Bayesian Inference for DSGE Models

Lawrence J. Christiano

Outline

- Bayes' rule.
- Monte Carlo integation: a simple example.
- Markov Chain Monte Carlo (MCMC) algorithm.
- Laplace approximation

Bayesian Inference

- Bayesian inference is about describing the mapping from prior beliefs about θ , summarized in $p(\theta)$, to new posterior beliefs in the light of observing the data, Y^{data} .
- General property of probabilities:

$$p\left(Y^{data}, heta
ight) = \left\{ egin{array}{c} p\left(Y^{data}| heta
ight) imes p\left(heta
ight) \ p\left(heta|Y^{data}
ight) imes p\left(Y^{data}
ight) \ \end{array}
ight. ,$$

which implies Bayes' rule:

$$p\left(heta|Y^{data}
ight) = rac{p\left(Y^{data}| heta
ight)p\left(heta
ight)}{p\left(Y^{data}
ight)},$$

mapping from prior to posterior induced by Y^{data} .

Bayesian Inference

- Report features of the posterior distribution, $p\left(\theta|Y^{data}\right)$.
 - The value of θ that maximizes $p(\theta|Y^{data})$, 'mode' of posterior distribution.
 - Compare marginal prior, $p(\theta_i)$, with marginal posterior of individual elements of θ , $g(\theta_i|Y^{data})$:

$$g\left(heta_i|Y^{data}
ight) = \int_{ heta_{j
eq i}} p\left(heta|Y^{data}
ight) d heta_{j
eq i} ext{ (multiple integration!!)}$$

- Probability intervals about the mode of θ ('Bayesian confidence intervals'), need $g\left(\theta_{i}|Y^{data}\right)$.
- Marginal likelihood for assessing model 'fit':

$$p\left(Y^{data}
ight) = \int_{ heta} p\left(Y^{data}| heta
ight) p\left(heta
ight) d heta ext{ (multiple integration)}$$

Monte Carlo Integration: Simple Example

- Much of Bayesian inference is about multiple integration.
- Numerical methods for multiple integration:
 - Quadrature integration (example: approximating the integral as the sum of the areas of triangles beneath the integrand).
 - Monte Carlo Integration: uses random number generator.
- Example of Monte Carlo Integration:

- suppose you want to evaluate

$$\int_{a}^{b} f(x) \, dx, \ -\infty \leq a < b \leq \infty.$$

– select a density function, g(x) for $x \in [a, b]$ and note:

$$\int_{a}^{b} f(x) dx = \int_{a}^{b} \frac{f(x)}{g(x)} g(x) dx = E \frac{f(x)}{g(x)},$$

where *E* is the expectation operator, given g(x).

Monte Carlo Integration: Simple Example

- Previous result: can express an integral as an expectation relative to a (arbitrary, subject to obvious regularity conditions) density function.
- Use the law of large numbers (LLN) to approximate the expectation.
 - step 1: draw x_i independently from density, g, for i = 1, ..., M.
 - step 2: evaluate $f(x_i) / g(x_i)$ and compute:

$$\mu_{M} \equiv \frac{1}{M} \sum_{i=1}^{M} \frac{f(x_{i})}{g(x_{i})} \rightarrow_{M \to \infty} E \frac{f(x)}{g(x)}.$$

- Exercise.
 - Consider an integral where you have an analytic solution available, e.g., $\int_0^1 x^2 dx$.
 - Evaluate the accuracy of the Monte Carlo method using various distributions on [0,1] like uniform or Beta.

