Simple New Keynesian Model without Capital

Lawrence J. Christiano

September 10, 2015

What's It Good For?

- Conveying basic principles of macroeconomics -
 - Concept and measurement of *output gap*:
 - 'difference between the actual economy and where would be if policy was managed as well as possible'.
 - Importance of aggregate demand.
 - problems when it goes awry.
 - Important policy objective: assuring the right level of aggregate demand.
- What is the welfare cost of inflation?
 - Many think that the high US inflation of the 1970s was in part responsible for the poor economic performance then.
 - But, economists have not been successful at finding a mechanism that can make sense of that.
 - We will see that the simple NK model (with networks) provides such a mechanism (although this is not widely recognized).

What's It Good For?

- Thinking through the operating characteristics of policy rules:
 - Inflation targeting, Tax/spending rules, Leverage restrictions on banks.
- Can even use it to learn econometrics
 - how well do standard econometric estimators work?
 - how good is HP filter at estimating output gap?

Our Approach to NK Model

- We will derive the familiar 'three equation NK model', but they will not be our starting point.
 - Start with households, firms, technology, etc....
- Necessary to build the model from scratch -
 - need this to uncover the principles hiding inside it
 - needed to know how to 'go back to the drawing board' and modify the model so it can address interesting questions:
 - how should macro prudential policy be conducted?
 - how might currency mismatch problems affect the usual transmission of exchange rate depreciation to the economy?
 - what should the role of inflation, labor markets, credit growth, stock markets, etc., be in monetary policy?
 - how does an expansion of unemployment benefits in a recession affect the business cycle?

Households

• Problem:

$$\max E_0 \sum_{t=0}^{\infty} \beta^t \left(\log C_t - \exp(\tau_t) \frac{N_t^{1+\varphi}}{1+\varphi} \right), \ \tau_t = \lambda \tau_{t-1} + \varepsilon_t^{\tau}$$

s.t. $P_t C_t + B_{t+1} \le W_t N_t + R_{t-1} B_t + \text{Profits net of taxes}_t$

• First order conditions:

$$\frac{1}{C_t} = \beta E_t \frac{1}{C_{t+1}} \frac{R_t}{\bar{\pi}_{t+1}}$$
(5)
$$\exp(\tau_t) C_t N_t^{\varphi} = \frac{W_t}{P_t}.$$

Goods Production

• A homogeneous final good is produced using the following (Dixit-Stiglitz) production function:

$$Y_t = \left[\int_0^1 Y_{i,t}^{\frac{\varepsilon-1}{\varepsilon}} dj\right]^{\frac{\varepsilon}{\varepsilon-1}}$$

• Each intermediate good, $Y_{i,t}$, is produced as follows:

- $I_{i,t}$ ~'materials' these are purchases of the homogeneous output good (Basu's simplified way of capturing that firms buy goods from other firms).
- Before discussing the firms that operate these production functions, we briefly investigate the socially efficient ('First Best') allocation of resources across *i*.
 - simplify the discussion with $\gamma=1$ (no materials).

Efficient Sectoral Allocation of Resources Across Sectors

- With Dixit-Stiglitz final good production function, there is a socially optimal allocation of resources to all the intermediate activities, $Y_{i,t}$
 - It is optimal to run them all at the same rate, *i.e.*, $Y_{i,t} = Y_{j,t}$ for all $i, j \in [0, 1]$.
- For given N_t and I_t it is optimal to set $N_{i,t} = N_{j,t},$ for all $i,j \in [0,1]$
- In this case, final output is given by

$$Y_t = e^{a_t} N_t.$$

- Best way to see this is to suppose that labor is *not* allocated equally to all activities.
 - Explore one simple deviation from $N_{i,t} = N_{j,t}$ for all $i, j \in [0, 1]$.

Suppose Labor Not Allocated Equally

• Example:

$$N_{it} = \begin{cases} 2\alpha N_t & i \in \left[0, \frac{1}{2}\right] \\ 2(1-\alpha)N_t & i \in \left[\frac{1}{2}, 1\right] \end{cases}, \ 0 \le \alpha \le 1.$$

 Note that this is a particular distribution of labor across activities:

$$\int_{0}^{1} N_{it} di = \frac{1}{2} 2\alpha N_{t} + \frac{1}{2} 2(1-\alpha) N_{t} = N_{t}$$

Labor Not Allocated Equally, cnt'd

$$\begin{split} Y_{t} &= \left[\int_{0}^{1} Y_{i,t}^{\frac{s-1}{\varepsilon}} di\right]^{\frac{s}{\varepsilon-1}} \\ &= \left[\int_{0}^{\frac{1}{2}} Y_{i,t}^{\frac{s-1}{\varepsilon}} di + \int_{\frac{1}{2}}^{1} Y_{i,t}^{\frac{s-1}{\varepsilon}} di\right]^{\frac{s}{\varepsilon-1}} \\ &= e^{a_{t}} \left[\int_{0}^{\frac{1}{2}} N_{i,t}^{\frac{s-1}{\varepsilon}} di + \int_{\frac{1}{2}}^{1} N_{i,t}^{\frac{s-1}{\varepsilon}} di\right]^{\frac{s}{\varepsilon-1}} \\ &= e^{a_{t}} \left[\int_{0}^{\frac{1}{2}} (2\alpha N_{t})^{\frac{s-1}{\varepsilon}} di + \int_{\frac{1}{2}}^{1} (2(1-\alpha)N_{t})^{\frac{s-1}{\varepsilon}} di\right]^{\frac{s}{\varepsilon-1}} \\ &= e^{a_{t}} N_{t} \left[\int_{0}^{\frac{1}{2}} (2\alpha)^{\frac{s-1}{\varepsilon}} di + \int_{\frac{1}{2}}^{1} (2(1-\alpha))^{\frac{s-1}{\varepsilon}} di\right]^{\frac{s}{\varepsilon-1}} \\ &= e^{a_{t}} N_{t} \left[\int_{0}^{\frac{1}{2}} (2\alpha)^{\frac{s-1}{\varepsilon}} + \frac{1}{2} (2(1-\alpha))^{\frac{s-1}{\varepsilon}} \right]^{\frac{s}{\varepsilon-1}} \\ &= e^{a_{t}} N_{t} \left[\frac{1}{2} (2\alpha)^{\frac{s-1}{\varepsilon}} + \frac{1}{2} (2(1-\alpha))^{\frac{s-1}{\varepsilon}} \right]^{\frac{s}{\varepsilon-1}} \end{split}$$

$$f(\alpha) = \left[\frac{1}{2}(2\alpha)^{\frac{\varepsilon-1}{\varepsilon}} + \frac{1}{2}(2(1-\alpha))^{\frac{\varepsilon-1}{\varepsilon}}\right]^{\frac{\varepsilon}{\varepsilon-1}}$$

Homogeneous Good Production

- Competitive firms:
 - maximize profits:

$$P_t Y_t - \int_0^1 P_{i,t} Y_{i,t} dj,$$

subject to:

$$Y_t = \left[\int_0^1 Y_{i,t}^{\frac{\varepsilon-1}{\varepsilon}} dj\right]^{\frac{\varepsilon}{\varepsilon-1}}$$

