Bayesian Maximum Likelihood

• Bayesians describe the mapping from prior beliefs about θ , summarized in $p(\theta)$, to new posterior beliefs in the light of observing the data, Y^{data} .

• General property of probabilities:

$$p(Y^{data}, \theta) = \begin{cases} p(Y^{data}|\theta) \times p(\theta) \\ p(\theta|Y^{data}) \times p(Y^{data}) \end{cases},$$

which implies Bayes' rule:

$$p\left(\theta|Y^{data}\right) = \frac{p\left(Y^{data}|\theta\right)p\left(\theta\right)}{p\left(Y^{data}\right)},$$

mapping from prior to posterior induced by Y^{data} .

Bayesian Maximum Likelihood ...

- ullet Properties of the posterior distribution, $p\left(\theta|Y^{data}\right)$.
 - The value of θ that maximizes $p\left(\theta|Y^{data}\right)$ ('mode' of posterior distribution).
 - Graphs that compare the marginal posterior distribution of individual elements of θ with the corresponding prior.
 - Probability intervals about the mode of θ ('Bayesian confidence intervals')
 - Other properties of $p\left(\theta|Y^{data}\right)$ helpful for assessing model 'fit'.

Bayesian Maximum Likelihood ...

• Computation of mode sometimes referred to as 'Basyesian maximum likelihood':

$$\theta^{\text{mod }e} = \arg\max_{\theta} \left\{ \log \left[p\left(Y^{data} | \theta \right) \right] + \sum_{i=1}^{N} \log \left[p_i\left(\theta_i \right) \right] \right\}$$

maximum likelihood with a penalty function.

- Shape of posterior distribution, $p\left(\theta|Y^{data}\right)$, obtained by Metropolis-Hastings algorithm.
 - Algorithm computes

$$\theta\left(1\right),...,\theta\left(N\right),$$

which, as $N \to \infty$, has a density that approximates $p\left(\theta|Y^{data}\right)$ well.

– Marginal posterior distribution of any element of θ displayed as the histogram of the corresponding element $\{\theta\left(i\right),i=1,..,N\}$

• We have (except for a constant):

$$f\left(\underbrace{\theta}_{N\times 1}|Y\right) = \frac{f(Y|\theta) f(\theta)}{f(Y)}.$$

ullet We want the marginal posterior distribution of θ_i :

$$h\left(\theta_{i}|Y\right) = \int_{\theta_{j\neq i}} f\left(\theta|Y\right) d\theta_{j\neq i}, \ i = 1, ..., N.$$

- MCMC algorithm can approximate $h(\theta_i|Y)$.
- Obtain (V produced automatically by gradient-based maximization methods):

$$\theta^{\text{mod } e} \equiv \theta^* = \arg\max_{\theta} f\left(Y|\theta\right) f\left(\theta\right), \ V \equiv \left[-\frac{\partial^2 f\left(Y|\theta\right) f\left(\theta\right)}{\partial \theta \partial \theta'} \right]_{\theta=\theta^*}^{-1}.$$

• Compute the sequence, $\theta^{(1)}, \theta^{(2)}, ..., \theta^{(M)}$ (M large) whose distribution turns out to have pdf $f(\theta|Y)$.

$$-\theta^{(1)}=\theta^*$$

- to compute $\theta^{(r)}$, for r > 1
 - * step 1: select candidate $\theta^{(r)}$, x,

$$\operatorname{draw} \underbrace{x}_{N \times 1} \text{ from } \theta^{(r-1)} + \underbrace{kN\left(\underbrace{0}_{N \times 1}, V\right)}, \text{ k is a scalar}$$

* step 2: compute scalar, λ :

$$\lambda = \frac{f(Y|x) f(x)}{f(Y|\theta^{(r-1)}) f(\theta^{(r-1)})}$$

* step 3: compute $\theta^{(r)}$:

$$\theta^{(r)} = \begin{cases} \theta^{(r-1)} & \text{if } u > \lambda \\ x & \text{if } u < \lambda \end{cases}, \text{ } u \text{ is a realization from uniform } [0, 1]$$

