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Bayesian Inference

e Bayesian inference is about describing the mapping from prior
beliefs about 6, summarized in p (0), to new posterior beliefs in
the light of observing the data, Y,

o General property of probabilities:

data _ p (Ydata|9) xXp (9)
p <Y '9> - { p (9|Yduta) X p (Ydata> ’

which implies Bayes' rule:
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mapping from prior to posterior induced by Y4,



Bayesian Inference

o Report features of the posterior distribution, p (6] Y%) .

— The value of 8 that maximizes p (Q\Yd“t”), ‘mode’ of posterior
distribution.

— Compare marginal prior, p (6;), with marginal posterior of
individual elements of 6, g (6;/Y%") :

g <9i|Yd”t”> = / p (9|Yd”t”> d0;; (multiple integration!!)
Ojzi

— Probability intervals about the mode of 6 (‘Bayesian
confidence intervals'), need g (91-|Yd“t”) .

e Marginal likelihood for assessing model ‘fit':

p (ydﬁtﬂ> = /P (Yd”mw) p (0) d6 (multiple integration)
0



Monte Carlo Integration: Simple Example

e Much of Bayesian inference is about multiple integration.
e Numerical methods for multiple integration:

— Quadrature integration (example: approximating the integral as
the sum of the areas of triangles beneath the integrand).
— Monte Carlo Integration: uses random number generator.

e Example of Monte Carlo Integration:

— suppose you want to evaluate
b
/f(x)dx, -00 <a<b< oo
— select a density function, g (x) for x € [a,b] and note:
’ "f(x) f ()
X dx:/ — o (x)dx = E—<,
L= [ Siswdr=E S

where E is the expectation operator, given g (x) .



Monte Carlo Integration: Simple Example

e Previous result: can express an integral as an expectation
relative to a (arbitrary, subject to obvious regularity conditions)

density function.
o Use the law of large numbers (LLN) to approximate the
expectation.
— step 1: draw x; independently from density, g, fori =1,..., M.
— step 2: evaluate f (x;) /g (x;) and compute:

11g g(x)

e Exercise.
— Consider an integral where you have an analytic solution

available, e.g., fOl x%dx.
— Evaluate the accuracy of the Monte Carlo method using
various distributions on [0, 1] like uniform or Beta.



Monte Carlo Integration: Simple Example

e Standard classical sampling theory applies.
e Independence of f (x;) /g (x;) over i implies:

(1)
e Central Limit Theorem

— Estimate of fabf (x) dx is a realization from a Nomal

distribution with mean estimated by 1oy, and variance, vy /M.
— With 95% probability,

OMm b OMm
yM—l.%x,/M < /ﬂf(x)dx < ]/[M+1'%X”M

— Pick g to minimize variance in f (x;) /¢ (x;) and M to
minimize (subject to computing cost) v/ M.



Markov Chain, Monte Carlo (MCMC)
Algorithms

e Among the top 10 algorithms "with the greatest influence on
the development and practice of science and engineering in the
20th century".

— Reference: January/February 2000 issue of Computing in
Science & Engineering, a joint publication of the American
Institute of Physics and the IEEE Computer Society.’

e Developed in 1946 by John von Neumann, Stan Ulam, and Nick
Metropolis (see http://www.siam.org/pdf/news/637.pdf)



MCMC Algorithm: Overview

e compute a sequence, 9(1),9(2), ...,G(M), of values of the N x 1
vector of model parameters in such a way that

ngnoo Frequency [G(i) close to 9] =p (0]Yd”t”) .

e Use 9(1),6(2), ...,Q(M) to obtain an approximation for
— E, Var (0) under posterior distribution, p (6]Y4)
] _ d
-9 (91|Ydata> — fe,-#jp (Q‘Y ata) 460460
-p (Ydata) — fep (Ydata‘e) p (0) 4o
— posterior distribution of any function of 6, f (6) (e.g., impulse
responses functions, second moments).

e MCMC also useful for computing posterior mode,
argmaxg p (0] Y?) .



MCMC Algorithm: setting up

Let G (6) denote the log of the posterior distribution (excluding
an additive constant):

G (6) = logp (Y™|0) +logp (6)
Compute posterior mode:
6" = argméaxG (0).

Compute the positive definite matrix, V :

. [_82G (9)]1
~ [ 9000 | s

Later, we will see that V is a rough estimate of the
variance-covariance matrix of 6 under the posterior distribution.



MCMC Algorithm: Metropolis-Hastings

o to compute 8, for r > 1
— step 1: select candidate 0\ x,

‘jump’ distribution’

draw x from 8" Y 4+ kx N ( 0 ,V), k is a scalar
<~ —~—
Nx1 Nx1

— step 2: compute scalar, A :
p (Y™ x) p (x)

p (Ydata’g("—l)) p (9(7—1))
— step 3: compute 0"

g — { 01 ifu> A

A=

: , u is a realization from uniform [0, 1]
X ifu<A



Practical issues

What is a sensible value for k?
— set k so that you accept (i.e., o) = x) in step 3 of MCMC
algorithm are roughly 23 percent of time
What value of M should you set?
— want ‘convergence’, in the sense that if M is increased further,
the econometric results do not change substantially
— in practice, M = 10,000 (a small value) up to M = 1,000, 000.
— large M is time-consuming.
e could use Laplace approximation (after checking its accuracy)
in initial phases of research project.
e more on Laplace below.
Burn-in: in practice, some initial 0)'s are discarded to
minimize the impact of initial conditions on the results.
Multiple chains: may promote efficiency.
— increase independence among 0()s.

— can do MCMC utilizing parallel computing (Dynare can do
this).



MCMC Algorithm: Why Does it Work?

e Proposition that MCMC works may be surprising.

