using fertilizer at baseline; percent of village using pit planting at baseline); village size and its 
square; and district fixed effects.  Standard errors are clustered at the village level.

Good Signal * Simple

The reference group is Bad Signal recipients in the Benchmark treatment.

p-values for equality in coefficients:

Good Signal * Complex

Good Signal * Geo

In columns (1)-(2), households with any flat land are those who have Good Signal=1 and those with all sloped 
land have Good Signal=0. In columns (3)-(4), households in villages where less than 4.32% (the median) of 
households ever tried pit planting at baseline are those who have Good Signal=1.

Sample for year 3 (columns 2 and 4) excludes Nkhotakota district.

Table 4: Heterogeneity in Farmer-Level Adoption Decisions Across Treatment Arms

Bad Signal * Simple

Bad Signa l* Complex

Bad Signal * Geo

Good Signal



(1) (2) (3) (4) (5) (6) (7) (8) (9)
Connected to 1 seed 0.002    0.030    0.016    0.017    0.021    -0.031    0.008    0.012    0.004    

(0.024)    (0.022)    (0.029)    (0.016)    (0.017)    (0.023)    (0.011)    (0.015)    (0.017)    

Connected to 2 seeds 0.084 0.124 0.064    0.062 0.068 0.110 0.016    0.039 0.014    

(0.038)    (0.040)    (0.064)    (0.028)    (0.029)    (0.051)    (0.014)    (0.019)    (0.035)    
-0.018 0.016 0.067 0.005 0.022 0.028 0.013 0.022 0.037
(0.028) (0.027) (0.042) (0.018) (0.021) (0.028) (0.008) (0.013)    (0.021)    

Year 1 2 3 1 2 3 1 2 3
N       4155 4532 3103 4155 4532 3103 4203 3931 2998

Mean of Reference Group              
(No connection to any seed)

0.223 0.286 0.391 0.057 0.095 0.147 0.013 0.044 0.043

SD of Reference Group 0.416 0.452 0.488 0.232 0.293 0.355 0.113 0.206 0.203

p-value for 2 connections = 
1 connection 0.018 0.013 0.442 0.072 0.091 0.004 0.522 0.164 0.760

Notes
1

2

3

4

Table 5: Diffusion within the Village

Within path length 2 of at 
least one seed

The reference group is comprised of individuals with no direct or 2-path-length connections to a seed farmer.

Sample excludes seed and shadow farmers. Only connections to simple, complex and geo seed farmers are considered (no connections to benchmark 
farmers included).

The dependent variable in columns (1)-(3) is an indicator for whether the respondent reported being aware of a plot preparation method other than ridging 
and then subsequently indicated awareness of pit planting in particular. In columns (4)-(6), the dependent variable is an indicator for whether the farmer 
reported knowing how to implement pit planting. The dependent variable in (7)-(9) is an indicator for the household having adopted pit planting in that 
year.

In all columns, additional controls include indicators for the respondent being connected to: one Simple partner, two Simple partners, one Complex 
partner, two Complex partners, one Geo partner, two Geo partners, within 2 path length of a Simple partner, within 2 path length of a Complex Partner, 
and within 2 path length of the geo partner. Also included are village fixed effects. Standard errors are clustered at the village level.

Heard of PP Knows how to PP Adopts PP
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Online Appendix 

Can Network Theory-based Targeting Increase Technology Adoption? 

Lori Beaman, Ariel BenYishay, Jeremy Magruder, Ahmed Mushfiq Mobarak 

A.1. Technical Details of Simulation Methods 

To identify our seed partners, we used the social network census of households in all study 

villages. The social network structures observed in these data allow us to construct network adjacency 

matrices for each of the 200 villages.  Next, we conduct technology diffusion simulations for all villages 

using these matrices, where each individual in the village draws an adoption threshold τ from the data, 

which is normally distributed26 N(λ, 0.5) but truncated to be strictly positive. We conduct simulations 

with λ=1 and λ=2 in all villages to evaluate simple and complex contagion respectively.  

In the simulations, when an individual is connected to at least τ individuals who are informed, 

she becomes informed in the next period. Once an individual is informed, we assume that all other 

household members are immediately also informed. We also assume that becoming informed is an 

absorbing state.  As seed farmers are trained by extension agents, we assume all assigned seed farmers 

become informed. 