- ullet Approximating marginal posterior distribution, $h\left(\theta_{i}|Y\right)$, of θ_{i}
 - compute and display the histogram of $\theta_i^{(1)}, \theta_i^{(2)}, ..., \theta_i^{(M)}, i = 1, ..., N$.
- Other objects of interest:
 - mean and variance of posterior distribution θ :

$$E\theta \simeq \overline{\theta} \equiv \frac{1}{M} \sum_{j=1}^{M} \theta^{(j)}, \ Var\left(\theta\right) \simeq \frac{1}{M} \sum_{j=1}^{M} \left[\theta^{(j)} - \overline{\theta}\right] \left[\theta^{(j)} - \overline{\theta}\right]'.$$

- Some intuition
 - Algorithm is more likely to select moves into high probability regions than into low probability regions.

– Set, $\left\{\theta^{(1)},\theta^{(2)},...,\theta^{(M)}\right\}$, populated relatively more by elements near mode of $f\left(\theta|Y\right)$.

– Set, $\left\{\theta^{(1)},\theta^{(2)},...,\theta^{(M)}\right\}$, also populated (though less so) by elements far from mode of $f\left(\theta|Y\right)$.

- Practical issues
 - what value should you set k to?
 - * set k so that you accept (i.e., $\theta^{(r)} = x$) in step 3 of MCMC algorithm are roughly 27 percent of time
 - what value of M should you set?
 - * a value so that if M is increased further, your results do not change
 - \cdot in practice, M=10,000 (a small value) up to M=1,000,000.
 - large M is time-consuming. Could use Laplace approximation (after checking its accuracy) in initial phases of research project.

- In practice, Metropolis-Hasting algorithm very time intensive. Do it last!
- In practice, Laplace approximation is quick, essentially free and very accurate.
- \bullet Let $\theta \in R^N$ denote the N-dimensional vector of parameters and

$$g(\theta) \equiv \log f(y|\theta) f(\theta)$$
,

 $f(y|\theta)$ ~likelihood of data

 $f(\theta)$ ~prior on parameters

 θ^* ~maximum of $g(\theta)$ (i.e., mode)

• Second order Taylor series expansion about $\theta = \theta^*$:

$$g(\theta) \approx g(\theta^*) + g_{\theta}(\theta^*)(\theta - \theta^*) - \frac{1}{2}(\theta - \theta^*)'g_{\theta\theta}(\theta^*)(\theta - \theta^*),$$

where

$$g_{\theta\theta}(\theta^*) = -\frac{\partial^2 \log f(y|\theta) f(\theta)}{\partial \theta \partial \theta'}|_{\theta=\theta^*}$$

• Interior optimality implies:

$$g_{\theta}\left(\theta^{*}\right)=0,\ g_{\theta\theta}\left(\theta^{*}\right)$$
 positive definite

• Then,

$$f(y|\theta) f(\theta) \simeq f(y|\theta^*) f(\theta^*) \exp \left\{ -\frac{1}{2} (\theta - \theta^*)' g_{\theta\theta} (\theta^*) (\theta - \theta^*) \right\}.$$

Note

$$\frac{1}{(2\pi)^{\frac{N}{2}}} |g_{\theta\theta} (\theta^*)|^{\frac{1}{2}} \exp\left\{-\frac{1}{2} (\theta - \theta^*)' g_{\theta\theta} (\theta^*) (\theta - \theta^*)\right\}$$

= multinormal density for N - dimensional random variable θ

with mean θ^* and variance $g_{\theta\theta} (\theta^*)^{-1}$.

- So, posterior of θ_i (i.e., $h(\theta_i|Y)$) is approximately $\theta_i \sim N\left(\theta_i^*, \left[g_{\theta\theta}(\theta^*)^{-1}\right]_{ii}\right)$.
- This formula for the posterior distribution is essentially free, because $g_{\theta\theta}$ is computed as part of gradient-based numerical optimization procedures.