— Whether or not it works does not depend on the details, i.e.,
precisely how you choose the jump distribution (of course, you
had better use k > 0 and V positive definite).

e Proof: see, e.g., Robert, C. P. (2001), The Bayesian Choice,
Second Edition, New York: Springer-Verlag.

— The details may matter by improving the efficiency of the
MCMC algorithm, i.e., by influencing what value of M you
need.

e Some Intuition
— the sequence, 9(1),6(2),...,9(M), is relatively heavily populated
by 6's that have high probability and relatively lightly
populated by low probability 8's.
— Additional intuition can be obtained by positing a simple scalar
distribution and using MATLAB to verify that MCMC
approximates it well (see, e.g., question 2 in assignment 9).



MCMC Algorithm: using the Results

e To approximate marginal posterior distribution, g (9i|Yd“m) , of

0;,
— compute and display the histogram of 951),952),..., QEM)
i=1,.., M.

e Other objects of interest:

7

— mean and variance of posterior distribution 0 :

1\14]_ o, Var (8) = = 3 [0 3] [6 ~5] .

j=1

M=

EO ~ 06

Il
—_



MCMC Algorithm: using the Results

e More complicated objects of interest:
— impulse response functions,
— model second moments,
— forecasts,
— Kalman smoothed estimates of real rate, natural rate, etc.
o All these things can be represented as non-linear functions of
the model parameters, i.e., f (0).

— can approximate the distribution of f (0) using



MCMC: Remaining Issues

e In addition to the first and second moments already discused,
would also like to have the marginal likelihood of the data.

e Marginal likelihood is a Bayesian measure of model fit.



MCMC Algorithm: the Marginal Likelihood

e Consider the following sample average:

1 % h <GU)>

Z\_/I]:1 p (Ydata|9(i)> p (9(1)) '

where 1 (6) is an arbitrary density function over the N—
dimensional variable, 6.

By the law of large numbers,

l% h<90>) - E( 1 (0) )
M=, <Ydata|9(j)> p (9(]')) M-\ p (Y#|0) p (6)



MCMC Algorithm: the Marginal Likelihood

| (69) (o)
1\71]; " (Ydata|9(j)> p (9(j>> e B (p (Yteta|6) p (9))

:/< h(6) )pwmwwwugz 1
(Ydutul@) (9 p (Ydata) p (Ydata)

e When h (6) = p (6), harmonic mean estimator of the marginal
likelihood.
e |deally, want an & such that the variance of

7 (9@)
 107) ()

is small (recall the earlier discussion of Monte Carlo
integration). More on this below.




Laplace Approximation to Posterior
Distribution

e In practice, MCMC algorithm very time intensive.

e Laplace approximation is easy to compute and in many cases it
provides a ‘quick and dirty’ approximation that is quite good.

Let 8 € RN denote the N—dimensional vector of parameters and, as
before,

G (6) = logp (Y*™0) p (6)
p (Yd“f“w) ~likelihood of data

p (6) ~prior on parameters
6* “maximum of G () (i.e., mode)



Laplace Approximation
Second order Taylor series expansion of

G (0) = log [p (Y¥"|9) p (6)] about 6 = 0" :

* * * 1 * * *
G(0)~G(07)+Gp(07)(6—-0")— 5 (0-0 ) Goo (67) (6 —6%),
where
_Flogp (¥"16) p 0)

2000’ 6=6"

Geo (07) =
Interior optimality of 6% implies:
Gy (0") =0, Ggg (8™) positive definite
Then:

p (Y™ 16) p ()

= p (¥7) p (6" exp { —3 (6~ 6") Guo () (0~ 0°) .



Laplace Approximation to Posterior
Distribution

Property of Normal distribution:

/9 (271)% |Geo (9*)|2 exp {_% (60— 6%)' Ggo (6%) (6 — 9*)} 90 =1

Then,
/P (Ydata|9> p (9) do ~ /P <Ydata|9>k) p (9*)
xexp{—% (0 —6%) Ggo (%) (9—9*)}‘
(Ydata|9 ) (9 )
)u Gao (07)

(2m)2

N—




Laplace Approximation

e Conclude:

data\ 14 (Yduta|9*) P (9*)
p(v) =

(27:)15] |Goo (67)]

N|—

e Laplace approximation to posterior distribution:

p(Y™e)p®) 1
p (Yo (2m)?

X exp {—% (0 —6") Gop (6%) (6 — 9*)}

1
|Geo (67)|2

e So, posterior of 0; (i.e., g (6i|Yd“t“)) is approximately

0N (0 [ow )]



Modified Harmonic Mean Estimator of
Marginal Likelihood

e Harmonic mean estimator of the marginal likelihood, p (Yd”t”):

. -1
M= p (Ydata|9(j)> p <9(]')>
with /1 (6) set to p ().
— In this case, the marginal likelihood is the harmonic mean of

the likelihood, evaluated at the values of 8 generated by the
MCMC algorithm.

— Problem: the variance of the object being averaged is likely to
be high, requiring high M for accuracy.
e When i (0) is instead equated to Laplace approximation of
posterior distribution, then /i (6) is approximately proportional

top (Yd“t“]60)> p (B(j)) so that the variance of the variable
being averaged in the last expression is low.




The Marginal Likelihood and Model
Comparison

e Suppose we have two models, Model 1 and Model 2.
— compute p (Y |Model 1) and p (Y4 |Model 2)
e Suppose p (Y4 |Model 1) > p (Y| Model 2) . Then,
posterior odds on Model 1 higher than Model 2.
— 'Model 1 fits better than Model 2’

e Can use this to compare across two different models, or to
evaluate contribution to fit of various model features: habit
persistence, adjustment costs, etc.

— For an application of this and the other methods in these
notes, see Smets and Wouters, AER 2007.