•

- Foncs:

$$Y_{i,t} = Y_t \left(\frac{P_t}{P_{i,t}}\right)^{\varepsilon} \to \overbrace{P_t = \left(\int_0^1 P_{i,t}^{(1-\varepsilon)} di\right)^{\frac{1}{1-\varepsilon}}}^{\text{"cross price restrictions"}}$$

Intermediate Goods Production

• Demand curve for *i*th monopolist:

$$Y_{i,t} = Y_t \left(\frac{P_t}{P_{i,t}}\right)^{\varepsilon}$$

• Production function:

- $I_{i,t}$ ~'materials' these are purchases of the homogeneous output good (Basu's simplified way of capturing that firms buy goods from other firms).
- Calvo Price-Setting Friction:

$$P_{i,t} = \left\{ egin{array}{cc} ilde{P}_t & ext{with probability } 1- heta \ P_{i,t-1} & ext{with probability } heta \end{array}
ight.$$

Cost Minimization Problem

- Price setting by intermediate good firms is discussed later.
 - The intermediate good firm must produce the quantity demanded, $Y_{i,t}$, at the price that it sets.
 - Right now we take $Y_{i,t}$ as given and we investigate the cost minimization problem that determines the firm's choice of inputs.
- Cost minimization problem:

$$\begin{split} & \underset{N_{i,t},I_{i,t}}{\text{marginal cost (money terms)}} \\ & \underset{N_{i,t},I_{i,t}}{\text{min}} \bar{W}_t N_{i,t} + \bar{P}_t I_{i,t} + \underbrace{\lambda_{i,t}}_{\lambda_{i,t}} \left[Y_{i,t} - A_t N_{i,t}^{\gamma} I_{i,t}^{1-\gamma} \right] \\ & \text{with resource costs:} \\ & \bar{W}_t = \underbrace{(1-\nu)}_{\text{(1-\nu)}} \times \underbrace{(1-\psi_H + \psi_H R_t) W_t}_{\text{cost, including finance, of a unit of materials}} \\ & \bar{P}_t = (1-\nu) \times \underbrace{(1-\psi_I + \psi_I R_t) P_t}_{(1-\psi_I + \psi_I R_t) P_t} . \end{split}$$

Cost Minimization Problem

• Problem:

$$\min_{N_{i,t},I_{i,t}} \bar{W}_t N_{i,t} + \bar{P}_t I_{i,t} + \lambda_{i,t} \left[Y_{i,t} - A_t N_{i,t}^{\gamma} I_{i,t}^{1-\gamma} \right]$$

• First order conditions:

$$ar{P}_t I_{i,t} = (1-\gamma) \, \lambda_{i,t} Y_{i,t}, \ ar{W}_t N_{i,t} = \gamma \lambda_{i,t} Y_{i,t},$$

so that,

$$\begin{array}{ll} \displaystyle \frac{I_{it}}{N_{it}} & = & \displaystyle \frac{1-\gamma}{\gamma} \frac{\bar{W}_t}{\bar{P}_t} = \displaystyle \frac{1-\gamma}{\gamma} \frac{(1-\psi_N+\psi_N R_t)}{(1-\psi_I+\psi_I R_t)} \exp\left(\tau_t\right) C_t N_t^{\varphi} \\ & \rightarrow & \displaystyle \frac{I_{it}}{N_{it}} = \displaystyle \frac{I_t}{N_t}, \text{ for all } i. \end{array}$$

Cost Minimization Problem

• Firm first order conditions imply

$$\lambda_{i,t} = \left(\frac{\bar{P}_t}{1-\gamma}\right)^{1-\gamma} \left(\frac{\bar{W}_t}{\gamma}\right)^{\gamma} \frac{1}{A_t}.$$

• Divide marginal cost by P_t :

$$s_{t} \equiv \frac{\lambda_{i,t}}{P_{t}} = (1-\nu) \left(\frac{1-\psi_{I}+\psi_{I}R_{t}}{1-\gamma}\right)^{1-\gamma} \times \left(\frac{1-\psi_{N}+\psi_{N}R_{t}}{\gamma}\exp\left(\tau_{t}\right)C_{t}N_{t}^{\varphi}\right)^{\gamma}\frac{1}{A_{t}}$$
(9),

after substituting out for \bar{P}_t and \bar{W}_t and using the household's labor first order condition.

• Note from (9) that i^{th} firm's marginal cost, s_t , is independent of i and Y_{it_t} .

Share of Materials in Intermediate Good Output

• Firm *i* materials proportional to *Y*_{*i*,*t*} :

$$I_{i,t} = \frac{(1-\gamma)\lambda_{i,t}Y_{i,t}}{\bar{P}_t} = \mu_t Y_{i,t},$$

where

$$\mu_t = \frac{(1-\gamma) s_t}{(1-\nu) (1-\psi_I + \psi_I R_t)}$$
(10).

• "Share of materials in firm-level gross output", μ_t .

• *i*th intermediate good firm's objective:

period t+j profits sent to household

$$E_t^i \sum_{j=0}^{\infty} \beta^j \ v_{t+j} \left[\underbrace{\overline{P_{i,t+j} Y_{i,t+j}}}_{t+j} - \underbrace{\overline{P_{t+j} S_{t+j} Y_{i,t+j}}}_{t+j} \right]$$

 \boldsymbol{v}_{t+j} - Lagrange multiplier on household budget constraint

• Firm that gets to reoptimize its price is concerned only with future states in which it does not change its price:

$$E_{t}^{i} \sum_{j=0}^{\infty} \beta^{j} v_{t+j} \left[P_{i,t+j} Y_{i,t+j} - P_{t+j} s_{t+j} Y_{i,t+j} \right]$$

= $E_{t} \sum_{j=0}^{\infty} (\beta \theta)^{j} v_{t+j} \left[\tilde{P}_{t} Y_{i,t+j} - P_{t+j} s_{t+j} Y_{i,t+j} \right] + X_{t},.$

where \tilde{P}_t denotes a firm's price-setting choice at time t and X_t not a function of \tilde{P}_t .

• Substitute out demand curve:

$$E_{t} \sum_{j=0}^{\infty} (\beta \theta)^{j} v_{t+j} \left[\tilde{P}_{t} Y_{i,t+j} - P_{t+j} s_{t+j} Y_{i,t+j} \right]$$

= $E_{t} \sum_{j=0}^{\infty} (\beta \theta)^{j} v_{t+j} Y_{t+j} P_{t+j}^{\varepsilon} \left[\tilde{P}_{t}^{1-\varepsilon} - P_{t+j} s_{t+j} \tilde{P}_{t}^{-\varepsilon} \right].$

• Differentiate with respect to \tilde{P}_t :

$$E_{t}\sum_{j=0}^{\infty}\left(\beta\theta\right)^{j}v_{t+j}Y_{t+j}P_{t+j}^{\varepsilon}\left[\left(1-\varepsilon\right)\left(\tilde{P}_{t}\right)^{-\varepsilon}+\varepsilon P_{t+j}s_{t+j}\tilde{P}_{t}^{-\varepsilon-1}\right]=0,$$

or,

$$E_t \sum_{j=0}^{\infty} \left(\beta\theta\right)^j v_{t+j} Y_{t+j} P_{t+j}^{\varepsilon+1} \left[\frac{\tilde{P}_t}{P_{t+j}} - \frac{\varepsilon}{\varepsilon - 1} s_{t+j}\right] = 0.$$

 When θ = 0, get standard result - price is fixed markup over marginal cost.

