Bayesian Maximum Likelihood

• Bayesians describe the mapping from prior beliefs about θ , summarized in $p(\theta)$, to new posterior beliefs in the light of observing the data, Y^{data} .

• General property of probabilities:

$$p(Y^{data}, \theta) = \begin{cases} p(Y^{data}|\theta) \times p(\theta) \\ p(\theta|Y^{data}) \times p(Y^{data}) \end{cases},$$

which implies Bayes' rule:

$$p\left(\theta|Y^{data}\right) = \frac{p\left(Y^{data}|\theta\right)p\left(\theta\right)}{p\left(Y^{data}\right)},$$

mapping from prior to posterior induced by Y^{data} .

Bayesian Maximum Likelihood ...

- ullet Properties of the posterior distribution, $p\left(\theta|Y^{data}\right)$.
 - The value of θ that maximizes $p\left(\theta|Y^{data}\right)$ ('mode' of posterior distribution).
 - Graphs that compare the marginal posterior distribution of individual elements of θ with the corresponding prior.
 - Probability intervals about the mode of θ ('Bayesian conf dence intervals')
 - Other properties of $p\left(\theta|Y^{data}\right)$ helpful for assessing model 'f t'.

Bayesian Maximum Likelihood ...

• Computation of mode sometimes referred to as 'Basyesian maximum likelihood':

$$\theta^{\text{mod }e} = \arg\max_{\theta} \left\{ \log \left[p\left(Y^{data} | \theta \right) \right] + \sum_{i=1}^{N} \log \left[p_i\left(\theta_i \right) \right] \right\}$$

maximum likelihood with a penalty function.

- Shape of posterior distribution, $p\left(\theta|Y^{data}\right)$, obtained by Metropolis-Hastings algorithm.
 - Algorithm computes

$$\theta\left(1\right),...,\theta\left(N\right),$$

which, as $N \to \infty$, has a density that approximates $p\left(\theta|Y^{data}\right)$ well.

– Marginal posterior distribution of any element of θ displayed as the histogram of the corresponding element $\{\theta(i), i = 1, ..., N\}$

• We have (except for a constant):

$$f\left(\underbrace{\theta}_{N\times 1}|Y\right) = \frac{f(Y|\theta) f(\theta)}{f(Y)}.$$

ullet We want the marginal posterior distribution of θ_i :

$$h(\theta_i|Y) = \int_{\theta_{i\neq i}} f(\theta|Y) d\theta_{i\neq i}, i = 1, ..., N.$$

- MCMC algorithm can approximate $h(\theta_i|Y)$.
- Obtain (V produced automatically by gradient-based maximization methods):

$$\theta^{\text{mod } e} \equiv \theta^* = \arg\max_{\theta} f\left(Y|\theta\right) f\left(\theta\right), \ V \equiv \left[-\frac{\partial^2 f\left(Y|\theta\right) f\left(\theta\right)}{\partial \theta \partial \theta'} \right]_{\theta=\theta^*}^{-1}.$$

• Compute the sequence, $\theta^{(1)}, \theta^{(2)}, ..., \theta^{(M)}$ (M large) whose distribution turns out to have pdf $f(\theta|Y)$.

$$-\theta^{(1)}=\theta^*$$

- to compute $\theta^{(r)}$, for r > 1
 - * step 1: select candidate $\theta^{(r)}$, x,

$$\operatorname{draw} \underbrace{x}_{N \times 1} \text{ from } \theta^{(r-1)} + \underbrace{kN\left(\underbrace{0}_{N \times 1}, V\right)}, \text{ k is a scalar}$$

* step 2: compute scalar, λ :

$$\lambda = \frac{f(Y|x) f(x)}{f(Y|\theta^{(r-1)}) f(\theta^{(r-1)})}$$

* step 3: compute $\theta^{(r)}$:

$$\theta^{(r)} = \begin{cases} \theta^{(r-1)} & \text{if } u > \lambda \\ x & \text{if } u < \lambda \end{cases}, \text{ } u \text{ is a realization from uniform } [0, 1]$$

- ullet Approximating marginal posterior distribution, $h\left(\theta_{i}|Y\right)$, of θ_{i}
 - compute and display the histogram of $\theta_i^{(1)}, \theta_i^{(2)}, ..., \theta_i^{(M)}, i = 1, ..., N$.
- Other objects of interest:
 - mean and variance of posterior distribution θ :

$$E\theta \simeq \bar{\theta} \equiv \frac{1}{M} \sum_{j=1}^{M} \theta^{(j)}, \ Var\left(\theta\right) \simeq \frac{1}{M} \sum_{j=1}^{M} \left[\theta^{(j)} - \bar{\theta}\right] \left[\theta^{(j)} - \bar{\theta}\right]'.$$

_

- Some intuition
 - Algorithm is more likely to select moves into high probability regions than into low probability regions.

– Set, $\left\{\theta^{(1)},\theta^{(2)},...,\theta^{(M)}\right\}$, populated relatively more by elements near mode of $f\left(\theta|Y\right)$.

