Outline

Real Exchange Rate

Open Economy Macro

→ Temporary Short run shocks.
 \[E^* \]
 Not changed \[P \text{ fixed} \]

→ IS-LM model.
 (Mundell-Fleming Model).

→ Experiment
 High \(S \), Low \(M \)

\[\text{IS-LM} \left\{ \begin{align*}
\text{Early 80's dollar appreciated} \\
\text{US current account went into deficit.} \\
\text{US economy strong} \\
\text{tight money} \\
\text{loose S.}
\end{align*} \right. \\
\text{Beggar-thy-neighbor policy.} \]
Real exchange rate

\[E = \frac{\text{domestic currency}}{\text{foreign currency}}. \]

Appreciation: \(E \uparrow \)
Depreciation: \(E \downarrow \)

\(E \) = quantity of domestic goods you give up to acquire one unit of foreign goods.

Unit of foreign goods
\(p^x \) = foreign currency.
\(E p^x \) = domestic currency.

\[\frac{E p^x}{p} = n + \text{domestic goods} \]

\[E = \frac{\text{open economy}}{\text{US dollar real depreciation}} \]

\(Z = C^o + I^o + S^o + \frac{X^o - \Pi^o}{NX} \)

Japan, Britain, Italy
\[NX = NX(y, y^*, ε) \]

\[NX = X - M \]

\[c_{foreign} + c_{domestic} = c_0 + c_1(y - T) \]

\[M = c_{foreign} + I_{foreign} + G_{foreign} \]

US historical data: \(y \) high tend to see \(NX \) low.

\[ε \uparrow = \frac{E p^*}{p} \uparrow \]

⇒ foreign goods more expensive relative to domestic goods.

\[X(ε) + M(ε) \]

(Marshall-Lerner conditions)

Not something we will discuss
Open Economy Macro

Importance, in short run, of demand, for \(Y \).

Medium run, Demand has zero importance for \(Y \) does have impact on the composition.

Long Run: composition of spending matters for \(Y \) because \(I \) matters for the resources that are available for production in the future.

Worst episode in US history.

Great Depression demand.

\[\text{AS} \]

\[\text{tariffs} \uparrow \]

\[\text{foreign AD} \]

\[\text{tariffs} \uparrow \]

Trade in the 30's stopped,
Short run model:

- Fixed
- E^e

Planned = $E - b_i$

$C_0 + c_r(Y - T)$

$C_0L \sim$ pessimism of household.

E expectation of stock market collapse could shift up.

Endogenous variables: Y, E, E.

Goods market: IS curve

Money market: $\frac{M^s}{p} = L(i)Y$.

$\text{UIP} \quad i = r_s^* + \frac{E^e}{E} - 1$
\[Z = C_0 + C_1 (y - T) + \Psi - 6i + \bar{6} + N \times (y, y', e). \]

\[\varepsilon = \frac{E_{\text{P}}^*}{P} \]

\[\dot{i} = i^* + \frac{E^*}{E} - 1 \]

\[\dot{i} = 1 \quad i - i^* + 1 = \frac{E^*}{E} \]

\[E = \frac{E_{\text{P}}^*}{i - i^* + 1} \]

The path expected to be taken is depicted.

\[Z = C_0 + C_1 (y - T) + \Psi - 6i + \bar{6} + N \times (y, y', \frac{E_{\text{P}}^*}{p (i - i^* + 1)}) \]

The slope is depicted.
\[z = c_0 + c_1 (y - t) + \xi - b_i \]

\[\frac{p^* E^e}{p(1 - \pi^*)} + nx(y, y^*, \frac{p^* E^e}{p(1 - \pi^*)}) \]

\[i \quad \text{planned} \quad \uparrow \]

\[E \uparrow \quad \text{(because asset traders want to get out of US)} \]

\[E = \frac{Ep^*}{p} \quad \uparrow \]

\[nx \uparrow \]
Begja Neigh

Love $i \rightarrow E \uparrow$ means $N \times$ higher.