Bayesian Maximum Likelihood

e Bayesians describe the mapping from prior beliefs about #, summarized in
p (0) , to new posterior beliefs in the light of observing the data, Y9,

e General property of probabilities:

data _ p (Ydata|6)) Xp ((9>
p <Y 79) — { D (H‘Ydata) X D (Ydata) )
which implies Bayes’ rule:

p (Y*0) p (0)
D (Ydata) !

D (e‘ydata) _

mapping from prior to posterior induced by Y 9.
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Bayesian Maximum Likelihood ...

e Properties of the posterior distribution, p (0]Y ) .
— The value of 6 that maximizes p (0 |Yd“m) (‘mode’ of posterior distribution).

— Graphs that compare the marginal posterior distribution of individual
elements of 6 with the corresponding prior.

— Probability intervals about the mode of 6 (‘Bayesian conf dence intervals’)

— Other properties of p (9|Ydam) helpful for assessing model ‘ft’.
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Bayesian Maximum Likelihood ...

e Computation of mode sometimes referred to as ‘Basyesian maximum
likelihood’:

N
emode _ l Ydata 0 1 i (92
argmgX{og[p( | )]+2 og [pi (6;)]
maximum likelithood with a penalty function.

e Shape of posterior distribution, p (H\Ydam) , obtained by Metropolis-Hastings
algorithm.
— Algorithm computes

which, as N — o0, has a density that approximates p (H\Yd“m) well.

— Marginal posterior distribution of any element of 6 displayed as the
histogram of the corresponding element {6 (¢) ,¢ = 1,.., N}
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Metropolis-Hastings Algorithm (MCMC)

e We have (except for a constant):

(Y10 £ (0
FY)

e We want the marginal posterior distribution of 6; :

(e

Nx1

h(0;)Y) = / fO)Y)do;s, i=1,..,N.
0ji
e MCMC algorithm can approximate h (6;|Y").

e Obtain (V" produced automatically by gradient-based maximization methods):

~1
g = g — g max f (Y16) £ (6), V = [_a%f <Y|9>f(9)] |
0=0"

000"
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Metropolis-Hastings Algorithm (MCMC) ...

e Compute the sequence, 9(1), 9(2), e pM) (M large) whose distribution turns

out to have pdf f (A]Y).
_ o) — p*
— to compute 8", for r > 1

% step 1: select candidate ) z,
‘jump’ distribution’

Va

draw _z  from 6"V +/~€N< 0 V), k is a scalar

-~

N~ ~—~—"
Nx1 Nx1
% step 2: compute scalar, A :

f(Ylz) f(x)

)

% step 3: compute 6" :
o) _ 0= ity > \
r ifu<A’

u is a realization from uniform |0, 1]
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Metropolis-Hastings Algorithm (MCMC) ...
e Approximating marginal posterior distribution, h (6;|Y) , of 6;

1)

— compute and display the histogram of 6., 9i2), LG0T =1, ..

1

e Other objects of interest:

— mean and variance of posterior distribution 6 :

I R 1 Mo |
EO ~0 M;H(])’ Var (6) ~ M; {(9(3) —0] [9(]

N—
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Metropolis-Hastings Algorithm (MCMC) ...

e Some intuition

— Algorithm 1s more likely to select moves into high probability regions than
into low probability regions.

— Set, {9(1), 9(2), .., 0 (M) } , populated relatively more by elements near mode
of f(AY).

— Set, {(9(1), 02 .. WM )} , also populated (though less so) by elements far
from mode of f (A]Y).
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Metropolis-Hastings Algorithm (MCMC) ...

e Practical issues

— what value should you set £ to?

% set k so that you accept (i.c., plr) = x) in step 3 of MCMC algorithm are
roughly 27 percent of time

— what value of M should you set?

* a value so that if M is increased further, your results do not change

- in practice, M = 10, 000 (a small value) up to M = 1, 000, 000.

— large M 1is time-consuming. Could use Laplace approximation (after
checking its accuracy) in initial phases of research project.
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Laplace Approximation to Posterior Distribution

e In practice, Metropolis-Hasting algorithm very time intensive. Do it last!
e In practice, Laplace approximation is quick, essentially free and very accurate.

o Let § € RV denote the /N —dimensional vector of parameters and

g(0) =log f(y]0) f(0),

f (y|0) ~likelihood of data
f (6) ~prior on parameters

0" ~maximum of ¢ (0) (i.e., mode)
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Laplace Approximation to Posterior Distribution ...

e Second order Taylor series expansion about 6 = 6™ :

9(6) % g (0) + 90 (0°) (0 — 67) — (6 — %) gog (6°) (6 — ).

Slog £ (y16) £ (6)

g(9(9 (9*) — 8989/ |9=€*

e Interior optimality implies:
gg (67) =0, gpg (07) positive def nite

e Then,

FOI0) 1) = £ 0167 ) e { =3 (6 - ) g (67) 0~ 07}
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Laplace Approximation to Posterior Distribution ...
e Note

1

Sl @) e {500 w0 00

= multinormal density for NV — dimensional random variable ¢

with mean #* and variance ggg (6*) " .

e So, posterior of 0; (i.e., h (6;]Y")) is approximately

0o (0. om0 )

e This formula for the posterior distribution is essentially free, because gyg 1s
computed as part of gradient-based numerical optimization procedures.
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Laplace Approximation to Posterior Distribution ...

e Marginal likelihood of data, ¥, 1s useful for model comparisons. Easy to
compute using the Laplace approximation.

e Property of Normal distribution:

! *% 1 *\/ " N B
/(27T) |966(9)‘ eXp{—§(t9—19)gQQ(Q)(Q_(9>}d(9_1

w2

e Then,

/f (yl0) f dQN/f (y0%) f exp{—%(ﬁ 0" go0 (07) (9—9*)}d9

_ Sl f R R
i lon @ )\%/@m% o @ ¥ p{ 5 0= 07) 900 (67) (6 9)}d9

f Wl0") £ (67)

1 *
R 0
2 ¥ |999( )\

N |—
.
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Laplace Approximation to Posterior Distribution ...

e Formula for marginal likelithood based on Laplace approximation:

x f(ylo”) f(07)
— 0 0) df ~ (27)> :
/() /f(y\ ) f(0) (2m) o (6]

N[ —

e Suppose f(y|Model 1) > f(y|Model 2). Then, posterior odds on Model 1
higher than Model 2.

e ‘Model 1 fts better than Model 2’

e Can use this to compare across two different models, or to evaluate contribution
to f't of various model features: habit persistence, adjustment costs, etc.
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