– Set, $\left\{\theta^{(1)},\theta^{(2)},...,\theta^{(M)}\right\}$, also populated (though less so) by elements far from mode of $f\left(\theta|Y\right)$.

- Practical issues
 - what value should you set k to?
 - * set k so that you accept (i.e., $\theta^{(r)} = x$) in step 3 of MCMC algorithm are roughly 27 percent of time
 - what value of M should you set?
 - * a value so that if M is increased further, your results do not change
 - \cdot in practice, M=10,000 (a small value) up to M=1,000,000.
 - large M is time-consuming. Could use Laplace approximation (after checking its accuracy) in initial phases of research project.

- In practice, Metropolis-Hasting algorithm very time intensive. Do it last!
- In practice, Laplace approximation is quick, essentially free and very accurate.
- \bullet Let $\theta \in R^N$ denote the N-dimensional vector of parameters and

$$g(\theta) \equiv \log f(y|\theta) f(\theta)$$
,

 $f(y|\theta)$ ~likelihood of data

 $f(\theta)$ ~prior on parameters

 θ^* ~maximum of $g(\theta)$ (i.e., mode)

• Second order Taylor series expansion about $\theta = \theta^*$:

$$g(\theta) \approx g(\theta^*) + g_{\theta}(\theta^*)(\theta - \theta^*) - \frac{1}{2}(\theta - \theta^*)'g_{\theta\theta}(\theta^*)(\theta - \theta^*),$$

where

$$g_{\theta\theta}(\theta^*) = -\frac{\partial^2 \log f(y|\theta) f(\theta)}{\partial \theta \partial \theta'}|_{\theta=\theta^*}$$

• Interior optimality implies:

$$g_{\theta}\left(\theta^{*}\right)=0,\ g_{\theta\theta}\left(\theta^{*}\right)$$
 positive definite

• Then,

$$f(y|\theta) f(\theta) \simeq f(y|\theta^*) f(\theta^*) \exp \left\{ -\frac{1}{2} (\theta - \theta^*)' g_{\theta\theta} (\theta^*) (\theta - \theta^*) \right\}.$$

Note

$$\frac{1}{(2\pi)^{\frac{N}{2}}} |g_{\theta\theta} (\theta^*)|^{\frac{1}{2}} \exp\left\{-\frac{1}{2} (\theta - \theta^*)' g_{\theta\theta} (\theta^*) (\theta - \theta^*)\right\}$$

= multinormal density for N - dimensional random variable θ

with mean θ^* and variance $g_{\theta\theta} (\theta^*)^{-1}$.

- So, posterior of θ_i (i.e., $h(\theta_i|Y)$) is approximately $\theta_i \sim N\left(\theta_i^*, \left[g_{\theta\theta}(\theta^*)^{-1}\right]_{ii}\right)$.
- This formula for the posterior distribution is essentially free, because $g_{\theta\theta}$ is computed as part of gradient-based numerical optimization procedures.

- ullet Marginal likelihood of data, y, is useful for model comparisons. Easy to compute using the Laplace approximation.
- Property of Normal distribution:

$$\int \frac{1}{(2\pi)^{\frac{N}{2}}} |g_{\theta\theta}(\theta^*)|^{\frac{1}{2}} \exp\left\{-\frac{1}{2} (\theta - \theta^*)' g_{\theta\theta}(\theta^*) (\theta - \theta^*)\right\} d\theta = 1$$

• Then,

$$\int f(y|\theta) f(\theta) d\theta \simeq \int f(y|\theta^*) f(\theta^*) \exp\left\{-\frac{1}{2} (\theta - \theta^*)' g_{\theta\theta} (\theta^*) (\theta - \theta^*)\right\} d\theta
= \frac{f(y|\theta^*) f(\theta^*)}{\frac{1}{(2\pi)^{\frac{N}{2}}} |g_{\theta\theta} (\theta^*)|^{\frac{1}{2}}} \int \frac{1}{(2\pi)^{\frac{N}{2}}} |g_{\theta\theta} (\theta^*)|^{\frac{1}{2}} \exp\left\{-\frac{1}{2} (\theta - \theta^*)' g_{\theta\theta} (\theta^*) (\theta - \theta^*)\right\} d\theta$$

$$= \frac{f(y|\theta^*) f(\theta^*)}{\frac{1}{(2\pi)^{\frac{N}{2}}} |g_{\theta\theta}(\theta^*)|^{\frac{1}{2}}}.$$

• Formula for marginal likelihood based on Laplace approximation:

$$f(y) = \int f(y|\theta) f(\theta) d\theta \simeq (2\pi)^{\frac{N}{2}} \frac{f(y|\theta^*) f(\theta^*)}{|g_{\theta\theta}(\theta^*)|^{\frac{1}{2}}}.$$

• Suppose $f(y|Model\ 1) > f(y|Model\ 2)$. Then, posterior odds on Model 1 higher than Model 2.

• 'Model 1 f ts better than Model 2'

• Can use this to compare across two different models, or to evaluate contribution to f t of various model features: habit persistence, adjustment costs, etc.