Bayesian Maximum Likelihood

e Bayesians describe the mapping from prior beliefs about #, summarized in
p (0) , to new posterior beliefs in the light of observing the data, Y9,

e General property of probabilities:

data _ p (Ydata|6)) Xp ((9)
p (Y 79) — { D (Q‘Ydata) X D (Ydata) )
which implies Bayes’ rule:
p (Y""10) p ()
D (Ydata) !

mapping from prior to posterior induced by Y @,

D (G‘Ydata) _

26



Bayesian Maximum Likelihood ...

e Properties of the posterior distribution, p (0]Y*) .
— The value of ¢ that maximizes p (#]Y“**) (‘mode’ of posterior distribution).

— Graphs that compare the marginal posterior distribution of individual
elements of 6 with the corresponding prior.

— Probability intervals about the mode of 6 (‘Bayesian confidence intervals’)

— Other properties of p (6|Y %) helpful for assessing model ‘fit’.
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Bayesian Maximum Likelihood ...

e Computation of mode sometimes referred to as ‘Basyesian maximum
likelihood’:

N
mode data . .
0 = arg max {1og p (Y"0)]| + ; log [p; (92)]}
maximum likelihood with a penalty function.

e Shape of posterior distribution, p (6|Y**) , obtained by Metropolis-Hastings
algorithm.
— Algorithm computes

which, as N — oo, has a density that approximates p (8]Y**) well.

— Marginal posterior distribution of any element of 6 displayed as the
histogram of the corresponding element {6 (i) ,i = 1,.., N}

28



Metropolis-Hastings Algorithm (MCMC)

e \\e have (except for a constant):

(Y10 £ (0
FY)

¢ \\We want the marginal posterior distribution of 6, :

(e

Nx1

h(6;]Y) :/ fOY)dds, i=1,...,N.
0ji
e MCMC algorithm can approximate h (6;|Y).

e ODbtain (V" produced automatically by gradient-based maximization methods):

~1
g = g — awgmax f (Y16) £ (6), V = [_a%f <Y|e>f(9)] |
0=0"

000"
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Metropolis-Hastings Algorithm (MCMC) ...

e Compute the sequence, V), §%)

out to have pdf f (A]Y).
_ o) — p*
— to compute 8 for r > 1

« step 1: select candidate 6, z,
‘jump’ distribution’

Va

draw _ = from (9(7”1)+l-cN< 0 V), k is a scalar

-~

.~ ~—~"
Nx1 Nx1
x Step 2. compute scalar, \ :
(Y f (@)

o) 167)

x step 3: compute 61" :
o) _ 00— ifu > \
x  ifu< )\’

w is a realization from uniform |0, 1]

., 0M) (M large) whose distribution turns
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Metropolis-Hastings Algorithm (MCMC) ...

e Approximating marginal posterior distribution, /i (6;|Y") , of 6,

— compute and display the histogram of 92(1), «92( - H(.M), =1, ...

e Other objects of interest:

— mean and variance of posterior distribution 6 :

p= L i Var (6 i[ g [
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Metropolis-Hastings Algorithm (MCMC) ...

e Some intuition

— Algorithm is more likely to select moves into high probability regions than
into low probability regions.

—Set, 40 92 H(M)} _populated relatively more by elements near mode
of f(AY).

— Set, {«9(1), 9(2), e H(M)} , also populated (though less so) by elements far
from mode of f (A]Y).
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Metropolis-Hastings Algorithm (MCMC) ...

e Practical issues

— what value should you set £ to?

x set k& so that you accept (i.e., ") = ) in step 3 of MCMC algorithm are
roughly 27 percent of time

— what value of M should you set?
« a value so that if M is increased further, your results do not change

- in practice, M = 10, 000 (a small value) up to M = 1, 000, 000.

