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What's It Good For?

e Conveying basic principles of macroeconomics -

— Concept and measurement of output gap:
e ‘difference between the actual economy and where would be if
policy was managed as well as possible’.
— Importance of aggregate demand.

e problems when it goes awry.

— Important policy objective: assuring the right level of aggregate
demand.

e What is the welfare cost of inflation?

— Many think that the high US inflation of the 1970s was in part
responsible for the poor economic performance then.

— But, economists have not been successful at finding a
mechanism that can make sense of that.

— We will see that the simple NK model (with networks) provides
such a mechanism (although this is not widely recognized).



What's It Good For?

e Thinking through the operating characteristics of policy rules:

— Inflation targeting, Tax/spending rules, Leverage restrictions
on banks.

e Can even use it to learn econometrics

— how well do standard econometric estimators work?
— how good is HP filter at estimating output gap?



Our Approach to NK Model

o We will derive the familiar ‘three equation NK model’, but they
will not be our starting point.

— Start with households, firms, technology, etc....

o Necessary to build the model from scratch -

— need this to uncover the principles hiding inside it
— needed to know how to ‘go back to the drawing board’ and
modify the model so it can address interesting questions:

e how should macro prudential policy be conducted?

e how might currency mismatch problems affect the usual
transmission of exchange rate depreciation to the economy?

e what should the role of inflation, labor markets, credit growth,
stock markets, etc., be in monetary policy?

e how does an expansion of unemployment benefits in a recession
affect the business cycle?



Households

e Problem:
0o Nl—l—go
max Eg Z ﬁt log Cy — exp (7¢) { , Tt = AT +€f
=0 l+e¢

s.t. PyCt 4 Byy1 < WiN¢ + Ry_1By + Profits net of taxes;

e First order conditions:
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Goods Production

A homogeneous final good is produced using the following
(Dixit-Stiglitz) production function:

1 e . s%l
0 7
Each intermediate good, Y, is produced as follows:

Yi;: = exp(a) N?tlilfy, a; ~exogenous shock to technology,
0 < <1

I;+ ~'materials’ these are purchases of the homogeneous output
good (Basu's simplified way of capturing that firms buy goods
from other firms).
Before discussing the firms that operate these production
functions, we briefly investigate the socially efficient (‘First
Best') allocation of resources across i.

— simplify the discussion with ¥ =1 (no materials).



Efficient Sectoral Allocation of Resources
Across Sectors

e With Dixit-Stiglitz final good production function, there is a
socially optimal allocation of resources to all the intermediate
activities, Y;;

— It is optimal to run them all at the same rate, i.e., Y;; = Y,
for all i,j € [0,1].

e For given N; and I; it is optimal to set N;; = Nj;, for all
i,j €[0,1]
e In this case, final output is given by

Yt = e”tNt.

e Best way to see this is to suppose that labor is not allocated
equally to all activities.

— Explore one simple deviation from N;; = N;; for all i,j € [0,1].



Suppose Labor Not Allocated Equally

* Example:

- 2aN, i€ [0,%]

Ni - s
' {2(1—a)N, ie[4,1]

* Note that this is a particular distribution of
labor across activities:

<a<l.

1
J. N[[di = LZaN; + l2(1 — a)N, = N[
0 2 2



Labor Not Allocated Equally, cnt’d
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Homogeneous Good Production

e Competitive firms:

— maximize profits:

1
Pth—/O P;;Y;dj,

subject to:

e—1

T e
Y= { Yii dj]
o

— Foncs:

""cross price restrictions"

Y”_Yt(p > P = (/Pl 8d1> -




Intermediate Goods Production

Demand curve for it" monopolist:

Production function:

Yii: = exp(a) N?tlilt_v, a; ~exogenous shock to technology,
0 < <1

I;+ ~'materials’ these are purchases of the homogeneous output
good (Basu's simplified way of capturing that firms buy goods
from other firms).

Calvo Price-Setting Friction:

P, — Dby with probability 1 — 6
W Piy_q  with probability 6



Cost Minimization Problem

e Price setting by intermediate good firms is discussed later.
— The intermediate good firm must produce the quantity
demanded, Y;;, at the price that it sets.
— Right now we take Y;; as given and we investigate the cost
minimization problem that determines the firm's choice of
inputs.

e Cost minimization problem:

marginal cost (money terms)

. TR = ztn v 11—y
min WtNi,t + Ptli,t + )\i,t |:Yi,t - AtN I ]

Lt it
it Y

with resource costs:

subsidy, if v>0  cost, including finance, of a unit of labor
—_—

Wi = (1/_7) X (1- Yy ‘:’PHRt) Wi

cost, including finance, of a unit of materials
N

-~

Py = (1-v)x (1 =9, + ¢;Re) Py




Cost Minimization Problem

e Problem:

. A D 1_
glmln WiN; ¢ + Pilip + Ay [Yi,t - AtNZtIz’,t !
it

e First order conditions:

Py = (1 =) AisYir, WiNip = vAi1 Yoy,

so that,

L 1—9W 1—+(1-— R

Jit ’Y__t _ ,)/( ll)N—i_l/JN t) exp (Tt) CtNt(P
Nt v Pt v (=9, +¢Re)

I I
N#z = Z\—;t, for all i.



Cost Minimization Problem

e Firm first order conditions imply

we (%) (5) 5
" I—v v ) Ar
¢ Divide marginal cost by P :
Aig L+ R\
= ——=(1- —_
* Py S ( -
71

y (1 - ¢N,:" wNRt exp (Tt) Ctth)) E (9),

after substituting out for P; and W; and using the household's
labor first order condition.

o Note from (9) that i firm’'s marginal cost, s, is independent
of iand Yy .