• Substitute out the multiplier:

$$E_t \sum_{j=0}^{\infty} (\beta \theta)^j \underbrace{\frac{u'(C_{t+j})}{P_{t+j}}}_{P_{t+j}} Y_{t+j} P_{t+j}^{\varepsilon+1} \left[\frac{\tilde{P}_t}{P_{t+j}} - \frac{\varepsilon}{\varepsilon - 1} s_{t+j} \right] = 0.$$

• Using assumed log-form of utility,

$$E_t \sum_{j=0}^{\infty} (\beta \theta)^j \frac{Y_{t+j}}{C_{t+j}} (X_{t,j})^{-\varepsilon} \left[\tilde{p}_t X_{t,j} - \frac{\varepsilon}{\varepsilon - 1} s_{t+j} \right] = 0,$$

$$\tilde{p}_t \equiv \frac{\tilde{P}_t}{P_t}, \ \bar{\pi}_t \equiv \frac{P_t}{P_{t-1}}, \ X_{t,j} = \begin{cases} \frac{1}{\bar{\pi}_{t+j} \bar{\pi}_{t+j-1} \cdots \bar{\pi}_{t+1}}, \ j \ge 1\\ 1, \ j = 0. \end{cases},$$

$$X_{t,j} = X_{t+1,j-1} \frac{1}{\bar{\pi}_{t+1}}, \ j > 0$$

• Want \tilde{p}_t in:

$$E_{t}\sum_{j=0}^{\infty}\left(\beta\theta\right)^{j}\frac{Y_{t+j}}{C_{t+j}}\left(X_{t,j}\right)^{-\varepsilon}\left[\tilde{p}_{t}X_{t,j}-\frac{\varepsilon}{\varepsilon-1}s_{t+j}\right]=0$$

• Solving for \tilde{p}_t , we conclude that prices are set as follows:

$$\tilde{p}_{t} = \frac{E_{t} \sum_{j=0}^{\infty} \left(\beta\theta\right)^{j} \frac{Y_{t+j}}{C_{t+1}} \left(X_{t,j}\right)^{-\varepsilon} \frac{\varepsilon}{\varepsilon-1} s_{t+j}}{E_{t} \sum_{j=0}^{\infty} \left(\beta\theta\right)^{j} \frac{Y_{t+j}}{C_{t+j}} \left(X_{t,j}\right)^{1-\varepsilon}} = \frac{K_{t}}{F_{t}}.$$

• Need convenient expressions for K_t , F_t .

$$K_{t} = E_{t} \sum_{j=0}^{\infty} (\beta \theta)^{j} \frac{Y_{t+j}}{C_{t+j}} (X_{t,j})^{-\varepsilon} \frac{\varepsilon}{\varepsilon - 1} s_{t+j}$$

$$= \frac{\varepsilon}{\varepsilon - 1} \frac{Y_{t}}{C_{t}} s_{t}$$

$$+ \beta \theta E_{t} \left(\frac{1}{\bar{\pi}_{t+1}}\right)^{-\varepsilon} \underbrace{E_{t+1} \sum_{j=0}^{\infty} (\beta \theta)^{j} X_{t+1,j}^{-\varepsilon} \frac{Y_{t+j+1}}{C_{t+j+1}} \frac{\varepsilon}{\varepsilon - 1} s_{t+1+j}}_{\varepsilon - 1} s_{t+1+j}}_{\varepsilon - 1}$$

$$= \frac{\varepsilon}{\varepsilon - 1} \frac{Y_{t}}{C_{t}} s_{t} + \beta \theta E_{t} \left(\frac{1}{\bar{\pi}_{t+1}}\right)^{-\varepsilon} K_{t+1}}$$

For a detailed derivation, see, e.g., http://faculty.wcas.northwestern.edu/~lchrist/course/IMF2015/ intro_NK_handout.pdf.

• Conclude:

$$\tilde{p}_{t} = \frac{E_{t} \sum_{j=0}^{\infty} \left(\beta\theta\right)^{j} \left(X_{t,j}\right)^{-\varepsilon} \frac{Y_{t+j}}{C_{t+j}} \frac{\varepsilon}{\varepsilon-1} s_{t+j}}{E_{t} \sum_{j=0}^{\infty} \left(\beta\theta\right)^{j} \left(X_{t,j}\right)^{1-\varepsilon} \frac{Y_{t+j}}{C_{t+j}}} = \frac{K_{t}}{F_{t}},$$

where

$$K_{t} = \frac{\varepsilon}{\varepsilon - 1} \frac{Y_{t}}{C_{t}} s_{t} + \beta \theta E_{t} \left(\frac{1}{\bar{\pi}_{t+1}}\right)^{-\varepsilon} K_{t+1}$$
(1)

• Similarly,

$$F_t = \frac{Y_t}{C_t} + \beta \theta E_t \left(\frac{1}{\bar{\pi}_{t+1}}\right)^{1-\varepsilon} F_{t+1}$$
(2)

Interpretation of Price Formula

• Note,

$$\frac{1}{P_{t+j}} = \frac{1}{P_t} X_{t,j}, \ s_{t+j} = \frac{\lambda_{t+j}}{P_{t+j}} = \frac{\lambda_{t+j}}{P_t} X_{t,j}, \ \tilde{p}_t = \frac{\tilde{P}_t}{P_t}$$

Multiply both sides of the expression for \tilde{p}_t by P_t :

$$\tilde{P}_{t} = \frac{E_{t} \sum_{j=0}^{\infty} \left(\beta\theta\right)^{j} \left(X_{t,j}\right)^{1-\varepsilon} \frac{Y_{t+j}}{C_{t+j}} \frac{\varepsilon}{\varepsilon-1} \lambda_{t+j}}{E_{t} \sum_{j=0}^{\infty} \left(\beta\theta\right)^{j} \left(X_{t,j}\right)^{1-\varepsilon} \frac{Y_{t+j}}{C_{t+j}}} = \frac{\varepsilon}{\varepsilon-1} \sum_{j=0}^{\infty} E_{t} \omega_{t+j} \lambda_{t+j}$$

where

$$\omega_{t+j} = \frac{\left(\beta\theta\right)^{j} \left(X_{t,j}\right)^{1-\varepsilon} \frac{Y_{t+j}}{C_{t+j}}}{E_{t} \sum_{j=0}^{\infty} \left(\beta\theta\right)^{j} \left(X_{t,j}\right)^{1-\varepsilon} \frac{Y_{t+j}}{C_{t+j}}}, \quad \sum_{j=0}^{\infty} E_{t} \omega_{t+j} = 1.$$

Evidently, price is set as a markup over a weighted average of future marginal cost, where the weights are shifted into the future depending on how big θ is.