We run the model for four periods.27 Given the randomness built into the model, we simulate 

the model 2000 times for each potential pair of seeds in the village, and create a measure of the average 

information rate induced by each pair. We designate the pair that yields the highest average three-

period information rate in our simulations as the two “optimal seeds” for each village for that particular 

model (simple contagion, λ=1 or complex contagion, λ=2). Armed with the identities of the optimal 

                                                            
26 Heterogeneity in the model comes from variation across individuals in the net benefits realized by adopting pit planting. 
This affects the threshold number of connections an individual would need to have in order to get enough signals to be 
induced to adopt.  

27 We collected data for up to three agricultural seasons (“years”) after the interventions were implemented, so our 
theoretical set-up largely matches our empirical research design. With knowledge of the value of λ, a policymaker could 
use the model to maximize adoption over any timeframe they cared about, either more short-term or more long-term. 
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seeds under each model, we then randomly assign different villages in the sample to the treatment 

arms. Optimal seeds identified through the complex contagion (λ=2) simulation are trained in villages 

that were randomly assigned to treatment 1. Optimal seeds identified through the simple contagion 

(λ=1) simulation are trained in the randomly chosen villages assigned to treatment 2.  

 To determine seeds for villages in the Geo treatment arm, the simulation steps are the same 

as in the complex contagion case, except that we apply the procedure to a different adjacency matrix. 

To capture the idea that geography may be an easy way to capture key features of a social network, we 

generate an alternative adjacency matrix by making the assumption that two individuals are connected 

if their plots are located within 0.05 miles of each other in our geo-coded location data. We chose a 

radius of 0.05 miles because this characterization produces similar values for network degree measures 

in our villages as using the actual network connections measures. 

A.2. Effect of technology adoption on crop yields 

In order to estimate the returns of adopting the new technologies on yields, we compare seed 

farmers to shadow farmers. Online Appendix Table A4 demonstrates that there were large differences 

in adoption rates between seeds and shadow farmers. To estimate the impact of adoption on yields, 

we estimate an ITT specification exploiting that random difference in take-up: 

𝑦𝑦𝑖𝑖𝑣𝑣𝑣𝑣 = 𝛽𝛽𝑆𝑆𝐶𝐶𝐶𝐶𝑑𝑑𝑖𝑖𝑣𝑣𝑣𝑣 + 𝑋𝑋𝑋𝑋𝑣𝑣 + 𝛿𝛿𝑣𝑣 + 𝜖𝜖𝑖𝑖𝑣𝑣𝑣𝑣  (1) 

where 𝑦𝑦𝑖𝑖𝑣𝑣𝑣𝑣 is log maize yields for farmer i in village v at time t, 𝑆𝑆𝐶𝐶𝐶𝐶𝑑𝑑𝑖𝑖𝑣𝑣𝑣𝑣 is an indicator for being 

the selected seed farmer, 𝑋𝑋𝑣𝑣 are control variables used during the re-randomization routine (see notes 

in Table 2), village size, village size squared, district fixed effects plus baseline land size. 𝛿𝛿𝑣𝑣 are year 

dummies. We use data from years 2 and 3.  In the intent-to-treat specification in Online Appendix 

Table A1, column (1), maize yields among seed farmers are 13% greater than the yields experienced 

by the shadow seeds. The fact that the technologies we promoted led to an increase in output strongly 
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suggests that the information about pit planting that diffused through the networks was likely positive 

on average.  

Since only about 30% of seeds adopted pit planting, we also report the local average treatment 

effect using an IV regression in column (2) in which we instrument pit planting adoption with an 

indicator for being randomly assigned as the seed (rather than a shadow).  In this specification, pit 

planting adoption is associated with a 44% increase in maize yield.  However, we cannot rule out that 

CRM adoption also increased yields, potentially violating the exclusion restriction in the IV 

estimation.28 

A.3. Adoption rates among seeds (compared to shadow farmers) 

Online Appendix Table A4 compares the technology adoption behavior of seed farmers to 

shadow farmers. We focus on this sub-sample because shadow farmers act as the correct experimental 

counter-factual for the seed farmers to capture the causal effect of the intervention, removing any bias 

due to the seeds’ position within their networks. We estimate the following equation, and Panel A 

displays the results: 

𝑦𝑦𝑖𝑖𝑣𝑣𝑣𝑣 = 𝛽𝛽𝑆𝑆𝐶𝐶𝐶𝐶𝑑𝑑𝑖𝑖𝑣𝑣𝑣𝑣 + 𝛿𝛿𝑣𝑣 + 𝜖𝜖𝑖𝑖𝑣𝑣𝑣𝑣   (1) 

where the dependent variable is an indicator for adoption, and 𝛿𝛿𝑣𝑣 are village fixed effects. Column (1) 

shows that trained seeds are 52% more likely in year 1 to know how to pit plant than shadow farmers. 

