Simplest New Keynesian Model without Capital

Lawrence J. Christiano

Objective

• Describe the model sufficiently, so that 'homework #9' can be done.

 Define the model, display its linearized equilibrium conditions.

Define a model 'solution'.

Clarida-Gali-Gertler Model

Households maximize:

$$E_0 \sum_{t=0}^{\infty} \left(\log C_t - \exp(\tau_t) \frac{N_t^{1+\varphi}}{1+\varphi} \right), \ \tau_t = \lambda \tau_{t-1} + \varepsilon_t^{\tau}, \ \varepsilon_t^{\tau} \sim iid,$$

Subject to:

$$P_t C_t + B_{t+1} \leq W_t N_t + R_{t-1} B_t + T_t$$

Intratemporal first order condition:

$$C_t \exp(\tau_t) N_t^{\varphi} = \frac{W_t}{P_t}$$

Household Intertemporal FONC

Condition:

$$1 = \beta E_t \frac{u_{c,t+1}}{u_{c,t}} \frac{R_t}{1 + \pi_{t+1}}$$

- or

$$1 = \beta E_{t} \frac{C_{t}}{C_{t+1}} \frac{R_{t}}{1 + \pi_{t+1}}$$

$$= \beta E_{t} \exp[\log(R_{t}) - \log(1 + \pi_{t+1}) - \Delta c_{t+1}]$$

$$\simeq \beta \exp[\log(R_{t}) - E_{t}\pi_{t+1} - E_{t}\Delta c_{t+1}], c_{t} \equiv \log(C_{t})$$

– take log of both sides:

$$0 = \log(\beta) + r_t - E_t \pi_{t+1} - E_t \Delta c_{t+1}, r_t = \log(R_t)$$

$$- \text{ or }$$

$$c_t = -\log(\beta) - [r_t - E_t \pi_{t+1}] + c_{t+1}$$

Firms

Competitive final good firms:

$$Y_{t} = \left[\int_{0}^{1} Y_{i,t}^{\frac{\varepsilon-1}{\varepsilon}}\right]^{\frac{\varepsilon}{\varepsilon-1}} di, \ \varepsilon > 1,$$

– First order condition:

$$Y_{i,t} = Y_t \left(\frac{P_t}{P_{i,t}}\right)^{\varepsilon}.$$

 Intermediate good producer (monopolist in output, competitive in labor market):

$$Y_{i,t} = \exp(a_t)N_{i,t}, \ \Delta a_t = \rho \Delta a_{t-1} + \varepsilon_t^a,$$

Calvo price frictions

$$P_{i,t} = \begin{cases} \tilde{P}_t & \text{with probability } 1 - \theta \\ P_{i,t} & \text{with probability } \theta \end{cases},$$

Marginal Cost

real marginal cost=
$$s_t = \frac{\frac{d \text{Cost}}{d \text{worker}}}{\frac{d \text{output}}{d \text{worker}}} = \frac{(1 - v)W_t/P_t}{\exp(a_t)}$$

household efficiency condition
$$\underbrace{\frac{-\frac{1}{\lambda_f}}{(1-v)}C_t\exp(\tau_t)N_t^{\varphi}}_{\exp(a_t)}$$

 in steady state marginal cost and product of labor equal ('first-best'):

$$s = \frac{1}{\lambda_f} = \frac{\frac{1}{\lambda_f} C_t \exp(\tau_t) N_t^{\varphi}}{\exp(a_t)} \to \frac{C_t \exp(\tau_t) N_t^{\varphi}}{\exp(a_t)} = 1$$

Optimal Monetary Policy

- Properties of (Ramsey-) optimal monetary policy in CGG model when effects of monopoly power are extinguished with an employment subsidy to monopolists:
 - Inflation is zero for all t and for all realizations of shocks.
 - Allocations coincide with allocations in first-best ('natural') equilibrium.
 - Proof: see, among other places,
 http://faculty.wcas.northwestern.edu/~lchrist/course/optimalpolicyhandout.pdf

First Best Allocations

Maximize:

$$E_0 \sum_{t=0}^{\infty} \left(\log C_t - \exp(\tau_t) \frac{N_t^{1+\varphi}}{1+\varphi} \right), \ \tau_t = \lambda \tau_{t-1} + \varepsilon_t^{\tau}, \ \varepsilon_t^{\tau} \sim iid,$$

- Subject to $C_t = \exp(a_t)N_t$
- Intratemporal first order condition:

$$\frac{\text{marginal utility of leisure}}{\text{marginal utility of consumption}} = C_t \exp(\tau_t) N_t^{\varphi} = \exp(a_t) = \text{marginal product of labor}$$

– natural employment and consumption:

$$\log(N_t^*) = -\frac{\tau_t}{1+\varphi}, \log(C_t^*) = a_t - \frac{\tau_t}{1+\varphi}$$