Restriction Between Aggregate and Intermediate Good Prices

• 'Calvo result':

$$P_t = \left(\int_0^1 P_{i,t}^{(1-\varepsilon)} di\right)^{\frac{1}{1-\varepsilon}} = \left[(1-\theta) \tilde{P}_t^{(1-\varepsilon)} + \theta P_{t-1}^{(1-\varepsilon)} \right]^{\frac{1}{1-\varepsilon}}$$

٠

٠

• Divide by P_t :

$$1 = \left[\left(1 - \theta\right) \tilde{p}_t^{(1 - \varepsilon)} + \theta \left(\frac{1}{\bar{\pi}_t}\right)^{(1 - \varepsilon)} \right]^{\frac{1}{1 - \varepsilon}}$$

• Rearrange:

$$ilde{p}_t = \left[rac{1- hetaar{\pi}_t^{(arepsilon-1)}}{1- heta}
ight]^{rac{1}{1-arepsilon}}$$

Aggregate inputs and outputs

- Technically, there is no 'aggregate production function':
 - there is no exact relationship between output, Y_t , and aggregate inputs, N_t , I_t , A_t .
 - must also know the *distribution* of resources across intermediate good firms.
- Tack Yun (JME, 1996) developed a simple approach that can be used to determine the connection between *N*, *A*, *I*, *Y* and the distribution of resources.

Gross Output and Aggregate Inputs

• Define Y_t^* :

$$Y_{t}^{*} \equiv \int_{0}^{1} Y_{i,t} di$$

$$\stackrel{\text{demand curve}}{=} Y_{t} \int_{0}^{1} \left(\frac{P_{i,t}}{P_{t}}\right)^{-\varepsilon} di = Y_{t} P_{t}^{\varepsilon} \int_{0}^{1} (P_{i,t})^{-\varepsilon} di$$

$$= Y_{t} P_{t}^{\varepsilon} (P_{t}^{*})^{-\varepsilon}$$

where, using 'Calvo result':

$$P_t^* \equiv \left[\int_0^1 P_{i,t}^{-\varepsilon} di\right]^{\frac{-1}{\varepsilon}} = \left[(1-\theta)\,\tilde{P}_t^{-\varepsilon} + \theta\,\left(P_{t-1}^*\right)^{-\varepsilon}\right]^{\frac{-1}{\varepsilon}}$$

• Then

$$Y_t = p_t^* Y_t^*, \ p_t^* = \left(\frac{P_t^*}{P_t}\right)^{\varepsilon}.$$

Law of Motion of Tack Yun Distortion

• We have

$$P_t^* = \left[(1-\theta) \tilde{P}_t^{-\varepsilon} + \theta \left(P_{t-1}^* \right)^{-\varepsilon} \right]^{\frac{-1}{\varepsilon}}$$

• Then,

$$p_t^* \equiv \left(\frac{P_t^*}{P_t}\right)^{\varepsilon} = \left[(1-\theta) \, \tilde{p}_t^{-\varepsilon} + \theta \frac{\bar{\pi}_t^{\varepsilon}}{p_{t-1}^*} \right]^{-1} \\ = \left[(1-\theta) \left(\frac{1-\theta \bar{\pi}_t^{(\varepsilon-1)}}{1-\theta}\right)^{\frac{\varepsilon}{\varepsilon-1}} + \frac{\theta \bar{\pi}_t^{\varepsilon}}{p_{t-1}^*} \right]^{-1}$$
(4)

using the restriction between \tilde{p}_t and aggregate inflation.

Gross Output and Aggregate Input

• Relationship between aggregate inputs and outputs:

$$\begin{aligned} Y_t &= p_t^* Y_t^* = p_t^* \int_0^1 Y_{i,t} di \\ &= p_t^* A_t \int_0^1 N_{i,t}^{\gamma} I_{i,t}^{1-\gamma} di = p_t^* A_t \int_0^1 \left(\frac{N_{i,t}}{I_{i,t}}\right)^{\gamma} I_{i,t} di, \\ &= p_t^* A_t \left(\frac{N_t}{I_t}\right)^{\gamma} I_t, \end{aligned}$$

or,

$$Y_t = p_t^* A_t N_t^{\gamma} I_t^{1-\gamma}$$
 (6)

• Tack Yun distortion p_t^* :

$$p_t^*: \left\{ egin{array}{c} \leq 1 \ = 1 \end{array}
ight. P_{i,t} = P_{j,t}, ext{ all } i,j \end{array}
ight.$$

Working Towards an Expression for Gross Domestic Product (Aggregate Value Added, GDP)

Recall

$$I_{i,t} = \mu_t Y_{i,t},$$

so,

$$I_t \equiv \int_0^1 I_{i,t} di = \mu_t \int_0^1 Y_{i,t} d = \mu_t Y_t^* = \frac{\mu_t}{p_t^*} Y_t.$$

• Then,

$$Y_t = p_t^* A_t N_t^{\gamma} I_t^{1-\gamma}$$

$$= p_t^* A_t N_t^{\gamma} \left(\frac{\mu_t}{p_t^*} Y_t\right)^{1-\gamma}$$

$$\longrightarrow Y_t = \left(p_t^* A_t \left(\frac{\mu_t}{p_t^*}\right)^{1-\gamma}\right)^{\frac{1}{\gamma}} N_t$$

Gross Domestic Product (GDP)

• We have

$$GDP_{t} = Y_{t} - I_{t} = \left(1 - \frac{\mu_{t}}{p_{t}^{*}}\right)Y_{t}$$

$$= \left(1 - \frac{\mu_{t}}{p_{t}^{*}}\right)\left(p_{t}^{*}A_{t}\left(\frac{\mu_{t}}{p_{t}^{*}}\right)^{1 - \gamma}\right)^{\frac{1}{\gamma}}N_{t}$$

$$= \overline{\left(p_{t}^{*}A_{t}\left(1 - \frac{\mu_{t}}{p_{t}^{*}}\right)^{\gamma}\left(\frac{\mu_{t}}{p_{t}^{*}}\right)^{1 - \gamma}\right)^{\frac{1}{\gamma}}}N_{t}$$

- Note how an increase in technology at the firm level, by A_t , gives rise to a bigger increase in TFP by $A_t^{1/\gamma}$.
 - In the literature on networks, $1/\gamma$ is referred to as a 'multiplier effect' (see Jones, 2011).
- The Tack Yun distortion, p_t^* , seems to be associated with the same multiplier phenomenon.