Columns (4)-(6) show that seed farmers who are trained on pit planting adopt at a rate of 31-32% in 

all three years, compared to the low 5% adoption rate of shadow farmers in year 1.  

                                                            
28 We also cannot rule out any labor or other input use response to training which may have positively contributed to 
yields. Changes in other inputs makes it impossible for us to say that the yields increases map directly into increases in 
profits.  
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Panel B of Online Appendix Table A4 restricts the sample to only seed farmers (and drops all 

shadow farmers) and compares knowledge and adoption among seeds across the four experimental 

arms as follows: 

𝑦𝑦𝑖𝑖𝑣𝑣𝑣𝑣 = 𝛽𝛽0 + 𝛽𝛽1𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑣𝑣 + 𝛽𝛽2𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑣𝑣 + 𝛽𝛽3𝐺𝐺𝐶𝐶𝐶𝐶𝑣𝑣 + 𝛿𝛿𝑋𝑋𝑣𝑣 + 𝜖𝜖𝑖𝑖𝑣𝑣𝑣𝑣  (2) 

where Xv include the re-randomization controls (listed in table notes), village size, the square of village 

size, and district fixed effects. Standard errors are clustered at the village level. Column (1) shows that 

in the first year, Benchmark seeds are most likely to say they know how to pit plant, while all other 

seeds are similar. The extension agents evidently chose seed farmers carefully to ensure that their 

chosen extension partners receive the initial training from them. However, in years 2 and 3, familiarity 

between Benchmark, Simple and Complex seeds converge and have similar levels of familiarity with 

pit planting, though knowledge is declining over time. Geo seeds continue to display lower familiarity 

in subsequent years.  

Column (4) shows that there are no differences in adoption propensities across the four types 

of seeds in the first year. This implies that it is unlikely that any observed differences in village-wide 

adoption patterns across the four treatment arms, that we will examine later, are driven by initial 

adoption differences inside the sub-sample of seed farmers. Columns (5) and (6) show that seed 

farmers in simple contagion villages become relatively more likely over time to adopt the technology. 

This could be due to the technology diffusion process, or in other words, a consequence of the 

experiment.  Columns (7)-(8) show that there are no significant differences in adoption in years 1 or 

2 for crop residue management. 

A.4. Conversation frequency and adoption cascades 

 AMS establish that random seeding is sufficient to generate an adoption cascade when 𝐶𝐶𝐶𝐶 >

1, where 𝐶𝐶 refers to the probability that a conversation takes place on a given link and 𝐶𝐶 represents 
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the mean degree in the network.  Our experimental evidence found that at least 5% of randomly 

selected respondents were having conversations with seeds due to the training in each year.  To map 

this number to the 𝐶𝐶𝐶𝐶 framework, we first suppose that mean degree (the average number of contacts 

that a person has) is stable over time, so that the mean degree of trained seed partners is the same at 

the follow-up as in our listing (indeed, in results available from the authors, we demonstrate that 

whether a respondent reports knowing a seed or shadow farmer at follow-up is the same regardless 

of whether the seed was actually trained or not).   

 In our data, the mean village has 77 respondents (households), 2 of whom are seeds.  Thus, 

when we document that training induced at least 5% of respondents to have conversations about pit 

planting with seeds, we establish that at least 3.75 households per village had a conversation with a 

seed farmer (3.75 = 0.05*75).  Based on Table 1, the mean degree of seeds is 11.63; thus, we expect 

that seeds have a conversation with 32% of their connections.   In other words, the 5% lower bound 

on conversations about pit planting suggests that 𝐶𝐶 ≈ 0.32. 

 Mean degree among farmer households in our study villages is about 7.  Thus, in our data 

𝐶𝐶𝐶𝐶 > 7 ∗ 0.32 = 2.24, where the greater than inequality is due to the fact that the 5% of 

experimentally exogenous conversations is a very restrictive lower bound.  In other words, using this 

bounding exercise, we are confident that 𝐶𝐶𝐶𝐶 > 1 and so adoption cascades should take place with 

random seeding. 

A.5. Micro-foundation of threshold model 

We develop this micro-foundation by extending a framework presented in Banerjee et al. 

(2016) (hence: BBCM).  One key insight in BBCM is that the majority of members of a social network 

may not have access to any useful signal when they are confronted with an entirely new technology.  

Thus, there are two parts to the learning problem for new technologies: acquiring a signal in the first 
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place (becoming informed) which may be costly, and forming a revised belief on the profitability of 

the new technology based on the signals received from informed connections.  Optimizing farmers 

adopt a new technology only if their beliefs change, and they are convinced by others that this would 

be more profitable than alternatives.29 

There are three key phases of decision-making in our model: (1) the farmer has to decide 

whether to acquire information30, (2) she has to combine the new information with her priors, and (3) 

she then decides whether to adopt the new technology. We will present and solve the model 

backwards, starting with the third phase. 