Monte Carlo Integration: Simple Example

- Standard classical sampling theory applies.
- Independence of $f(x_i) / g(x_i)$ over *i* implies:

$$var\left(\frac{1}{M}\sum_{i=1}^{M}\frac{f(x_i)}{g(x_i)}\right) = \frac{v_M}{M},$$
$$v_M \equiv var\left(\frac{f(x_i)}{g(x_i)}\right) \simeq \frac{1}{M}\sum_{i=1}^{M}\left[\frac{f(x_i)}{g(x_i)} - \mu_M\right]^2$$

- Central Limit Theorem
 - Estimate of $\int_{a}^{b} f(x) dx$ is a realization from a Nomal distribution with mean estimated by μ_{M} and variance, v_{M}/M .
 - With 95% probability,

$$\mu_M - 1.96 \times \sqrt{\frac{v_M}{M}} \leq \int_a^b f(x) \, dx \leq \mu_M + 1.96 \times \sqrt{\frac{v_M}{M}}$$

- Pick g to minimize variance in $f(x_i) / g(x_i)$ and M to minimize (subject to computing cost) v_M/M .

Markov Chain, Monte Carlo (MCMC) Algorithms

- Among the top 10 algorithms "with the greatest influence on the development and practice of science and engineering in the 20th century".
 - Reference: January/February 2000 issue of Computing in Science & Engineering, a joint publication of the American Institute of Physics and the IEEE Computer Society.'

• Developed in 1946 by John von Neumann, Stan Ulam, and Nick Metropolis (see http://www.siam.org/pdf/news/637.pdf)

MCMC Algorithm: Overview

• compute a sequence, $\theta^{(1)}, \theta^{(2)}, ..., \theta^{(M)}$, of values of the $N \times 1$ vector of model parameters in such a way that

$$\lim_{M \to \infty} Frequency \left[\theta^{(i)} \text{ close to } \theta \right] = p\left(\theta | Y^{data} \right).$$

- Use $\theta^{(1)}, \theta^{(2)}, ..., \theta^{(M)}$ to obtain an approximation for

-
$$E\theta$$
, $Var(\theta)$ under posterior distribution, $p(\theta|Y^{data})$
- $g(\theta^{i}|Y^{data}) = \int_{\theta_{i\neq j}} p(\theta|Y^{data}) d\theta d\theta$

- $p(Y^{uuuu}) = \int_{\theta} p(Y^{uuuu} | \theta) p(\theta) d\theta$ - posterior distribution of any function of $\theta, f(\theta)$ (e.g., impulse
 - responses functions, second moments).
- MCMC also useful for computing posterior mode, $\arg \max_{\theta} p\left(\theta | Y^{data}\right)$.

MCMC Algorithm: setting up

• Let $G(\theta)$ denote the log of the posterior distribution (excluding an additive constant):

$$G\left(heta
ight) = \log p\left(Y^{data}| heta
ight) + \log p\left(heta
ight);$$

• Compute posterior mode:

$$\theta^{*} = \arg \max_{\theta} G\left(\theta\right).$$

• Compute the positive definite matrix, V:

$$V \equiv \left[-\frac{\partial^2 G\left(\theta\right)}{\partial \theta \partial \theta'} \right]_{\theta=\theta^*}^{-1}$$

• Later, we will see that V is a rough estimate of the variance-covariance matrix of θ under the posterior distribution.

MCMC Algorithm: Metropolis-Hastings

- $\theta^{(1)} = \theta^*$
- to compute $\theta^{(r)}$, for r > 1
 - step 1: select candidate $\theta^{(r)}$, x,

draw
$$\underbrace{x}_{N \times 1}$$
 from $\theta^{(r-1)} + \underbrace{k \times N\left(\bigcup_{N \times 1}^{0} V\right)}_{k \times 1}$, k is a scalar

– step 2: compute scalar, λ :

$$\lambda = \frac{p\left(Y^{data}|x\right)p\left(x\right)}{p\left(Y^{data}|\theta^{\left(r-1\right)}\right)p\left(\theta^{\left(r-1\right)}\right)}$$

– step 3: compute $\theta^{(r)}$:

 $\theta^{(r)} = \left\{ \begin{array}{ll} \theta^{(r-1)} & \text{if } u > \lambda \\ x & \text{if } u < \lambda \end{array} \right. \text{, } u \text{ is a realization from uniform } [0,1]$