- ullet Marginal likelihood of data, y, is useful for model comparisons. Easy to compute using the Laplace approximation.
- Property of Normal distribution:

$$\int \frac{1}{(2\pi)^{\frac{N}{2}}} |g_{\theta\theta}(\theta^*)|^{\frac{1}{2}} \exp\left\{-\frac{1}{2} (\theta - \theta^*)' g_{\theta\theta}(\theta^*) (\theta - \theta^*)\right\} d\theta = 1$$

• Then,

$$\int f(y|\theta) f(\theta) d\theta \simeq \int f(y|\theta^*) f(\theta^*) \exp\left\{-\frac{1}{2} (\theta - \theta^*)' g_{\theta\theta} (\theta^*) (\theta - \theta^*)\right\} d\theta
= \frac{f(y|\theta^*) f(\theta^*)}{\frac{1}{(2\pi)^{\frac{N}{2}}} |g_{\theta\theta} (\theta^*)|^{\frac{1}{2}}} \int \frac{1}{(2\pi)^{\frac{N}{2}}} |g_{\theta\theta} (\theta^*)|^{\frac{1}{2}} \exp\left\{-\frac{1}{2} (\theta - \theta^*)' g_{\theta\theta} (\theta^*) (\theta - \theta^*)\right\} d\theta$$

$$= \frac{f(y|\theta^*) f(\theta^*)}{\frac{1}{(2\pi)^{\frac{N}{2}}} |g_{\theta\theta}(\theta^*)|^{\frac{1}{2}}}.$$

• Formula for marginal likelihood based on Laplace approximation:

$$f(y) = \int f(y|\theta) f(\theta) d\theta \simeq (2\pi)^{\frac{N}{2}} \frac{f(y|\theta^*) f(\theta^*)}{|g_{\theta\theta}(\theta^*)|^{\frac{1}{2}}}.$$

• Suppose $f(y|Model\ 1) > f(y|Model\ 2)$. Then, posterior odds on Model 1 higher than Model 2.

• 'Model 1 fits better than Model 2'

• Can use this to compare across two different models, or to evaluate contribution to fit of various model features: habit persistence, adjustment costs, etc.

- Express your econometric estimator into Hansen's GMM framework and you get standard errors
 - Essentially, *any* estimation strategy fits (see Hamilton)
- Works when parameters of interest, β , have the following property:

$$E\underbrace{u_t}_{N\times 1}\left(\underbrace{\beta}_{n\times 1}\right)=0,\ \beta\ \text{true value of some parameter(s) of interest}$$

 $u_t(\beta)$ ~ stationary stochastic process (and other conditions)

- -n = N: 'exactly identified'
- -n < N: 'over identified'

- Example 1: mean

$$\beta = Ex_t,$$

$$u_t(\beta) = \beta - x_t.$$

- Example 2: mean and variance

$$\beta = \left[\mu \ \sigma \right],$$

$$Ex_t = \mu, E(x_t - \mu)^2 = \sigma^2.$$

then,

$$u_t(\beta) = \begin{bmatrix} \mu - x_t \\ (x_t - \mu)^2 - \sigma^2 \end{bmatrix}.$$

- Example 3: mean, variance, correlation, relative standard deviation

where
$$\beta = \left[\begin{array}{ccc} \mu_y & \sigma_y & \mu_x & \sigma_x & \rho_{xy} & \lambda \end{array}\right], \; \lambda \equiv \sigma_x/\sigma_y,$$
 where
$$Ey_t = \mu_y, \; E\left(y_t - \mu_y\right)^2 = \sigma_y^2$$

$$Ex_t = \mu_x, \; E\left(x_t - \mu_x\right)^2 = \sigma_x^2$$

$$\rho_{xy} = \frac{E\left(y_t - \mu_y\right)\left(x_t - \mu_x\right)}{\sigma_y\sigma_x}.$$

then

$$u_{t}(\beta) = \begin{bmatrix} \mu_{x} - x_{t} \\ (x_{t} - \mu_{x})^{2} - \sigma_{x}^{2} \\ \mu_{y} - y_{t} \\ (y_{t} - \mu_{y})^{2} - \sigma_{y}^{2} \\ \sigma_{y}\sigma_{x}\rho_{xy} - (y_{t} - \mu_{y})(x_{t} - \mu_{x}) \\ \sigma_{y}\lambda - \sigma_{x} \end{bmatrix}.$$