The farmer will choose to adopt the new technology in phase 3 if she believes that adoption 

will be profitable. Suppose farmer j knows the technology will cost her 𝑐𝑐𝑖𝑖 to adopt and believes the 

new technology has either profit 𝜋𝜋� or  𝜋𝜋� �𝜋𝜋� <  𝑐𝑐𝑖𝑖 < 𝜋𝜋��. 30F

31 Since the technology is new and farmer j 

is initially uninformed, she has a uniform prior as to whether the technology is profitable or not.  She 

can aggregate signals given by her connections to update her prior and make an informed adoption 

decision.   

We adopt the same learning environment modeled in BBCM: first, informed farmer i 

disseminates a binary signal, 𝐶𝐶𝑖𝑖 ∈ {𝜋𝜋�,𝜋𝜋�}, which is accurate with probability 𝛼𝛼 > 1
2
.  Uninformed 

farmers do not disseminate a signal.  Second, farmers follow DeGroot learning (DeMarzo et al. 2003).  

                                                            
29 A very different micro-foundation for a similar model is explored in Jackson and Storms (2019).  In that model, 
thresholds become relevant as individuals face greater payoffs from conforming to the behavior of their connections.  
Since coordination incentives for smallholder adoption of new agricultural technologies seem likely to be low, we pursue 
instead a model based on learning and individual optimization. 

30 There is a growing literature on how agents decide whether to seek out information. Banerjee et al. (2019a) – which 
builds on theoretical work by Chandrasekhar, Golub and Yang (2019) – demonstrate in the context of India’s 
demonetization that some agents choose to remain uninformed in order to avoid shame.  BenYishay et al. (2020) show 
that agents may choose not to receive agricultural information if the sender is a woman.  

31 Here for simplicity we follow BBCM in assuming that the distribution of profits is binary and known.  In practice, there 
will be uncertainty over a wider range of profits due to the potential performance of the technology under different 
agroclimatic conditions and different weather realizations.  While posterior distributions will be much more complicated 
under more realistic depictions of uncertainty, the key intuition driving the threshold model will be unchanged. 
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DeGroot learning can be interpreted as a boundedly rational version of Bayes learning, and suggests 

that farmers aggregate signals from their connections without attempting to calculate the inherent 

correlation structure between those signals. That is, if farmer j sees a signal of 𝜋𝜋� from both farmers i 

and k, she interprets that as two positive signals without decomposing the likelihood that farmer i and 

k are disseminating information obtained from the same source.32  Once farmers have observed signals 

from their informed connections, they aggregate those signals via Bayes’ rule. 

This framework suggests the following for the second phase of the farmer’s learning problem: 

suppose farmer j has 𝐶𝐶𝑖𝑖 informed contacts.  If farmer j decides to learn about the new technology 

from her informed contacts, and if H of those contacts provide the signal 𝐶𝐶 = 𝜋𝜋�, then the farmer’s 

posterior probability that 𝜋𝜋 =  𝜋𝜋� is given by33 

𝐸𝐸𝑖𝑖[𝜋𝜋 =  𝜋𝜋�] =
𝛼𝛼2𝐻𝐻−𝐷𝐷𝑗𝑗

𝛼𝛼2𝐻𝐻−𝐷𝐷𝑗𝑗 + (1 − 𝛼𝛼)2𝐻𝐻−𝐷𝐷𝑗𝑗  
 

Denote 𝜋𝜋�� = 𝜋𝜋� − 𝜋𝜋� and 𝑐𝑐𝚥𝚥� = 𝑐𝑐𝑖𝑖 − 𝜋𝜋�. With that posterior, the farmer would adopt the 

technology if  

𝑐𝑐�̃�𝑗
𝜋𝜋��
≤ 𝛼𝛼2𝐻𝐻−𝐷𝐷𝑗𝑗

𝛼𝛼2𝐻𝐻−𝐷𝐷𝑗𝑗+(1−𝛼𝛼)2𝐻𝐻−𝐷𝐷𝑗𝑗
≤ 𝛼𝛼𝐷𝐷𝑗𝑗

𝛼𝛼𝐷𝐷𝑗𝑗+(1−𝛼𝛼)𝐷𝐷𝑗𝑗
 (1) 

This model highlights a potential challenge to diffusing new technologies: when few other 

farmers are informed, then there is a ceiling on how much a new farmer’s priors would move even if 

they receive unanimously positive signals from the informed.  At early stages in the diffusion process, 

𝐶𝐶𝑖𝑖 may be small for most farmers. 

