Simplest New Keynesian Model
without Capital



Objective

Describe the model sufficiently, so that
‘homework #9’ can be done.

Define the model, display its linearized
equilibrium conditions.

Define a model ‘solution’.



Clarida-Gali-Gertler Model

e Households maximize:
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e Subject to:
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e Intratemporal first order condition:
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Household Intertemporal FONC

e Condition:
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— take log of both sides:
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Firms

e Competitive final good firms:
1 e
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— First order condition:
Fir = Yt<f]::t ) |
* |Intermediate good producer (monopolist in
output, competitive in labor market):
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— Calvo price frictions
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Marginal Cost

dCost
dworker _ (1 — V)VV;/P;

real marginal cost=s; =

doutput exp (Clt )
dworker
_1
rf
household efficiency condition <
— (1-v) Ciexp(z)Ny

exp(a;,)
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Optimal Monetary Policy

e Properties of (Ramsey-) optimal monetary policy
in CGG model when effects of monopoly power
are extinguished with an employment subsidy to
monopolists:

— Inflation is zero for all t and for all realizations of
shocks.

— Allocations coincide with allocations in first-best
(‘natural’) equilibrium.

— Proof: see, among other places,
http://faculty.wcas.northwestern.edu/~Ichri
st/course/optimalpolicyhandout.pdf



First Best Allocations

e Maximize:
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e Intratemporal first order condition:

marginal utility of leisure = C;exp(z,)N; = exp(a;) = marginal product of labor

marginal utility of consumption

— natural employment and consumption:
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Natural Rate of Interest

e Given natural consumption, intertemporal
Euler equation defines natural rate of interest
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Key Features of First-Best

e Employment does not respond to technology

— Improvement in technology raises marginal
product of labor and marginal cost of labor by
same amount.

e First best consumption not a function of
intertemporal considerations
— Discount rate irrelevant.

— Anticipated future values of shocks irrelevant.

* Natural rate of interest steers consumption
and employment towards their natural levels.



Back to Actual Economy
 QOutput gap, X«

Xt =Ct—C;
* [ntertemporal conditions in natural and actual
equilibrium:
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e Subtract, to obtain familiar IS equation:
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Actual Economy
e Marginal cost:
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e Then,
a hat indicates log-deviation from steady state
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Actual Economy

e Phillips curve summarizes price setting by
intermediate good firms:
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e or, substituting from previous slide
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Equations of Actual Equilibrium
Closed by Adding Policy Rule

. = PEm41 + kx, (Calvo pricing equation)
x; = —[r,— Ema1 —rf ]+ Exqa (Intertemporal equation)

re=arc1+ QA —a)[d.m,+ ¢xx:] + u; (policy rule)

ri =EOi—y) = Et(AaHl ~ 7 i - Aml) (natural rate)

Vi=ai- 14

p 7, (natural output), x;, =y, — y/ (output gap)

also, time series representations for shocks listed above



Solving the Model

e Express the equations in matrix form:
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e Solution: A and B matrices such that (*) is

satisfied and
z; = Az, 1 + Bs;