- Example 4: New Keynesian Phillips curve

$$\pi_t = 0.99 E_t \pi_{t+1} + \gamma s_t,$$

or,

$$\pi_t - 0.99\pi_{t+1} - \gamma s_t = \eta_{t+1}$$

where,

$$\eta_{t+1} = 0.99 (E_t \pi_{t+1} - \pi_{t+1}) \Longrightarrow E_t \eta_{t+1} = 0$$

Under Rational Expectations : $\eta_{t+1} \perp$ time t information, z_t

$$u_t(\gamma) = \left[\pi_t - 0.99\pi_{t+1} - \gamma s_t\right] z_t$$

- Inference about β
 - Estimator of β in exactly identified case (n = N)
 - * Choose $\hat{\beta}$ to mimick population property of true β ,

$$Eu_t(\beta) = 0.$$

* Define:

$$g_T(\beta) = \frac{1}{T} \sum_{t=1}^{T} u_t(\beta).$$

* Solve

$$\hat{\beta}: g_T\left(\underbrace{\hat{\beta}}_{N\times 1}\right) = \underbrace{0}_{N\times 1}.$$

- Example 1: mean

$$\beta = Ex_t,$$

$$u_t(\beta) = \beta - x_t.$$

Choose $\hat{\beta}$ so that

$$g_T\left(\hat{\beta}\right) = \frac{1}{T} \sum_{t=1}^{T} u_t\left(\hat{\beta}\right) = \hat{\beta} - \frac{1}{T} \sum_{t=1}^{T} x_t = 0$$

and $\hat{\beta}$ is simply sample mean.

– Example 4 in exactly identified case

$$Eu_t(\gamma) = E[\pi_t - 0.99\pi_{t+1} - \gamma s_t] z_t, z_t \sim \text{scalar}$$

choose $\hat{\gamma}$ so that

$$g_T(\hat{\beta}) = \frac{1}{T} \sum_{t=1}^{T} [\pi_t - 0.99\pi_{t+1} - \hat{\gamma}s_t] z_t = 0,$$

or. standard instrumental variables estimator:

$$\hat{\gamma} = \frac{\frac{1}{T} \sum_{t=1}^{T} \left[\pi_t - 0.99 \pi_{t+1} \right] z_t}{\frac{1}{T} \sum_{t=1}^{T} s_t z_t}$$

– Key message:

* In exactly identified case, GMM does not deliver a new estimator you would not have thought of on your own

· means, correlations, regression coefficients, exactly identified IV estimation, maximum likelihood.

* GMM provides framework for deriving asymptotically valid formulas for estimating sampling uncertainty.

- Estimating β in overidentified case (N > n)
 - * Cannot exactly implement sample analog of $Eu_t(\beta) = 0$:

$$g_T\left(\underbrace{\hat{\beta}}_{n\times 1}\right) = \underbrace{0}_{N\times 1}$$

* Instead, 'do the best you can':

$$\hat{\beta} = \arg\min_{\beta} g_T(\beta)' W_T g_T(\beta),$$

where

 W_T ~ is a positive definite weighting matrix.

* GMM works for any positive definite W_T , but is most efficient if W_T is inverse of estimator of variance-covariance matrix of $g_T(\hat{\beta})$:

$$(W_T)^{-1} = Eg_T(\hat{\beta})g_T(\hat{\beta})'.$$

- This choice of weighting matrix very sensible:
 - * weight heavily those moment conditions (i.e., elements of $g_T\left(\hat{\beta}\right)$) that are precisely estimated
 - * pay less attention to the others.