Last, we consider the first phase of the farmer’s learning problem, which is her decision to 

acquire signals and become informed.  Here, we depart from BBCM to suggest that there may be a 

                                                            
32 Chandrasekhar, Larreguy and Xandri (2020) provide laboratory evidence in support of DeGroot learning over Bayes 
learning in India.  Additional citations in favor of this boundedly-rational approximation can be found in BBCM. 

33 A simple proof is given in BBCM. 
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small cost to receiving a signal 𝜂𝜂.  This cost could be interpreted as “shoe leather” costs of acquiring 

information (which are not necessarily trivial in villages in rural Malawi as households may be fairly 

far apart), or as stigma from seeking information (e.g. Banerjee et al. 2019a).   

Thus, the farmer j with informed degree Dj  has an objective given by 

max
d≤Dj

�
1
2
��αh(1 − α)d−h�π� − cj� + (1 − α)hαd−h�π� − cj�� �I�

α2h−d
α2h−d + (1 − α2h−d) >

c�
π����� − ηd

h≤d

 

When η = 0, the dynamics of learning are explored by BBCM.  However, when η > 0 the 

dynamics are slightly different.  In that case (for small η), farmers will only become informed if   

αDj

αDj+(1−α)Dj
> c�j

π��  (2) 

In other words, farmers only choose to seek information if they have a large enough number 

of informed connections, such that it is possible that an informed decision would lead them to adopt.  

In this case (and for small η), farmers will choose to seek information when they have only one 

informed connection if 

α
α+(1−α)

> c�j
π��  (3) 

In general, they will choose to become informed with 𝜆𝜆 informed connections if  

αλ
αλ+(1−α)λ

> c�j
π��  (4) 

This implies that farmers choose to become informed about new technologies if expectations 

about the net benefits of technology are high (i.e., low costs and high potential gains), or if signals 

from individual other farmers are highly accurate. Under certain parameter values, just a single 

informed contact may be sufficient to induce farmers to seek information. That is the diffusion 

process that Centola and Macy (2007) refer to as a “simple contagion.” They demonstrate that some 

types of information – for example, job opportunities – spread in this way. On the other hand, if the 
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expected upside of the technology is more modest relative to costs, or if signals from other farmers 

have low accuracy, then farmers may only be persuaded to seek information when there is sufficient 

information to be gained from their network.34  In that case, for many farmers the lowest 𝜆𝜆 satisfying 

equation (4) may be larger than 1, and information diffusion follows a process termed “complex 

contagion” in the literature.35    

Our interpretation of the microeconomics of the threshold theory is that the thresholds result 

from an underlying process of farmers deciding whether to learn, given their information environment. 

This motivates an experimental design in which we seed new information in a network to improve 

the overall information environment, which can change incentives to learn and jump-start the 

technology diffusion process.  

Given that the econometrician is unlikely to observe signal accuracy (𝛼𝛼), the threshold 

required for adoption of a specific new technology is an empirical question.  As a numerical example, 

consider a technology with 30% potential returns (so that 𝜋𝜋�� = 1.3 𝑐𝑐𝚥𝚥�).  If signals are more than 77% 

accurate, farmers will choose to become informed if they have a single informed connection, and 

diffusion will follow a simple contagion.  If signal accuracy falls in the range of 65-77% accurate, then 

farmers will only become informed if they have 2 informed connections, and learning will follow a 

complex contagion.  If signals are less than 65% accurate, then farmers will need at least 3 informed 

connections to make an adoption decision.   In general, agents will face higher thresholds in contexts 

                                                            
34 Though not explicitly considered here, minimal thresholds for learning will also be higher if 𝜂𝜂 (the cost of information 
acquisition) is larger. 

35 Several theory papers have explored the implications of this model. In contrast to the “strength of weak ties” in labor 
markets proposed by Granovetter (1978), strong ties may be important for the diffusion of behaviors that require 
reinforcement from multiple peers. Centola (2010) provides experimental evidence that health behaviors diffuse more 
quickly through networks where links are clustered, consistent with complex contagion. Acemoglu et al. (2011) highlights 
that when contagion is complex, highly clustered communities will need a seed placed in the community in order to induce 
adoption. Finally, Monsted et al. (2017) provide experimental evidence generated by twitter-bots that twitter hashtag 
retweets follow a process which more closely resembles complex than simple contagion. 
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where signals are noisier, a point with implications for external validity which we return to in the 

concluding remarks. 