Decomposition for Total Factor Productivity

• To maximize GDP for given aggregate N_t and A_t :

$$\max_{\substack{0 < p_t^* \le 1, \ 0 \le \lambda_t \le 1}} \left(p_t^* A_t \left(1 - \lambda_t \right)^{\gamma} \left(\lambda_t \right)^{1 - \gamma} \right)^{\frac{1}{\gamma}} \\ \rightarrow \quad \lambda_t = 1 - \gamma, \ p_t^* = 1.$$

• So,

 $TFP_{t} = \underbrace{\left(p_{t}^{*}\left(\frac{1-\frac{\mu_{t}}{p_{t}^{*}}}{\gamma}\right)^{\gamma}\left(\frac{\frac{\mu_{t}}{p_{t}^{*}}}{1-\gamma}\right)^{1-\gamma}\right)^{\frac{1}{\gamma}}}_{\text{Technology component}} \times \underbrace{\left(A_{t}\left(\gamma\right)^{\gamma}\left(1-\gamma\right)^{1-\gamma}\right)^{\frac{1}{\gamma}}}_{\text{Technology component}}$

Evaluating the Distortions

• The equations characterizing the TFP distortion, χ_t :

$$\chi_t = \left(p_t^* \left(\frac{1 - \frac{\mu_t}{p_t^*}}{\gamma} \right)^{\gamma} \left(\frac{\frac{\mu_t}{p_t^*}}{1 - \gamma} \right)^{1 - \gamma} \right)^{\frac{1}{\gamma}}$$
$$p_t^* = \left[(1 - \theta) \left(\frac{1 - \theta \bar{\pi}_t^{(\varepsilon - 1)}}{1 - \theta} \right)^{\frac{\varepsilon}{\varepsilon - 1}} + \frac{\theta \bar{\pi}_t^{\varepsilon}}{p_{t-1}^*} \right]^{-1}$$

- Potentially, NK model provides an 'endogenous theory of TFP'.
- Standard practice in NK literature is to set $\chi_t = 1$ for all t.
 - Set $\gamma = 1$ and linearize around $\bar{\pi}_t = p_t^* = 1$.
 - With $\gamma = 1, \ \chi_t = p_t^*$, and first order expansion of p_t^* around $\bar{\pi}_t = p_t^* = 1$ is:

$$p_t^* = p^* + 0 imes ar{\pi}_t + heta \left(p_{t-1}^* - p^*
ight)$$
 , with $p^* = 1$,

so $p_t^* \rightarrow 1$ and is invariant to shocks.

Empirical Assessment of the Distortions

• The TFP distortion, χ_t :

$$\chi_t = \left(p_t^* \left(rac{1-rac{\mu_t}{p_t^*}}{\gamma}
ight)^\gamma \left(rac{rac{\mu_t}{p_t^*}}{1-\gamma}
ight)^{1-\gamma}
ight)^rac{1}{\gamma}$$

- Problem: the objects, χ_t and p_t^* , are not quite observable.
 - Still, if we assume μ_t is constant, at $1-\gamma,$ we can get a feel about the magnitudes using US inflation data.
- Will consider $\gamma = 1/2$ (Basu's empirical estimate) and $\gamma = 1$ (standard assumption in NK literature).
- Will consider two values for the markup:
 - $\varepsilon/(\varepsilon 1) = 1.20$, the baseline estimate in CEE (JPE, 2005), which corresponds to $\varepsilon = 6$,
 - $\varepsilon/\left(\varepsilon-1\right)=1.15$, more competition, i.e., $\varepsilon=7.7.$

Empirical Assessment of the Distortions

• First, do 'back of the envelope calculations in a steady state when inflation is constant and p^* is constant.

$$p^* = \left[(1-\theta) \left(\frac{1-\theta\bar{\pi}^{(\varepsilon-1)}}{1-\theta} \right)^{\frac{\varepsilon}{\varepsilon-1}} + \frac{\theta\bar{\pi}^{\varepsilon}}{p^*} \right]^{-1}$$
$$\rightarrow p^* = \frac{1-\theta\bar{\pi}^{\varepsilon}}{(1-\theta) \left(\frac{1-\theta\bar{\pi}^{(\varepsilon-1)}}{1-\theta} \right)^{\frac{\varepsilon}{\varepsilon-1}}}$$

• Approximate TFP distortion, χ :

$$\chi_t = \left(p_t^* \left(\frac{1 - \frac{\mu_t}{p_t^*}}{\gamma} \right)^{\gamma} \left(\frac{\frac{\mu_t}{p_t^*}}{1 - \gamma} \right)^{1 - \gamma} \right)^{\frac{1}{\gamma}} \simeq (p^*)^{1/\gamma}$$

Cost of Average Inflation in 1970s Using Steady State Formulas

• Formulas:

$$p^* = \frac{1 - \theta \bar{\pi}^{\varepsilon}}{(1 - \theta) \left(\frac{1 - \theta \bar{\pi}^{(\varepsilon - 1)}}{1 - \theta}\right)^{\frac{\varepsilon}{\varepsilon - 1}}}, \ \chi = (p^*)^{1/\gamma}$$

• Results

Table 1: Fraction of GDP Lost Due to Inflation, $100(1-\chi)$			
	No networks, $\gamma=1$	Networks, $\gamma=2$	
Steady state lost output	2.61 (4.34)*	5.16 (8.50)	
Note * number not in parentheses - markup of 20 percent (i.e., $arepsilon=6)$			
number in parentheses - markup of 15 percent. (i.e., $arepsilon=7.7)$			

Next: Assess Costs of Inflation Using Non-Steady State Formulas

Figure 1a: Graph of Quarterly, Gross US CPI inflation, p-star and chi, assumed markup is 1.2

Figure 1b: Graph of Quarterly, Gross US CPI inflation, p-star and chi, assumed markup is 1.15

Inflation Distortions Displayed are Big

- With $\varepsilon = 6$,
 - mean $(\chi_t)=0.98$, a 2% loss of GDP.
 - frequency, $\chi_t < 0.955$, is 10% (i.e., 10% of the time, the output loss is greater than 4.5 percent).
- With more competition (i.e., ε higher), the losses are greater.
 - with higher elasticity of demand, given movements in inflation imply much greater substitution away from high priced items, thus greater misallocation (caveat: this intuition is incomplete since with greater ε the consequences of a given amount of misallocation are smaller).
- Distortions with $\gamma = 1/2$ are roughly twice the size of distortions in standard case, $\gamma = 1$.
 - To see this, let $p^*=1-\omega.$ Then,

$$\chi_t \simeq (p^*)^{\frac{1}{\gamma}} \simeq 1 - \frac{1}{\gamma}\omega.$$

Comparison of Steady State and Dynamic Costs of Inflation in 1970s

• Results

Table 1: Fraction of GDP Lost Due to Inflation, $100(1-\chi)$			
	No networks, $\gamma=1$	Networks, $\gamma=2$	
Steady state lost output	2.61 (4.34)*	5.16 (8.50)	
Mean, 1972Q1-1982Q4	3.13 (5.22)	6.26 (10.44)	
Note * number not in parentheses - markup of 20 percent (i.e., $arepsilon=6)$			
number in parentheses - markup of 15 percent. (i.e., $arepsilon=7.7)$			

• Evidently, distortions increase rapidly in inflation,

E [*distortion* (inflation)] > *distortion* (*E*inflation)

Next

- Summarize the equilibrium conditions.
- Compare flexible price and sticky price equilibria
 - sticky price equilibrium incomplete.
 - One equation short because real allocations in private economy co-determined along with the nominal quantities.
 - flexible price equilibrium (at least, the one without working capital) dichotomizes.
 - real allocations in flexible price model are determined and monetary policy only delivers inflation and the nominal interest, things that do not affect utility.
- Evaluate distortions in steady state.

