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Outline

• Bayes’ rule.
• Monte Carlo integation: a simple example.
• Markov Chain Monte Carlo (MCMC) algorithm.
• Laplace approximation



Bayesian Inference
• Bayesian inference is about describing the mapping from prior
beliefs about q, summarized in p (q) , to new posterior beliefs in
the light of observing the data, Ydata

.

• General property of probabilities:

p


Ydata
, q


=


p

Ydata|q


 p (q)

p

q|Ydata p


Ydata ,

which implies Bayes’ rule:

p


q|Ydata

=

p

Ydata|q


p (q)

p

Ydata


,

mapping from prior to posterior induced by Ydata
.



Bayesian Inference

• Report features of the posterior distribution, p

q|Ydata

.

— The value of q that maximizes p

q|Ydata, ‘mode’ of posterior

distribution.
— Compare marginal prior, p (qi) , with marginal posterior of
individual elements of q, g


qi|Ydata

:

g


qi|Ydata

=
Z

qj 6=i

p


q|Ydata


dqj 6=i (multiple integration!!)

— Probability intervals about the mode of q (‘Bayesian
confidence intervals’), need g


qi|Ydata

.

• Marginal likelihood for assessing model ‘fit’:

p


Ydata

=
Z

q

p


Ydata|q


p (q) dq (multiple integration)



Monte Carlo Integration: Simple Example
• Much of Bayesian inference is about multiple integration.
• Numerical methods for multiple integration:

— Quadrature integration (example: approximating the integral as
the sum of the areas of triangles beneath the integrand).

— Monte Carlo Integration: uses random number generator.

• Example of Monte Carlo Integration:

— suppose you want to evaluate
Z b

a
f (x) dx, -•  a < b  •.

— select a density function, g (x) for x 2 [a, b] and note:
Z b

a
f (x) dx =

Z b

a

f (x)
g (x)

g (x) dx = E
f (x)
g (x)

,

where E is the expectation operator, given g (x) .



Monte Carlo Integration: Simple Example
• Previous result: can express an integral as an expectation
relative to a (arbitrary, subject to obvious regularity conditions)
density function.

• Use the law of large numbers (LLN) to approximate the
expectation.

— step 1: draw xi independently from density, g, for i = 1, ..., M.

— step 2: evaluate f (xi) /g (xi) and compute:

µM 
1

M

M

Â
i=1

f (xi)

g (xi)
!M!• E

f (x)
g (x)

.

• Exercise.

— Consider an integral where you have an analytic solution
available, e.g.,

R
1

0

x2dx.

— Evaluate the accuracy of the Monte Carlo method using
various distributions on [0, 1] like uniform or Beta.



Monte Carlo Integration: Simple Example
• Standard classical sampling theory applies.
• Independence of f (xi) /g (xi) over i implies:

var

 
1

M

M

Â
i=1

f (xi)

g (xi)

!
=

vM

M
,

vM  var


f (xi)

g (xi)


'

1

M

M

Â
i=1


f (xi)

g (xi)
 µM


2

.

• Central Limit Theorem
— Estimate of

R b
a f (x) dx is a realization from a Nomal

distribution with mean estimated by µM and variance, vM/M.

— With 95% probability,

µM  1.96
r

vM

M


Z b

a
f (x) dx  µM + 1.96

r
vM

M

— Pick g to minimize variance in f (xi) /g (xi) and M to
minimize (subject to computing cost) vM/M.



Markov Chain, Monte Carlo (MCMC)
Algorithms

• Among the top 10 algorithms "with the greatest influence on
the development and practice of science and engineering in the
20th century".

— Reference: January/February 2000 issue of Computing in
Science & Engineering, a joint publication of the American
Institute of Physics and the IEEE Computer Society.’

• Developed in 1946 by John von Neumann, Stan Ulam, and Nick
Metropolis (see http://www.siam.org/pdf/news/637.pdf)



MCMC Algorithm: Overview

• compute a sequence, q

(1)
, q

(2)
, ..., q

(M)
, of values of the N 1

vector of model parameters in such a way that

lim

M!•
Frequency

h
q

(i) close to q

i
= p


q|Ydata


.

• Use q

(1)
, q

(2)
, ..., q

(M) to obtain an approximation for

— Eq, Var (q) under posterior distribution, p

q|Ydata

— g


q

i|Ydata

=
R

qi 6=j
p

q|Ydata dqdq

— p

Ydata =

R
q

p

Ydata|q


p (q) dq

— posterior distribution of any function of q, f (q) (e.g., impulse
responses functions, second moments).