— large M is time-consuming. Could use Laplace approximation (after
checking its accuracy) in initial phases of research project.
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Laplace Approximation to Posterior Distribution

e In practice, Metropolis-Hasting algorithm very time intensive. Do it last!
e In practice, Laplace approximation is quick, essentially free and very accurate.

o Let & € R" denote the N —dimensional vector of parameters and

g(0) =log f(y]0) f(0),

f (y|0) ~likelihood of data
f (6) ~prior on parameters

6" ~maximum of ¢ (6) (i.e., mode)
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Laplace Approximation to Posterior Distribution ...

e Second order Taylor series expansion about 8 = 6™ :

9(6) % g (0) + 90 (0°) (0 — 67) — (6 — %) gog (6°) (6 — ).

Slog £ (y16) £ (6)

g@& (9*) — 8989/ |9=€*

e Interior optimality implies:
g9 (%) = 0, gge (0%) positive definite

e Then,

FOIO)1 )= £ 0167 ) e { =3 (6 - ) g (67) 0 - 07}
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Laplace Approximation to Posterior Distribution ...
e Note

1

277)% |90 (67)] exp {—% (60— 6%) gog (0%) (0 — ‘9*)}

= multinormal density for N — dimensional random variable 6

with mean 6 and variance gy (9*)_1

e So, posterior of 4; (i.e., h (6;]Y")) is approximately

0o (0. om0 )

e This formula for the posterior distribution is essentially free, because gyy IS
computed as part of gradient-based numerical optimization procedures.
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Laplace Approximation to Posterior Distribution ...

e Marginal likelihood of data, y, is useful for model comparisons. Easy to
compute using the Laplace approximation.

e Property of Normal distribution:

/ (271)% |66 (‘9*)‘% exp {—% (0 — 0% gog (07) (0 — 9*>} 10 — 1

e Then,

/f (y]0) f dHN/f (y]0%) f exp{-%(@ 6% gon (67) (9—9*)}d9

_ SWle) s SR PR
 xlon @ )\%/@m% (@ ¥ p{ 7 (0= 07) 900 (07) (0 9)}d9

( 10%) f (0 *)
N 990 (07))]

l\')l)—l

(27
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Laplace Approximation to Posterior Distribution ...

e Formula for marginal likelihood based on Laplace approximation:

x f(ylo”) f(07)
— 0 0) df ~ (27)> :
/() /f(y\ ) f(0) (2m) 9o (6°)

N[ —

e Suppose f(y|Model 1) > f(y|Model 2). Then, posterior odds on Model 1
higher than Model 2.

e ‘Model 1 fits better than Model 2’

e Can use this to compare across two different models, or to evaluate contribution
to fit of various model features: habit persistence, adjustment costs, etc.
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Generalized Method of Moments

e EXxpress your econometric estimator into Hansen’s GMM framework and you
get standard errors

— Essentially, any estimation strategy fits (see Hamilton)

e \Works when parameters of interest, 3, have the following property:

E 8 | =0, [ true value of some parameter(s) of interest
|
Nx1 nx1
us (8) ~ stationary stochastic process (and other conditions)
—n = N : ‘exactly identified’

—n < N : ‘over identified’
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Generalized Method of Moments ...

— Example 1: mean

us (8) = B — 4.

— Example 2: mean and variance

B=pol,

2

Ex, = p, E(z — p)° = o

then,

(xp — )" — o0

Ut(ﬁ):[ s 2]-
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Generalized Method of Moments ...

— Example 3: mean, variance, correlation, relative standard deviation

B: [My Oy My Oz Py )‘]7>\EU$/OQ7

where
2
By = p,, b (yt — My) = 05
2 2
Lxy = p,, E(xt - Mm) — 0y
o E (yt _ My) (xt T Mx)
pscy o Uyax :
then _ _
My — Lt
(xt T :uac) o O-?c
up (8) = SN
(9t = ,uy) — Oy
O-yo-a:pxy o (yt _ ;uy) (xt — ,ug;)
Oy\ — Oy




Generalized Method of Moments ...