Summarizing the Equilibrium Conditions

- Break up the equilibrium conditions into three sets:
 - Conditions (1)-(4) for prices: $K_t, F_t, \bar{\pi}_t, p_t^*, s_t$
 - Conditions (6)-(10) for: $C_t, Y_t, N_t, I_t, \mu_t$
 - Conditions (5) and (11) for R_t and χ_t .
- Consider
 - conditions for the model as is.
 - conditions pertaining to the case of flexible prices, no working capital and efficient subsidy for monopoly power:

$$\theta = 0, \ \psi_I = \psi_N = 0, \ \frac{\varepsilon}{\varepsilon - 1} (1 - \nu) = 1.$$

• equilibrium supports 'first best' allocations: those that would occur if a benevolent planner chose the allocations rather than the market.

Equilibrium Conditions for Prices

$$K_{t} = \frac{\varepsilon}{\varepsilon - 1} \frac{Y_{t}}{C_{t}} s_{t} + \beta \theta E_{t} \left(\frac{1}{\bar{\pi}_{t+1}}\right)^{-\varepsilon} K_{t+1} (1)$$

$$F_{t} = \frac{Y_{t}}{C_{t}} + \beta \theta E_{t} \left(\frac{1}{\bar{\pi}_{t+1}}\right)^{1-\varepsilon} F_{t+1} (2)$$

$$\frac{K_{t}}{F_{t}} = \left[\frac{1 - \theta \bar{\pi}_{t}^{(\varepsilon-1)}}{1 - \theta}\right]^{\frac{1}{1-\varepsilon}} (3)$$

$$p_{t}^{*} = \left[(1 - \theta) \left(\frac{1 - \theta \bar{\pi}_{t}^{(\varepsilon-1)}}{1 - \theta}\right)^{\frac{\varepsilon}{\varepsilon-1}} + \frac{\theta \bar{\pi}_{t}^{\varepsilon}}{p_{t-1}^{*}}\right]^{-1} (4)$$

• When $\theta = 0$, these boil down to (i) zero price dispersion and (ii) everyone sets price as markup, $\varepsilon / (\varepsilon - 1)$, over marginal cost:

$$p_t^*=1,\;rac{arepsilon}{arepsilon-1}s_t=1,\;K_t=F_t=C_t/Y_t,\; ext{no restriction on }ar{\pi}_t$$

Other, Static, Equilibrium Conditions

• Variables:

$$C_t, Y_t, N_t, I_t, \mu_t$$

• Equations:

$$Y_{t} = p_{t}^{*}A_{t}N_{t}^{\gamma}I_{t}^{1-\gamma} (6), C_{t} + I_{t} = Y_{t} (7), I_{t} = \mu_{t}\frac{Y_{t}}{p_{t}^{*}} (8)$$

$$s_{t} = (1-\nu)\left(\frac{1-\psi_{I}+\psi_{I}R_{t}}{1-\gamma}\right)^{1-\gamma} \times \left(\frac{1-\psi_{N}+\psi_{N}R_{t}}{\gamma}\exp(\tau_{t})C_{t}N_{t}^{\varphi}\right)^{\gamma}\frac{1}{A_{t}} (9)$$

$$\mu_{t} = \frac{(1-\gamma)s_{t}}{(1-\nu)(1-\psi_{I}+\psi_{I}R_{t})} (10),$$

Other Variables in Flexible Price, no Working Capital Case

• Suppose $\varepsilon \left(1-\nu
ight)$ / $(\varepsilon -1)=1$, $heta =\psi _{I}=\psi _{N}=0$,

$$Y_{t} = \left[A_{t}\mu_{t}^{1-\gamma}\right]^{\frac{1}{\gamma}}N_{t} (6), C_{t} = \left[A_{t} (1-\mu_{t})^{\gamma} \mu_{t}^{1-\gamma}\right]^{\frac{1}{\gamma}}N_{t} (6,7,8)$$

$$1 = \frac{\varepsilon}{\varepsilon-1} (1-\nu) \left(\frac{1}{1-\gamma}\right)^{1-\gamma} \left(\frac{1}{\gamma} \exp(\tau_{t}) C_{t} N_{t}^{\varphi}\right)^{\gamma} \frac{1}{A_{t}} (9)$$

$$\mu_{t} = \frac{\varepsilon-1}{\varepsilon} \frac{(1-\gamma)}{(1-\nu)} = 1-\gamma (10),$$

• Combining (6,7,8) and (10):

$$C_{t} = \left[A_{t}\gamma^{\gamma} \left(1-\gamma\right)^{1-\gamma}\right]^{rac{1}{\gamma}} N_{t}$$
 (6,7,8,10)

 Consumption maximized, conditional on aggregate employment, N_t.

Other Variables in Flexible Price, no Working Capital Case (cnt'd)

- Suppose $\varepsilon (1 \nu) / (\varepsilon 1) = 1$, $\theta = \psi_I = \psi_N = 0$.
- Solve equation (9) for cost of working, $\exp(\tau_t) C_t N_t^{\varphi}$,

$$\underbrace{\underbrace{\exp\left(\tau_{t}\right)C_{t}N_{t}^{\varphi}}_{\exp\left(\tau_{t}\right)C_{t}N_{t}^{\varphi}}=\left[A_{t}\left(\gamma\right)^{\gamma}\left(1-\gamma\right)^{1-\gamma}\right]^{\frac{1}{\gamma}}$$
(9)

• Conditions (6,7,8,10) and (9) imply that first-best levels of consumption and employment occur:

$$N_t = \exp\left(-\frac{\tau_t}{1+\varphi}\right)$$

$$C_t(=GDP_t) = \left[A_t(\gamma)^{\gamma} (1-\gamma)^{1-\gamma}\right]^{\frac{1}{\gamma}} \exp\left(-\frac{\tau_t}{1+\varphi}\right)$$

Last Equilibrium Conditions

• Distortion:

$$\chi_t = \left(p_t^* \left(\frac{1 - \frac{\mu_t}{p_t^*}}{\gamma} \right)^{\gamma} \left(\frac{\frac{\mu_t}{p_t^*}}{1 - \gamma} \right)^{1 - \gamma} \right)^{\frac{1}{\gamma}} (11)$$

in $\varepsilon (1 - \nu) / (\varepsilon - 1) = 1$, $\theta = \psi_I = \psi_N = 0$ case,

$$\chi_t = 1$$
, for all t .