• MCMC also useful for computing posterior mode,
arg max

q

p

q|Ydata

.



MCMC Algorithm: setting up
• Let G (q) denote the log of the posterior distribution (excluding
an additive constant):

G (q) = log p


Ydata|q

+ log p (q) ;

• Compute posterior mode:

q

 = arg max

q

G (q) .

• Compute the positive definite matrix, V :

V 



∂

2G (q)
∂q∂q

0

1

q=q



• Later, we will see that V is a rough estimate of the
variance-covariance matrix of q under the posterior distribution.



MCMC Algorithm: Metropolis-Hastings

•
q

(1) = q



• to compute q

(r)
, for r > 1

— step 1: select candidate q

(r)
, x,

draw x|{z}
N1

from q

(r1) +

‘jump’ distribution’z }| {

kN

0

@
0|{z}

N1

, V

1

A
, k is a scalar

— step 2: compute scalar, l :

l =
p

Ydata|x


p (x)

p


Ydata|q(r1)


p


q

(r1)


— step 3: compute q

(r)
:

q

(r) =


q

(r1) if u > l

x if u < l

, u is a realization from uniform [0, 1]



Practical issues
• What is a sensible value for k?

— set k so that you accept (i.e., q

(r) = x) in step 3 of MCMC
algorithm are roughly 23 percent of time

• What value of M should you set?
— want ‘convergence’, in the sense that if M is increased further,
the econometric results do not change substantially

— in practice, M = 10, 000 (a small value) up to M = 1, 000, 000.

— large M is time-consuming.
• could use Laplace approximation (after checking its accuracy)
in initial phases of research project.

• more on Laplace below.
• Burn-in: in practice, some initial q

(i)’s are discarded to
minimize the impact of initial conditions on the results.

• Multiple chains: may promote e¢ciency.
— increase independence among q

(i)’s.
— can do MCMC utilizing parallel computing (Dynare can do
this).



MCMC Algorithm: Why Does it Work?
• Proposition that MCMC works may be surprising.

— Whether or not it works does not depend on the details, i.e.,
precisely how you choose the jump distribution (of course, you
had better use k > 0 and V positive definite).
• Proof: see, e.g., Robert, C. P. (2001), The Bayesian Choice,
Second Edition, New York: Springer-Verlag.

— The details may matter by improving the e¢ciency of the
MCMC algorithm, i.e., by influencing what value of M you
need.

• Some Intuition
— the sequence, q

(1)
, q

(2)
, ..., q

(M)
, is relatively heavily populated

by q’s that have high probability and relatively lightly
populated by low probability q’s.

— Additional intuition can be obtained by positing a simple scalar
distribution and using MATLAB to verify that MCMC
approximates it well (see, e.g., question 2 in assignment 9).



MCMC Algorithm: using the Results

• To approximate marginal posterior distribution, g

qi|Ydata

, of
qi,

— compute and display the histogram of q

(1)
i , q

(2)
i , ..., q

(M)
i ,

i = 1, ..., M.

• Other objects of interest:

— mean and variance of posterior distribution q :

Eq ' ¯

q 
1

M

M

Â
j=1

q

(j)
, Var (q) '

1

M

M

Â
j=1

h
q

(j)  ¯

q

i h
q

(j)  ¯

q

i0
.



MCMC Algorithm: using the Results
• More complicated objects of interest:

— impulse response functions,
— model second moments,
— forecasts,
— Kalman smoothed estimates of real rate, natural rate, etc.

• All these things can be represented as non-linear functions of
the model parameters, i.e., f (q) .

— can approximate the distribution of f (q) using

f


q

(1)


, ..., f


q

(M)


! Ef (q) ' ¯f 
1

M

M

Â
i=1

f


q

(i)


,

Var (f (q)) '
1

M

M

Â
i=1

h
f


q

(i)

 ¯f
i h

f


q

(i)

 ¯f
i0



MCMC: Remaining Issues

• In addition to the first and second moments already discused,
would also like to have the marginal likelihood of the data.

• Marginal likelihood is a Bayesian measure of model fit.



MCMC Algorithm: the Marginal Likelihood

• Consider the following sample average:

1

M

M

Â
j=1

h


q

(j)


p


Ydata|q(j)


p


q

(j)


,

where h (q) is an arbitrary density function over the N
dimensional variable, q.

By the law of large numbers,

1

M

M

Â
j=1

h


q

(j)


p


Ydata|q(j)


p


q

(j)
 !