– Estimator of W_T^{-1}

$$Eg_T\left(\hat{\beta}\right)g_T\left(\hat{\beta}\right)'$$

$$= \frac{1}{T^2} E\left[u_1\left(\hat{\beta}\right) + u_2\left(\hat{\beta}\right) + \dots + u_T\left(\hat{\beta}\right)\right] \left[u_1\left(\hat{\beta}\right) + u_2\left(\hat{\beta}\right) + \dots + u_T\left(\hat{\beta}\right)\right]'$$

$$= \frac{1}{T} \left[\frac{T}{T} E u_t \left(\hat{\beta} \right) u_t \left(\hat{\beta} \right)' + \frac{T-1}{T} E u_t \left(\hat{\beta} \right) u_{t+1} \left(\hat{\beta} \right)' + \dots + \frac{1}{T} E u_t \left(\hat{\beta} \right) u_{t+T-1} \left(\hat{\beta} \right)' \right]$$

$$+\frac{T-1}{T}Eu_t\left(\hat{\beta}\right)u_{t-1}\left(\hat{\beta}\right)' + \frac{T-2}{T}Eu_t\left(\hat{\beta}\right)u_{t-2}\left(\hat{\beta}\right)' + \dots + \frac{1}{T}Eu_t\left(\hat{\beta}\right)u_{t-T+1}\left(\hat{\beta}\right)'$$

$$= \frac{1}{T} \left[C(0) + \sum_{r=1}^{T-1} \frac{T-r}{T} \left(C(r) + C(r)' \right) \right],$$

where

$$C(r) = Eu_t(\hat{\beta}) u_{t-r}(\hat{\beta})'$$

* W_T^{-1} is $\frac{1}{T} \times$ spectral density matrix at frequency zero, S_0 , of $u_t(\hat{\beta})$,

– Conclude:

$$W_{T}^{-1} = Eg_{T}\left(\hat{\beta}\right)g_{T}\left(\hat{\beta}\right) = \frac{1}{T}\left[C\left(0\right) + \sum_{r=1}^{T-1} \frac{T-r}{T}\left(C\left(r\right) + C\left(r\right)'\right)\right] = \frac{S_{0}}{T}.$$

 $-W_T^{-1}$ estimated by

$$\widehat{W_{T}^{-1}} = \frac{1}{T} \left[\hat{C}(0) + \sum_{r=1}^{T-1} \frac{T-r}{T} \left(\hat{C}(r) + \hat{C}(r)' \right) \right] = \frac{1}{T} \hat{S}_{0},$$

imposing whatever restrictions are implied by the null hypothesis, i.e., (as in ex. 4)

$$C(r) = 0, r > R \text{ some } R.$$

- which is 'Newey-West estimator of spectral density at frequency zero' * Problem: need $\hat{\beta}$ to compute W_T^{-1} and need W_T^{-1} to compute $\hat{\beta}!!$
 - · Solution first compute $\hat{\beta}$ using $W_T = I$, then iterate...

- Sampling Uncertainty in $\hat{\beta}$.
 - The exactly identified case
 - By the Mean Value Theorem, $g_T\left(\hat{\beta}\right)$ can be expressed as follows:

$$g_T(\hat{\beta}) = g_T(\beta_0) + D(\hat{\beta} - \beta_0),$$

where β_0 is the true value of the parameters and

$$D = \frac{\partial g_T(\beta)}{\partial \beta'}|_{\beta = \beta^*}, \text{ some } \beta^* \text{ between } \beta_0 \text{ and } \hat{\beta}.$$

– Since $g_T(\hat{\beta}) = 0$ and $g_T(\beta_0) \stackrel{a}{\sim} N(0, S_0/T)$, it follows:

$$\hat{\beta} - \beta_0 = -D^{-1}g_T(\beta_0),$$

SO

$$\hat{\beta} - \beta_0^{a} N \left(0, \frac{\left(D' S_0^{-1} D \right)^{-1}}{T} \right)$$

- The overidentified case.
 - * An extension of the ideas we have already discussed.
 - * Can derive the results for yourself, using the 'delta function method' for deriving the sampling distribution of statistics.
 - * Hamilton's text book has a great review of GMM.