Practical issues

- What is a sensible value for k?
 - set k so that you accept (i.e., $\theta^{(r)} = x$) in step 3 of MCMC algorithm are roughly 23 percent of time
- What value of *M* should you set?
 - want 'convergence', in the sense that if ${\cal M}$ is increased further, the econometric results do not change substantially
 - in practice, M = 10,000 (a small value) up to M = 1,000,000.
 - large M is time-consuming.
 - could use Laplace approximation (after checking its accuracy) in initial phases of research project.
 - more on Laplace below.
- Burn-in: in practice, some initial $\theta^{(i)}$'s are discarded to minimize the impact of initial conditions on the results.
- Multiple chains: may promote efficiency.
 - increase independence among $\theta^{(i)}$'s.
 - can do MCMC utilizing parallel computing (Dynare can do this).

MCMC Algorithm: Why Does it Work?

- Proposition that MCMC works may be surprising.
 - Whether or not it works does *not* depend on the details, i.e., precisely how you choose the jump distribution (of course, you had better use k > 0 and V positive definite).
 - Proof: see, e.g., Robert, C. P. (2001), *The Bayesian Choice*, Second Edition, New York: Springer-Verlag.
 - The details may matter by improving the efficiency of the MCMC algorithm, i.e., by influencing what value of M you need.
- Some Intuition
 - the sequence, $\theta^{(1)}, \theta^{(2)}, ..., \theta^{(M)}$, is relatively heavily populated by θ 's that have high probability and relatively lightly populated by low probability θ 's.
 - Additional intuition can be obtained by positing a simple scalar distribution and using MATLAB to verify that MCMC approximates it well (see, e.g., question 2 in assignment 9).

MCMC Algorithm: using the Results

- To approximate marginal posterior distribution, $g\left(\theta_{i}|Y^{data}\right)$, of θ_{i} ,
 - compute and display the histogram of $\theta_i^{(1)}, \theta_i^{(2)}, ..., \theta_i^{(M)}, i = 1, ..., M.$
- Other objects of interest:
 - mean and variance of posterior distribution θ :

$$E\theta \simeq \bar{\theta} \equiv \frac{1}{M} \sum_{j=1}^{M} \theta^{(j)}, \ Var\left(\theta\right) \simeq \frac{1}{M} \sum_{j=1}^{M} \left[\theta^{(j)} - \bar{\theta}\right] \left[\theta^{(j)} - \bar{\theta}\right]'.$$

MCMC Algorithm: using the Results

- More complicated objects of interest:
 - impulse response functions,
 - model second moments,
 - forecasts,
 - Kalman smoothed estimates of real rate, natural rate, etc.
- All these things can be represented as non-linear functions of the model parameters, i.e., $f\left(\theta\right)$.

– can approximate the distribution of $f\left(heta
ight)$ using

$$\begin{split} f\left(\theta^{(1)}\right), ..., f\left(\theta^{(M)}\right) \\ \to & \textit{Ef}\left(\theta\right) \simeq \bar{f} \equiv \frac{1}{M}\sum_{i=1}^{M} f\left(\theta^{(i)}\right), \\ \textit{Var}\left(f\left(\theta\right)\right) & \simeq & \frac{1}{M}\sum_{i=1}^{M} \left[f\left(\theta^{(i)}\right) - \bar{f}\right] \left[f\left(\theta^{(i)}\right) - \bar{f}\right]' \end{split}$$

MCMC: Remaining Issues

- In addition to the first and second moments already discused, would also like to have the marginal likelihood of the data.
- Marginal likelihood is a Bayesian measure of model fit.