M!•
E

 
h (q)

p

Ydata|q


p (q)

!



MCMC Algorithm: the Marginal Likelihood

1

M

M

Â
j=1

h


q

(j)


p


Ydata|q(j)


p


q

(j)
 !M!• E

 
h (q)

p

Ydata|q


p (q)

!

=
Z

q

 
h (q)

p

Ydata|q


p (q)

!
p

Ydata|q


p (q)

p

Ydata

 dq =
1

p

Ydata


.

• When h (q) = p (q) , harmonic mean estimator of the marginal
likelihood .

• Ideally, want an h such that the variance of

h


q

(j)


p


Ydata|q(j)


p


q

(j)


is small (recall the earlier discussion of Monte Carlo
integration). More on this below.



Laplace Approximation to Posterior
Distribution

• In practice, MCMC algorithm very time intensive.

• Laplace approximation is easy to compute and in many cases it
provides a ‘quick and dirty’ approximation that is quite good.

Let q 2 RN denote the Ndimensional vector of parameters and, as
before,

G (q)  log p


Ydata|q


p (q)

p


Ydata|q

~likelihood of data

p (q) ~prior on parameters
q

 ~maximum of G (q) (i.e., mode)



Laplace Approximation
Second order Taylor series expansion of
G (q)  log


p

Ydata|q


p (q)


about q = q


:

G (q)  G (q) +G
q

(q) (q  q

)
1

2

(q  q

)0 G
qq

(q) (q  q

) ,

where

G
qq

(q) = 
∂

2

log p

Ydata|q


p (q)

∂q∂q

0 |
q=q



Interior optimality of q

 implies:

G
q

(q) = 0, G
qq

(q) positive definite

Then:

p


Ydata|q


p (q)

' p


Ydata|q


p (q) exp




1

2

(q  q

)0 G
qq

(q) (q  q

)


.



Laplace Approximation to Posterior
Distribution

Property of Normal distribution:

Z

q

1

(2p)
N
2

|G
qq

(q)|
1

2

exp




1

2

(q  q

)0 G
qq

(q) (q  q

)


dq = 1

Then,
Z

p


Ydata|q


p (q) dq '
Z

p


Ydata|q


p (q)

 exp




1

2

(q  q

)0 G
qq

(q) (q  q

)


dq

=
p

Ydata|q


p (q)

1

(2p)
N
2

|G
qq

(q)|
1

2

.



Laplace Approximation
• Conclude:

p


Ydata

'

p

Ydata|q


p (q)

1

(2p)
N
2

|G
qq

(q)|
1

2

.

• Laplace approximation to posterior distribution:

p

Ydata|q


p (q)

p

Ydata

 '
1

(2p)
N
2

|G
qq

(q)|
1

2

 exp




1

2

(q  q

)0 G
qq

(q) (q  q

)



• So, posterior of qi (i.e., g

qi|Ydata) is approximately

qi ~N


q


i ,

h
G

qq

(q)1

i

ii


.



Modified Harmonic Mean Estimator of
Marginal Likelihood

• Harmonic mean estimator of the marginal likelihood, p

Ydata:

2

4 1

M

M

Â
j=1

h


q

(j)


p


Ydata|q(j)


p


q

(j)


3

5
1

,

with h (q) set to p (q) .

— In this case, the marginal likelihood is the harmonic mean of
the likelihood, evaluated at the values of q generated by the
MCMC algorithm.

— Problem: the variance of the object being averaged is likely to
be high, requiring high M for accuracy.

• When h (q) is instead equated to Laplace approximation of
posterior distribution, then h (q) is approximately proportional
to p


Ydata|q(j)


p


q

(j)

so that the variance of the variable

being averaged in the last expression is low.
— In this case, the estimator of p


Ydata is called Geweke’s

Modified Harmonic Mean estimator.
— This is a standard way to approximate the marginal likelihood
of the data.



The Marginal Likelihood and Model
Comparison

• Suppose we have two models, Model 1 and Model 2.
— compute p


Ydata|Model 1


and p


Ydata|Model 2



• Suppose p

Ydata|Model 1


> p


Ydata|Model 2


. Then,

posterior odds on Model 1 higher than Model 2.

— ‘Model 1 fits better than Model 2’

• Can use this to compare across two di§erent models, or to
evaluate contribution to fit of various model features: habit
persistence, adjustment costs, etc.

— For an application of this and the other methods in these
notes, see Smets and Wouters, AER 2007.