Model predictions and implications for the experiment 

The micro-foundation of the threshold model suggests that the model would need to be tested 

using the diffusion of a truly new technology, where would-be adopters are ex ante uninformed about 

the technology and face an important adoption decision. A corollary is that the threshold model should 

fit the data better in locations where the technology is more novel. A good empirical setting to test 

the model is also one in which agents are receiving noisy signals from the network.  

If thresholds exist and are above one, then seeding the network with multiple sources of 

information who are clustered in the same part of the network will achieve very different diffusion 

patterns than seeding the network with the same number of information sources spread more 

diffusely. Our experimental design will take advantage of this insight. When thresholds are above one, 

the information environment only induces learning when initial nodes share some connections, which 

we test using micro data on technology diffusion patterns.   

The model highlights that farmers will become informed when they have sufficiently many 

informed contacts.   However, conditional on being informed, they will only adopt the technology if 

the realization of signals from their connections are sufficiently positive.   These two facts suggest two 

different tests of the model. 

PREDICTION 1:  If most farmers in a village have a threshold �̅�𝜆, then people who are 

connected to at least �̅�𝜆 informed farmers should become informed themselves.  

PREDICTION 2: Adoption should increase most strongly among farmers who have high net 

benefits of adoption, who would adopt with a broader range of received signals.36  

                                                            
36 For clarity, the model assumed that the potential net benefits of production were known to the farmer before deciding 
whether to become informed about the technology.  In practice, farmers may or may not be aware that their private net 
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A.6. Simulation of cost-effective targeting strategies 

 For our simulations, we suppose that our extension agent starts with a random sample of 

candidate respondents, and is able to screen out individuals with less than 2 connections.  We suppose 

the extension agent starts with a list of 2-10 randomly selected farmers. 

Starting from that random sample of farmers, we solicit each farmer’s connections and 

calculate each random farmer’s degree.  We then focus on 6 candidate targeting strategies:  

A. Trains two randomly selected people from that list (used as a benchmark) 

B. Trains the two highest degree people from that list 

C. Select two random friends of the highest degree person from that list 

D. Trains the two highest degree connections of the highest degree farmer from the random 

sample (requires interviewing all connections of the highest degree respondent to 

determine their degree) 

E. Selects two farmers from that list at random; interviews two of their connections (selected 

at random) and trains two of the connections’ connections37 

F. Trains the highest degree respondent and one of his connections (at random). 

For each of these five candidate strategies, we simulate adoption rates after 4 rounds of 

simulations against the seeds chosen by our Complex treatment. We find that Strategy A, selecting 

two farmers at random, achieves 57% of the adoption produced by the Complex treatment.  We can 

then view the other targeting strategies in terms of their performance above the random benchmark.  

Strategy B is identical to random selection with only 2 initial interviews, and so similarly generates 

                                                            
benefits to adoption are high before becoming informed.  Only when a farmer is ex ante aware that she has relatively high 
net benefits will we see greater adoption associated with a greater propensity to become informed.    

37 This “friends of friends” approach to identifying central people was inspired by Feld (1991), Christakis and Fowler 
(2010), and Kim et al. (2015), who note that randomly selected connections tend to be more central than randomly selected 
nodes in a network.  We again assume that the extension agent is able to screen out potential trainees with less than two 
total connections. 
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57% adoption; however, as the extension agent interviews more people to identify these high degree 

individuals it performs somewhat better, achieving 70% of the complex contagion adoption with 10 

total interviews.  Strategies C and D both leverage the highest degree respondent from the initial 

random sample.  These perform the best out of the strategies we consider.  Strategy C achieves 73% 

of the optimized adoption with just two total interviews, which increases modestly to 76% of the 

optimized adoption as the number of interviews grows to 10 to better identify a high degree individual.   

Strategy D, our best performing strategy, achieves 84% of the optimized adoption with 2 initial 

interviews (necessitating 8 total interviews as the connections are interviewed), and up to 90% of the 

optimized adoption with 8 initial interviews (and 13 total interviews). Strategy E requires a total of 4 

interviews, and achieves 69% of the optimized adoption.  Strategy F achieves 60% of the optimized 

adoption with 2 interviews, and up to 67% of optimized adoption with up to 10 interviews. 

Clearly the most effective strategies are those that identify a high degree farmer and train her 

connections.  Given the nature of the complex contagion learning process, the intuition is clear: 

training two high degree friends of someone who is high degree means that three people with many 

connections in the same part of the network will become informed.  With clustered networks, it is 

likely that others will as well.   