MCMC Algorithm: the Marginal Likelihood

• Consider the following sample average:

$$\frac{1}{M}\sum_{j=1}^{M}\frac{h\left(\boldsymbol{\theta}^{(j)}\right)}{p\left(\boldsymbol{Y}^{data}|\boldsymbol{\theta}^{(j)}\right)p\left(\boldsymbol{\theta}^{(j)}\right)},$$

where $h\left(\theta\right)$ is an arbitrary density function over the N- dimensional variable, θ .

By the law of large numbers,

$$\frac{1}{M}\sum_{j=1}^{M}\frac{h\left(\theta^{(j)}\right)}{p\left(Y^{data}|\theta^{(j)}\right)p\left(\theta^{(j)}\right)} \xrightarrow[M \to \infty]{} E\left(\frac{h\left(\theta\right)}{p\left(Y^{data}|\theta\right)p\left(\theta\right)}\right)$$

MCMC Algorithm: the Marginal Likelihood

$$\frac{1}{M} \sum_{j=1}^{M} \frac{h\left(\theta^{(j)}\right)}{p\left(Y^{data}|\theta^{(j)}\right) p\left(\theta^{(j)}\right)} \to_{M \to \infty} E\left(\frac{h\left(\theta\right)}{p\left(Y^{data}|\theta\right) p\left(\theta\right)}\right)$$
$$= \int_{\theta} \left(\frac{h\left(\theta\right)}{p\left(Y^{data}|\theta\right) p\left(\theta\right)}\right) \frac{p\left(Y^{data}|\theta\right) p\left(\theta\right)}{p\left(Y^{data}\right)} d\theta = \frac{1}{p\left(Y^{data}\right)} d\theta$$

- When $h(\theta) = p(\theta)$, harmonic mean estimator of the marginal likelihood.
- Ideally, want an h such that the variance of

$$\frac{h\left(\theta^{(j)}\right)}{\nu\left(Y^{data}|\theta^{(j)}\right)p\left(\theta^{(j)}\right)}$$

is small (recall the earlier discussion of Monte Carlo integration). More on this below.

Laplace Approximation to Posterior Distribution

- In practice, MCMC algorithm very time intensive.
- Laplace approximation is easy to compute and in many cases it provides a 'quick and dirty' approximation that is quite good.

Let $\theta \in R^N$ denote the $N-{\rm dimensional}$ vector of parameters and, as before,

$$G(\theta) \equiv \log p\left(Y^{data}|\theta\right) p(\theta)$$

$$p\left(Y^{data}|\theta\right) \text{ ~~likelihood of data}$$

$$p(\theta) \text{ ~~prior on parameters}$$

$$\theta^* \text{ ~~maximum of } G(\theta) \text{ (i.e., mode)}$$

Laplace Approximation

Second order Taylor series expansion of $G(\theta) \equiv \log \left[p\left(Y^{data} | \theta \right) p\left(\theta \right) \right]$ about $\theta = \theta^*$: $G(\theta) \approx G(\theta^*) + G_{\theta}(\theta^*) \left(\theta - \theta^* \right) - \frac{1}{2} \left(\theta - \theta^* \right)' G_{\theta\theta}(\theta^*) \left(\theta - \theta^* \right)$,

where

$$G_{\theta\theta}\left(\theta^{*}\right) = -\frac{\partial^{2}\log p\left(\Upsilon^{data}|\theta\right)p\left(\theta\right)}{\partial\theta\partial\theta'}|_{\theta=\theta^{*}}$$

Interior optimality of θ^* implies:

$$G_{ heta}\left(heta^{*}
ight)=0$$
, $G_{ heta heta}\left(heta^{*}
ight)$ positive definite

Then:

$$p\left(Y^{data}|\theta\right)p\left(\theta\right)$$

$$\simeq p\left(Y^{data}|\theta^{*}\right)p\left(\theta^{*}\right)\exp\left\{-\frac{1}{2}\left(\theta-\theta^{*}\right)'G_{\theta\theta}\left(\theta^{*}\right)\left(\theta-\theta^{*}\right)\right\}$$