• Intertemporal equation

$$\frac{1}{C_t} = \beta E_t \frac{1}{C_{t+1}} \frac{R_t}{\bar{\pi}_{t+1}}$$
(5)

Real Interest Rate in Flex P Equilibrium

- The real interest rate, $R_t/\bar{\pi}_{t+1}$.
 - Absent uncertainty, $R_t/\bar{\pi}_{t+1}$ determined uniquely:

$$\frac{1}{C_t} = \beta \frac{1}{C_{t+1}} \frac{R_t}{\bar{\pi}_{t+1}}.$$

- With uncertainty, household intertemporal condition simply places a single linear restriction across all the period t+1 values for $R_t/\bar{\pi}_{t+1}$ that are possible given period t.
- The real interest rate, \tilde{r}_t , on a risk free one-period bond that pays in t + 1 is uniquely determined:

$$\frac{1}{C_t} = \tilde{r}_t \beta E_t \frac{1}{C_{t+1}}.$$

• By no-arbitrage, only the following weighted average of $R_t/\bar{\pi}_{t+1}$ across period t+1 states of nature is determined:

$$\tilde{r}_t = \frac{E_t \frac{1}{\bar{c}_{t+1}} \frac{R_t}{\bar{\pi}_{t+1}}}{E_t \frac{1}{\bar{c}_{t+1}}} = E_t \frac{1}{E_t \frac{1}{\bar{c}_{t+1}}} \frac{R_t}{\bar{\pi}_{t+1}} = E_t \nu_{t+1} \frac{R_t}{\bar{\pi}_{t+1}}.$$

Classical Dichotomy and New Keynesian Economics

- Captured by flexible price, no working capital, no monopoly distortion version of model.
 - Real variables determined independent of monetary policy.
 - The things that matter consumption, employment are first best and there is no constructive role for monetary policy.
 - Monetary policy irrelevant. Money is a veil.
- With price frictions.
 - Now, all aspects of the system are interrelated and jointly determined.
 - Whole system depends on the nature of monetary policy.
 - Within the context of a market system, monetary policy has an essential role as a potential 'lubricant', to help the economy to get as close as possible to the first best.
 - Monetary policy:
 - has the potential to do a good job.
 - or, if mismanaged, could get very bad outcomes.

Steady State

The steady state may found by implementing the following calculations in sequence, for given $\bar{\pi}$:

$$R = \frac{\bar{\pi}}{\beta}, \ K_{f} \equiv \frac{K}{F} = \left[\frac{1-\theta\bar{\pi}^{(\varepsilon-1)}}{1-\theta}\right]^{\frac{1}{1-\varepsilon}}, \ s = K_{f}\frac{\varepsilon-1}{\varepsilon}\frac{1-\beta\theta\bar{\pi}^{\varepsilon}}{1-\beta\theta\bar{\pi}^{\varepsilon-1}}$$
$$p^{*} = \frac{1-\theta\bar{\pi}^{\varepsilon}}{(1-\theta)\left(\frac{1-\theta\bar{\pi}^{(\varepsilon-1)}}{1-\theta}\right)^{\frac{\varepsilon}{\varepsilon-1}}}, \ \mu = \frac{(1-\gamma)s}{(1-\nu)\left(1-\psi_{I}+\psi_{I}R\right)},$$
$$C_{Y} \equiv \frac{C}{Y} = 1-\frac{\mu}{p^{*}}, \ Y = \left[p^{*}\left(\frac{\mu}{p^{*}}\right)^{1-\gamma}\right]^{\frac{1}{\gamma}}N,$$
$$C_{Y} = \sqrt{\frac{Q}{p^{*}\left(1-\frac{\mu}{p^{*}}\right)^{\gamma}\left(\frac{\mu}{p^{*}}\right)^{1-\gamma}}}, \ N,$$

Steady State, Continued

$$N = \left[\frac{s}{\left(1-\nu\right)\left(\frac{1-\psi_{I}+\psi_{I}R}{1-\gamma}\right)^{1-\gamma}\left(\frac{1-\psi_{N}+\psi_{N}R}{\gamma}Q\right)^{\gamma}}\right]^{\frac{1}{\left(1+\varphi\right)\gamma}}$$
$$C = QN, \ Y = \frac{C}{1-\frac{\mu}{p^{*}}}, \ I = \mu\frac{Y}{p^{*}}, \ F = \frac{1/C_{Y}}{1-\beta\theta\bar{\pi}^{1-\varepsilon}}, \ K = K_{f} \times F$$

Now, Move to the Standard Three Equation Model

- Model described above with
 - no network effects, $\gamma=1.$
 - price-setting frictions, $\theta > 0$.
 - no working capital, $\psi_I=\psi_N=0.$

- $\gamma = 1$ and No Working Capital Channel.
- Derive, as a benchmark, best possible equilibrium:
 - Ramsey or 'natural' equilibrium.
- Study 'actual equilibrium': equilibrium in which monetary policy is government by a Taylor rule.
 - as is standard in literature, Taylor rule forces inflation to be zero in steady state.
 - in long run, market economy functions well.
 - in short run, it could get off track.
- Derive classic IS curve as difference between log-linear intertemporal Euler equation in actual and natural equilibrium.
- Display linearized Phillips curve.

• $\gamma = 1$, no working capital:

$$C_t = Y_t$$
.

• Can show that best possible equilibrium (i.e., Ramsey or Natural equilibrium) satisfies:

$$ar{\pi}_t = 1,$$

 $p_t^* = 1,$
 $\log C_t^* = a_t - rac{ au_t}{1+arphi}$
 $\log N_t^* = -rac{ au_t}{1+arphi}$

See http://faculty.wcas.northwestern.edu/~lchrist/course/IMF2015/intro_NK_handout.pdf

• Intertemporal First Order Condition:

$$\frac{1}{C_t} = R_t E_t \frac{\beta}{C_{t+1}\bar{\pi}_{t+1}}.$$

or, in Ramsey

$$-\log C_t^* = \log \beta + \log R_t + \log E_t \frac{1}{C_{t+1}^*}$$
$$= \log \beta + \log R_t + \log E_t \exp \left[-\log C_{t+1}^*\right]$$
$$\simeq \log \beta + \log R_t + \log \exp \left[-E_t \log C_{t+1}^*\right]$$

or

$$\log C_t^* = -\log\beta - \overbrace{\log R_t}^{r_t^*} + E_t \log C_{t+1}^*$$

so, Ramsey (Natural) rate of interest:

$$r_t^* = -\log\beta + E_t \left[\log C_{t+1}^* - \log C_t^*\right]$$

• Intertemporal First Order Condition:

$$\frac{1}{C_t} = E_t \frac{\beta}{C_{t+1}} \frac{R_t}{\bar{\pi}_{t+1}}$$

or, in actual (not necessarily Ramsey) equilibrium:

$$\log C_{t} = -\log \beta - \overbrace{\log R_{t}}^{=r_{t}} - \log E_{t} \frac{1}{C_{t+1}^{*}} \frac{1}{\bar{\pi}_{t+1}}$$
$$= -\log \beta - r_{t} - \log E_{t} \exp \left[-\log C_{t+1} - \overbrace{\log \bar{\pi}_{t+1}}^{=\pi_{t+1}} \right]$$

or, approximately

$$\log C_t = -\log\beta - (r_t - E_t\pi_{t+1}) + E_t\log C_{t+1}^*$$

The IS Equation

• Ramsey and actual intertemporal conditions:

$$\log C_t = -\log \beta - (r_t - E_t \pi_{t+1}) + E_t \log C_{t+1}^* \log C_t^* = -\log \beta - r_t^* + E_t \log C_{t+1}^*$$