Natural Rate of Interest

Given natural consumption, intertemporal
 Euler equation defines natural rate of interest

$$1 = \beta E_t \frac{u_{c,t+1}^*}{u_{c,t}^*} \frac{R_t^*}{1 + \pi_{t+1}^*}$$

Applying the same log as before: = Zero

$$c_t^* = -\log(\beta) - [r_t^* - E_t \pi_{t+1}^*] + c_{t+1}^*$$

$$c_t^* = \log(C_t^*), r_t^* = \log R_t, \pi_t^* = 0$$

The natural rate:

$$r_t^* = -\log(\beta) + E_t[c_{t+1}^* - c_t^*]$$

Key Features of First-Best

- Employment does not respond to technology
 - Improvement in technology raises marginal product of labor and marginal cost of labor by same amount.
- First best consumption not a function of intertemporal considerations
 - Discount rate irrelevant.
 - Anticipated future values of shocks irrelevant.
- Natural rate of interest steers consumption and employment towards their natural levels.

Back to Actual Economy

• Output gap, x_t

$$x_t = c_t - c_t^*$$

Intertemporal conditions in natural and actual equilibrium:

$$c_{t} = -\log(\beta) - [r_{t} - E_{t}\pi_{t+1}] + E_{t}c_{t+1}$$

$$c_{t}^{*} = -\log(\beta) - r_{t}^{*} + E_{t}c_{t+1}^{*}$$

Subtract, to obtain familiar IS equation:

$$x_{t} = E_{t}x_{t+1} - [r_{t} - E_{t}\pi_{t+1} - r_{t}^{*}]$$

Actual Economy

Marginal cost:

$$s_t = \frac{\frac{1}{\lambda_f} C_t \exp(\tau_t) N_t^{\varphi}}{\exp(a_t)}$$

$$= \frac{1}{\lambda_f} C_t^{1+\varphi} \left[\frac{\exp\left(\frac{\tau_t}{1+\varphi}\right)}{\exp(a_t)} \right]^{(1+\varphi)} = \frac{1}{\lambda_f} \left(\frac{C_t}{C_t^*}\right)^{1+\varphi}$$

Then,

a hat indicates log-deviation from steady state

$$\hat{s}_t \qquad \qquad = \log(s_t \lambda_f) = (1 + \varphi)(c_t - c_t^*) \\
= (1 + \varphi)x_t$$

Actual Economy

 Phillips curve summarizes price setting by intermediate good firms:

$$\pi_t = \beta E_t \pi_{t+1} + \frac{(1-\xi_p)(1-\beta\xi_p)}{\xi_p} \hat{s}_t$$

or, substituting from previous slide

$$\pi_t = \beta E_t \pi_{t+1} + \frac{(1 - \xi_p)(1 - \beta \xi_p)}{\xi_p} (1 + \varphi) x_t$$

Equations of Actual Equilibrium Closed by Adding Policy Rule

 $\pi_t = \beta E_t \pi_{t+1} + \kappa x_t$ (Calvo pricing equation)

$$x_t = -[r_t - E_t \pi_{t+1} - r_t^*] + E_t x_{t+1}$$
 (intertemporal equation)

$$r_t = \alpha r_{t-1} + (1 - \alpha)[\phi_{\pi}\pi_t + \phi_x x_t] + u_t$$
 (policy rule)

$$r_t^* = E_t(y_{t+1}^* - y_t^*) = E_t \left(\Delta a_{t+1} - \frac{1}{1+\varphi} \Delta \tau_{t+1} \right)$$
 (natural rate)

$$y_t^* = a_t - \frac{1}{1+\varphi} \tau_t$$
 (natural output), $x_t = y_t - y_t^*$ (output gap)

also, time series representations for shocks listed above

Solving the Model

Express the equations in matrix form:

$$z_{t} = \begin{pmatrix} \pi_{t} \\ x_{t} \\ r_{t} \\ r_{t}^{*} \end{pmatrix}, s_{t} = \begin{pmatrix} \tau_{t} \\ a_{t} \\ u_{t} \end{pmatrix}, \varepsilon_{t} = \begin{pmatrix} \varepsilon_{t}^{\tau} \\ \varepsilon_{t}^{a} \\ \varepsilon_{t}^{u} \end{pmatrix}$$

$$(*) \alpha_{0}E_{t}z_{t+1} + \alpha_{1}z_{t} + \alpha_{2}z_{t-1} + \beta_{0}E_{t}s_{t+1} + \beta_{1}s_{t} = 0$$

$$s_{t} = Ps_{t-1} + \varepsilon_{t}$$

 Solution: A and B matrices such that (*) is satisfied and

$$z_t = A z_{t-1} + B s_t$$