 



        (1)    (2)    
Seed 0.126    
        (0.061)       
Adopted Pit Planting 0.443

(0.210)    
N       959    959    
Mean of Shadows       
Year 2,3    2,3

Notes
1

2 Agricultural yields were winsorized. The specification also controls for total 
farm size; controls used in the re-randomization routine (percent of village 
using compost at baseline; percent village using fertilizer at baseline; percent 
of village using pit planting at baseline); village size and its square; and 
district and year fixed effects.  Standard errors are clustered at the village 
level.

Sample includes only seed and shadow farmers.  Benchmark villages are 
excluded. 

Log of Agricultural Yields

Table A1: Agricultural Yields of Seeds Relative to Shadow (Counterfactual) 
Farmers



Farm Size Wealth Index 
(PCA)

(1) (2)
Treatment arm:

Complex Contagion -0.037    0.380    
(0.19)    (0.23)    

Simple Contagion -0.152    0.113    
(0.19)    (0.23)    

Geographic -0.614 -0.740
(0.19)    (0.23)    

P-values for Tests of Equality in Seed Characteristics
Simple = Complex 0.335 0.067    
Complex = Geographic 0.000 0.000    
Simple = Complex = Geographic 0.000 0.000    

N       1248 1248    
Mean Value for Seeds in Benchmark Treatment 
(omitted category) 2.06 0.626

   

SD for Seeds in Benchmark Treatment 2.97    1.7    

Notes
1

2

The sample includes all seeds and shadows. The sample frame includes 100 Benchmark 
farmers (2 partners in 50 villages), as we only observe Benchmark farmers in Benchmark 
treatment villages, and up to 6 additional partner farmers (2 Simple partners, 2 Complex 
partners, and 2 Geo partners) in all 200 villages.

Table A2: Characteristics of the Seeds Chosen by Each Treatment Arm

Benchmark treatment seeds are the reference category.



(1) (2) (3) (4)
Path Distance to 
Closest Partner

Simple 
Partner

Complex 
Partner Geo Partner Benchmark 

Seed
1 38% 42% 24% 33%
2 50% 41% 46% 44%
3 9% 10% 20% 14%

4 + 4% 6% 10% 9%
N 4856 4856 4856 922

Notes
1

2

Table A3: Distribution of Distance to Partner Farmers

The data in this analysis includes respondents in our household surveys, linked to 
the social network census to capture their connections - direct and indirect - to the 
partner (or seed) farmers. Seed and shadow farmers are themsevles removed, as 
well as the 6.5% of households in our sample (419) with zero measured 
connections.

In columns (1)-(3), connections to both seeds and shadow farmers are analyzied, 
while in column (4) we only look at connections to the Benchmark seed in 
Benchmark villages.



        
(1) (2) (3) (4) (5) (6) (7) (8)

Panel A
Seeds 0.518 0.367 0.245 0.258 0.230 0.182 0.137 0.047    
        (0.04)    (0.04)    (0.05)    (0.03)    (0.03)    (0.04)    (0.04)    (0.04)    

Years 1 2 3 1 2 3 1 2
N       659    735    503    686    672    489    686    467    
Mean of Shadows 0.165    0.187    0.291    0.0541    0.0929    0.139    0.32    0.207    
SD of Shadows 0.371    0.39    0.455    0.227    0.291    0.347    0.467    0.406    

Panel B
Simple diffusion -0.133 -0.067    0.108    -0.006    0.129 0.176 0.078    -0.097    

(0.07) (0.07)    (0.08)    (0.07)    (0.07)    (0.09)    (0.08)    (0.09)    
Complex diffusion -0.120 -0.058    0.007    -0.020    0.002    0.037    -0.001    -0.077    

(0.07) (0.07)    (0.08)    (0.08)    (0.07)    (0.08)    (0.08)    (0.09)    
Geographic -0.193 -0.255 -0.150    -0.095    -0.064    -0.003    -0.011    -0.075    

(0.07)    (0.07)    (0.09)    (0.08)    (0.07)    (0.08)    (0.08)    (0.10)    

Years 1 2 3 1 2 3 1 2
N       343    383    264    353    352    259    353    243    
Mean of Benchmark 0.824    0.653    0.547    0.337    0.276    0.238    0.442    0.339    
SD of Benchmark 0.383    0.479    0.502    0.476    0.45    0.429    0.5    0.478    
p-value for tests of equality in adoption rates across treatment cells:

Simple = Complex 0.872    0.904    0.242    0.862    0.077    0.108    0.311    0.808    
Complex = Geographic 0.377    0.016    0.111    0.36    0.358    0.625    0.886    0.977    
Joint test of 3 treatments 0.472    0.021    0.011    0.252    0.008    0.049    0.235    0.795    

Notes
1

2

In Panel A, all columns compare seed farmers to shadow farmers. Village fixed effects are included, and standard errors are clustered at the village level.