— Example 4: New Keynesian Phillips curve
T = 0.99Et7Tt+1 + YSt,
or,

T — 0.99m 1 — s = 1Ny

where,
N1 = 0.99 (EﬂTtJrl — 7Tt+1) — k1 =0

Under Rational Expectations : 1, ; L time ¢ information, z

Ut (’7) = [’ﬂ't — 0.997Tt_|_1 — ’}/St] 2t
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Generalized Method of Moments ...

e Inference about 5

— Estimator of 3 in exactly identified case (n = N)

x Choose 6 to mimick population property of true (3,

* Define:
1 T
ar (5) = T;Ut (5)
* Solve
B:gr| 5| =0_
Nx1 Nx1
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Generalized Method of Moments ...

— Example 1: mean

Choose ﬁ so that

T T

gr (B) :%Zut (ﬁ) ZB—%Z%:O

t=1 t=1

and /5’ Is simply sample mean.
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Generalized Method of Moments ...

— Example 4 in exactly identified case

Euy (7) = F [’ﬂ't — 0.997Tt_|_1 — ’ySt] Zty Bt~ scalar

choose ~ so that

T
. 1 A
gr (5) =7 Z; [ — 0.9971 — se| 2 = 0,
or. standard instrumental variables estimator:

%Zthl T — 0.99m44] 2

1 T
T thl Stet

N =
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Generalized Method of Moments ...

— Key message:

x In exactly identified case, GMM does not deliver a new estimator you
would not have thought of on your own

- means, correlations, regression coefficients, exactly identified 1V
estimation, maximum likelihood.

x GMM provides framework for deriving asymptotically valid formulas
for estimating sampling uncertainty.
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Generalized Method of Moments ...

— Estimating 3 in overidentified case (/N > n)
« Cannot exactly implement sample analog of Eu; (3) =0 :

gr \6, :\O,./
nx1 Nx1

x Instead, ‘do the best you can’:

AN

B = arg mﬂin gr (8) Wrgr (B),

where
W ~ Is a positive definite weighting matrix.

x GMM works for any positive definite 11, but is most efficient if W is
inverse of estimator of variance-covariance matrix of gr (6) ;

Wr) ™" = Egr (5) or (B) .
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Generalized Method of Moments ...

— This choice of weighting matrix very sensible:

x weight heavily those moment conditions (i.e., elements of g1 (6)) that
are precisely estimated

x pay less attention to the others.
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Generalized Method of Moments ...

— Estimator of W
* Note:

Egr (5) gr (3>,
= o (3) 0 3) oo ()] [ () #3) ()]
) () )

;[;Eut () w (5 '+T; “Bug (B) uen (B) + +%Eut () wer (B)
TT B (B) iy ([3)'+T; “Bug (B) us (B) + -+ s (B) werr (5)

where ,
C(r) = Buy (B) wr (B)

« W' is ‘% xspectral density matrix at frequency zero, Sy, of (6) ’
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Generalized Method of Moments ...

— Conclude:
T—1
Wit = Bor (B) or (8) = 7 |CO + XL (C )+ C ) | = 2
r=1
1 estimated by
— 1| T —r . 1 -
Wil=—|CO)+Y — (O (r) 0(@’) = =50,

Imposing whatever restrictions are implied by the null hypothesis, i.e., (as
Inex. 4)

C'(r)=0, r > Rsome R.

— which Is “Newey-West estimator of spectral density at frequency zero’
x Problem: need 6 to compute WT and need W, ! to compute 6"

- Solution - first compute 6 using Wp = I, then iterate...
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Generalized Method of Moments ...
e Sampling Uncertainty in /3

— The exactly identified case

AN

— By the Mean Value Theorem, gr (6) can be expressed as follows:

gr (B) = 91 (B0) + D (B = 5y)

where 3, is the true value of the parameters and

B dgr (5)
D = 55
— Since gr (6) = 0and gr (5,) "N (0,S0/T) , it follows:

|5—5, some 3" between 3, and /3.

AN

B—By=—D""gr(By),
BBy N (o (D/S(’lD)1>

T

SO
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Generalized Method of Moments ...

— The overidentified case.

x An extension of the ideas we have already discussed.

x Can derive the results for yourself, using the ‘delta function method’ for
deriving the sampling distribution of statistics.

« Hamilton’s text book has a great review of GMM.
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