• Subtract second from first to obtain IS equation:

$$x_t = -(r_t - E_t \pi_{t+1} - r_t^*) + E_t x_{t+1}$$

where x_t is the 'output gap':

$$x_t = \log\left(C_t\right) - \log\left(C_t^*\right)$$

Standard Linearized Analysis About Steady State With No Price and Monopoly Distortions

• The linearized equations of the model (interpreting r_t and r_t^* as deviations from steady states):

$$\begin{aligned} x_t &= E_t x_{t+1} - [r_t - E_t \pi_{t+1} - r_t^*] \\ \pi_t &= \frac{(1-\theta)(1-\beta\theta)}{\theta} \hat{s}_t + \beta E_t \pi_{t+1} \\ \hat{s}_t &= (\varphi+1) x_t \\ r_t^* &= E_t \left[a_{t+1} - a_t - \frac{\tau_{t+1} - \tau_t}{1+\varphi} \right] \end{aligned}$$

• Monetary policy rule:

$$r_t = \alpha r_{t-1} + (1-\alpha) \left[\phi_{\pi} \pi_t + \phi_x x_t \right]$$

 See: http://faculty.wcas.northwestern.edu/~lchrist/course/CIED_2014/NK_model_handout.pdf for a formal derivation.

Solving the Model

- Vision about evolution of actual data:
 - Nature draws the exogenous shocks.
 - The economy transforms exogenous shocks into realization of endogenous variables, inflation, output, unemployment, etc.
- 'Solving the model':
 - Using the computer to imitate nature drawing shocks from random number generator and transforming these into movements in the endogenous variables.
 - Problem: equilibrium conditions cannot be used for this pupose
 - In equilibrium conditions current variables are functions of past data and *expected future value of endogenous variables*.
- One strategy for solving a model:
 - Find a representation ('policy rule') of the endogenous variables, z_t, in terms of current and past data only:

$$z_t = A z_{t-1} + B s_t$$

such that the (linearized) equilibrium conditions are satisfied.

• Exogenous shocks:

$$s_{t} = \begin{pmatrix} \Delta a_{t} \\ \tau_{t} \end{pmatrix} = \begin{bmatrix} \rho & 0 \\ 0 & \lambda \end{bmatrix} \begin{pmatrix} \Delta a_{t-1} \\ \tau_{t-1} \end{pmatrix} + \begin{pmatrix} \varepsilon_{t}^{a} \\ \varepsilon_{t}^{\tau} \end{pmatrix}$$
$$s_{t} = Ps_{t-1} + \epsilon_{t}$$

• Equilibrium Conditions:

• Collecting:

$$E_t \left[\alpha_0 z_{t+1} + \alpha_1 z_t + \alpha_2 z_{t-1} + \beta_0 s_{t+1} + \beta_1 s_t \right] = 0$$

$$s_t - P s_{t-1} - \epsilon_t = 0.$$

• Policy rule:

$$z_t = A z_{t-1} + B s_t$$

• As before, want A such that

$$\alpha_0 A^2 + \alpha_1 A + \alpha_2 I = 0,$$

• Want *B* such that:

$$(\beta_0 + \alpha_0 B)P + [\beta_1 + (\alpha_0 A + \alpha_1)B] = 0$$

Note: if α = 0, then A = 0 is one solution (there is another one!).

 $\phi_x = 0, \, \phi_\pi = 1.5, \, \beta = 0.99, \, \varphi = 1, \, \rho = 0.2, \, \theta = 0.75, \, \alpha = 0, \, \delta = 0.2, \, \lambda = 0.5.$

Next, to Assignment 9.....

Next, Analysis of Bigger Model with Networks and Working Capital Channel

- See how the nonlinear equilibrium conditions of the model are input into Dynare.
- Use the Dynare to solve and simulate the model with first and second order perturbation method.
 - Resuts suggest that for plausible model parameterization, there is little difference between the two methods, suggesting that linearization is ok, at least for US-sized fluctuations.
- See the impact of working capital on the stabilizing properties of the Taylor principle.

Magnitude of TFP Distortion Stochastic Simulations

• Parameter values

$$\bar{\pi} = 1.025^{\frac{1}{4}}, \ \psi_I = \psi_N = 1, \ \gamma = \frac{1}{2}, \ \beta = 1.03^{-0.25},$$

$$\theta = 0.75, \ \varepsilon = 6 \ \left(\frac{\varepsilon}{\varepsilon - 1} = 1.2\right), \ \varphi = 1, \ \nu = \frac{1}{\varepsilon},$$

$$\sigma_a = 0.01, \ \sigma_\tau = 0.01, \ \rho_a = 0.95, \ \rho_\tau = 0.90.$$

Technology shock:

$$\begin{array}{rcl} a_t &=& \left(\rho_1 + \rho_2\right) a_{t-1} - \rho_1 \rho_2 a_{t-2} + \varepsilon_t, \ E \varepsilon_t^2 = 0.01^2, \\ \rho_1 &=& 0.99 \ \text{and} \ \rho_2 = 0.3. \end{array}$$

• Monetary policy rule:

$$R_t/R = (R_{t-1}/R)^{0.8} \exp\left[(1-0.8) \, 1.5(\bar{\pi}_t - 1.0062)\right]$$

Results in Previous Graph

- Differences between first and second order perturbations
 - Negligible for consumption, and small for distortion, χ .
- Effect of reducing γ to 1/2.
 - Volatility of consumption rises noticeably, consistent with the 'multiplier' discussed in the input-output literature.
 - Distortion, χ_t , not as great as the emprical estimate.
 - this is because the model does not generate the high inflation of the 1970s.
- The overall volatility of GDP in the example is somewhat higher than in the data. Prescott (1986) reports the standard deviation of log, HP filtered GDP to be around 2 percent. For the model, the standard deviation of log consumption is around 2.5 percent ($\gamma = 1$) and around 4.7 percent ($\gamma = 1/2$).
- The US data calculations suggest that the distortions are increased when the degree of competition is increased, as one can see in the next figure where ε was increased from 6 to 7.7.

Conclusion

- Some evidence of misallocation distortions from price setting frictions when production done in networks.
 - The evidence is very substantial when measured from the data using minimal restrictions from the model.
 - The evidence is less dramatic (though still non-negligible) when based on all the restrictions of the model using stochastic simulation.
- An extensive discussion of the implications for the Taylor principle appears in my 2011 handbook chapter.
 - When the smoothing parameter is set to zero and $\psi_I = \psi_N = 1$, then the model has indeterminacy, even when the coefficient on inflation is 1.5. So, the likelihood of the Taylor principle breaking down goes up when γ is reduced, consistent with intuition.
 - When the smoothing parameter is at its empirically plausible value of 0.8, then the solution of the model does not display indeterminacy.