In Panel B, the sample includes only seed farmers, and the reference group is Benchmark seed farmers. The specification also includes controls which were used 
in the re-randomization routine (percent of village using compost at baseline; percent village using fertilizer at baseline; percent of village using pit planting at 
baseline); village size and its square; and district fixed effects.  Standard errors are clustered at the village level.

Table A4: Seed Knowledge and Adoption

Knows How to Pit Plant Adopts Pit Planting Adopts CRM



Simple Complex Geo Benchmark N p-value of 
joint test

(1) (2) (3) (4) (5) (6)
Housing (pca) -0.159 -0.036 0.023 0.106 14089 0.052

(0.05) (0.09) (0.21) (0.08)
Assets (pca) -0.059 -0.034 -0.040 0.005 14346 0.855

(0.07) (0.05) (0.06) (0.08)
Livestock (pca) 0.012 0.025 -0.087 0.014 14346 0.210

(0.06) (0.06) (0.04) (0.06)
Basal fertiliser (kg) 51.98 53.11 50.92 50.94 10427 0.970

(4.78) (3.14) (3.17) (2.23)
Top dressing fertiliser (kg) 49.82 49.49 50.28 52.11 10526 0.787

(3.33) (2.05) (2.53) (1.99)
# of Adults 2.305 2.316 2.299 2.306 14103 0.987

(0.02) (0.02) (0.03) (0.02)
# of Children 2.617 2.650 2.619 2.599 14346 0.847

(0.04) (0.05) (0.05) (0.04)
Farm size (acres) 1.624 1.676 1.764 1.808 14083 0.064

(0.08) (0.06) (0.09) (0.08)
Own land 0.904 0.907 0.903 0.913 14346 0.922

(0.01) (0.01) (0.02) (0.01)
Yields 304.20 290.46 303.54 300.77 13500 0.842

(18.63) (21.65) (20.71) (25.43)
Provided Ganyu 0.254 0.250 0.242 0.233 14078 0.599

(0.01) (0.02) (0.02) (0.02)
Used Ganyu 0.123 0.134 0.150 0.142 14078 0.115

(0.01) (0.01) (0.01) (0.01)

Notes
1

2

3

4 Ganyu is the term used in Malawi for hired wage labor on the farm. 

Table A5: Test of Balance across Randomized Treatment Arms

Housing, assets and livestock in the first three set of rows are pca scores. Housing includes information on: materials 
walls are made of, roof materials, floor materials and whether the household has a toilet.  Assets includes the number 
of bicycles, radios and cell phones the household owns. Livestock is an index including the number of sheep, goats, 
chickens, cows, pigs, guinea fowl, and doves.
Columns (1)-(4) give the means and standard errors of the variable listed in the title column in each of the treatment 
arms. The seeds and the shadow seeds are excluded from the sample. The data is from the social network census.

Column (6) shows the p-value of a joint test of significance of all treatment arms. Also included in the specification 
used for the test are controls used in the re-randomization routine (percent of village using compost at baseline; 
percent village using fertilizer at baseline; percent of village using pit planting at baseline) and district fixed effects.  
Standard errors are clustered at the village level.



Any Non-Seed 
Adopters

Adoption 
Rate

(1)    (2)    
Complex Diffusion Treatment -0.083    -0.037    

(0.062)    (0.027)    
Simple Diffusion Treatment -0.064    -0.026    

(0.060)    (0.027)    
Geographic treatment -0.152 -0.054

(0.070)    (0.029)    

Year 2 2
N       141    141    

Mean of Benchmark Treatment (omitted category) 0.971    0.204    

SD of Benchmark 0.169    0.109    

p -values for tests of equality of coefficients…
Test: Simple = Complex 0.794    0.680    
Test: Complex = Geo 0.258    0.366    
Test: Simple = Geo 0.336    0.583    

Notes
1

2
3

Table A6: Village Level Adoption Outcomes for Crop Residue Management (CRM)

The "Any non-seed adopters" indicator in columns (1) excludes seed farmers. The 
adoption rate in column (2) include all randomly sampled farmers, excluding seed and 
shadow farmers.  
Analysis restricted to data from Mwanza and Machinga.
All columns include controls used in the re-randomization routine (percent of village using 
compost at baseline; percent village using fertilizer at baseline; percent of village using pit 
planting at baseline); village size and its square; and district fixed effects.  Standard errors 
are clustered at the village level.
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