Laplace Approximation to Posterior Distribution

Property of Normal distribution:

$$\int_{\theta} \frac{1}{\left(2\pi\right)^{\frac{N}{2}}} \left|G_{\theta\theta}\left(\theta^{*}\right)\right|^{\frac{1}{2}} \exp\left\{-\frac{1}{2}\left(\theta-\theta^{*}\right)' G_{\theta\theta}\left(\theta^{*}\right)\left(\theta-\theta^{*}\right)\right\} d\theta = 1$$

Then,

$$\begin{split} \int p\left(Y^{data}|\theta\right) p\left(\theta\right) d\theta &\simeq \int p\left(Y^{data}|\theta^*\right) p\left(\theta^*\right) \\ &\times \exp\left\{-\frac{1}{2}\left(\theta-\theta^*\right)' G_{\theta\theta}\left(\theta^*\right)\left(\theta-\theta^*\right)\right\} \\ &= \frac{p\left(Y^{data}|\theta^*\right) p\left(\theta^*\right)}{\frac{1}{\left(2\pi\right)^{\frac{N}{2}}} \left|G_{\theta\theta}\left(\theta^*\right)\right|^{\frac{1}{2}}}. \end{split}$$

Laplace Approximation

• Conclude:

$$p\left(Y^{data}\right) \simeq \frac{p\left(Y^{data}|\theta^*\right)p\left(\theta^*\right)}{\frac{1}{(2\pi)^{\frac{N}{2}}}\left|G_{\theta\theta}\left(\theta^*\right)\right|^{\frac{1}{2}}}.$$

• Laplace approximation to posterior distribution:

$$\frac{p\left(Y^{data}|\theta\right)p\left(\theta\right)}{p\left(Y^{data}\right)} \simeq \frac{1}{\left(2\pi\right)^{\frac{N}{2}}} |G_{\theta\theta}\left(\theta^{*}\right)|^{\frac{1}{2}} \times \exp\left\{-\frac{1}{2}\left(\theta-\theta^{*}\right)'G_{\theta\theta}\left(\theta^{*}\right)\left(\theta-\theta^{*}\right)\right\}$$

• So, posterior of θ_i (i.e., $g(\theta_i|Y^{data}))$ is approximately

$$\theta_i \sim N\left(\theta_i^*, \left[G_{\theta\theta}\left(\theta^*\right)^{-1}\right]_{ii}\right)$$

Modified Harmonic Mean Estimator of Marginal Likelihood

• Harmonic mean estimator of the marginal likelihood, $p(\Upsilon^{data})$:

$$\left[\frac{1}{M}\sum_{j=1}^{M}\frac{h\left(\theta^{(j)}\right)}{p\left(Y^{data}|\theta^{(j)}\right)p\left(\theta^{(j)}\right)}\right]^{-1},$$

with $h\left(heta
ight)$ set to $p\left(heta
ight)$.

- In this case, the marginal likelihood is the harmonic mean of the likelihood, evaluated at the values of θ generated by the MCMC algorithm.
- Problem: the variance of the object being averaged is likely to be high, requiring high *M* for accuracy.
- When h (θ) is instead equated to Laplace approximation of posterior distribution, then h (θ) is approximately proportional to p (Y^{data}|θ^(j)) p (θ^(j)) so that the variance of the variable being averaged in the last expression is low.

The Marginal Likelihood and Model Comparison

• Suppose we have two models, *Model* 1 and *Model* 2.

- compute $p(Y^{data}|Model 1)$ and $p(Y^{data}|Model 2)$

- Suppose $p(Y^{data}|Model \ 1) > p(Y^{data}|Model \ 2)$. Then, posterior odds on Model 1 higher than Model 2.
 - 'Model 1 fits better than Model 2'
- Can use this to compare across two different models, or to evaluate contribution to fit of various model features: habit persistence, adjustment costs, etc.
 - For an application of this and the other methods in these notes, see Smets and Wouters, AER 2007.