Share of Materials in Intermediate Good
Output

e Firm i materials proportional to Y;; :

(1 =) AirY;,
Liy = D T = 1Yit,
t

where
"= (L—7)s
(1= v) (1 =9+ PRy

(10).

e "Share of materials in firm-level gross output", p,.



Decision By Firm that Can Change Its Price

e it" intermediate good firm's objective:
period t+4j profits sent to household

N

revenues total cost
7\ 7\

Zﬁ’ Vs | i Yisj — ProiseriYiess

UtJr]' - Lagrange multiplier on household budget constraint

e Firm that gets to reoptimize its price is concerned only with
future states in which it does not change its price:

(]

Ei Z ﬁiUH—j [Pi,t+jYi,t+j - Pt+j5t+jYi,t+j}
j=0
= ErY (BO) vryj [PrYisj — PeyjserYissj] + X,
j=0

where P; denotes a firm's price-setting choice at time t and X;
not a function of P:.



Decision By Firm that Can Change Its Price

e Substitute out demand curve:

Er Y (BOY vej [PrYipij— PrajsesYigs]
j=0
= Et Z (IBQ)] Ut—‘r]Yt—i-]P?J,-] [P}is - Pt+j5t+jp;€:| .
j=0

e Differentiate with respect to P; :

[e0]

ErY (B6) VeV iPy [(1 —e) (Pr) "+ €Pt+fsf+fpf_£_1] =0
=0
o,
ad i er1 | Pr €
i) (BOY v YeuPLl | 5— — c—5+i| =0
= Pryj e—1

e When 6 = 0, get standard result - price is fixed markup over
marginal cost.



Decision By Firm that Can Change Its Price
e Substitute out the multiplier:

= Uty
fﬂ) w1 | P € _
E; Z o)y ———=Y, P} o [m — 8_—154 =0.
e Using assumed log-form of utility,
jYH—j —& | €
B Y (B0) T (X,) ™ [Pk — o] =0
t+j €—

4

~ 1 .
ijt = &’ 7_-[1’ = i Xt] — { 7_'[t+]~77[t+]-71..'.7_tt+1’ ] Z 1
’ 1, j=0.

1
Xij=Xpp1j1=—]>0
J I J



Decision By Firm that Can Change Its Price

e Want p; in:
t—|— - 3
EfZ poy & ( L (X0 (P = g | =0

e Solving for p, we conclude that prices are set as follows:

_ EYEo(BO) ot (X)) = _Ki
= Y 1- T F
E Yo (BOY o (X)) H

Crsj

e Need convenient expressions for K;, F;.



Decision By Firm that Can Change Its Price

Y ¢
Ki = EtZ(ﬁG) C ](Xt]) 88_15t+j
j=0 t+j
o S YtS
o 8—1Ct !

exactly Kt+1

~

1\ °° Yigji1 e
OE, ( —— E (BOY X5 — :
+BOE; <7_Tt+1) t+1 Z po) LG, e — TSt

e Y 1 \ ¢
— 0E K
_1Ct5t+ﬁ t (7Tt+1> t+1

For a detailed derivation, see, e.g.,
http://faculty.wcas.northwestern.edu/~Ichrist /course/IMF2015/
intro_ NK__handout.pdf.




Decision By Firm that Can Change Its Price

e Conclude:
BT (BO) (Xiy) B Cif 15 _ K
Pt = o ; 1 Y - 7
Et}.iZo (poY (Xf,]') ) ﬁ B
where
S Yf 1 o
K = OE K 1
;= 8_1Cst+[3 t(mH) +1 (1)
e Similarly,

Y;
Fr= — 0E
Ct+ﬁ t(

1—e¢
! ) Fiy1 (2)

TT1



Interpretation of Price Formula
¢ Note,

1 1 /\t+] At—&-] P t
_— —X i, S . i R

Multiply both sides of the expression for p; by Py :
00 j 1-¢e Y
E; Zj:O (130)] (Xt]) ‘ cif I3 81/\t+] €
= ]. e Vi, == ZEtwt+])\t+]
Er Y20 (BOY (X)) 2 1.5

Crij

T

B =

where

(BOY (Xi)) " 0
0 j 1—¢ Yt+j ! Z Eth‘j =1
Eryo (BO) (X) "ot i=0

Evidently, price is set as a markup over a weighted average of
future marginal cost, where the weights are shifted into the
future depending on how big 6 is.

C()t]':



Restriction Between Aggregate and
Intermediate Good Prices

e ‘Calvo result’:



Aggregate inputs and outputs

e Technically, there is no ‘aggregate production function’:

— there is no exact relationship between output, Y}, and
aggregate inputs, Ny, I}, Ay.

— must also know the distribution of resources across
intermediate good firms.

e Tack Yun (JME, 1996) developed a simple approach that can
be used to determine the connection between N, A, I, Y and
the distribution of resources.



Gross Output and Aggregate Inputs
e Define Y7}:

1
Y; = / Y, di

0

demand curve 1/p. —¢ 1

2 Yt/ <—t> di:YtPf/ (P;;) " di

0 \ Pt 0 ’
= YiP; (P;)™°

where, using ‘Calvo result’:

-1

1
1 e _ =
P = Uo P;fdi} = [(1—9) Py7e+6 (Py) 8]
e Then

k4% * P* ‘
Yi=piYi, pr = (P_tt> .



Law of Motion of Tack Yun Distortion

e \We have

—1

Pi=[a-0) P +o(Py) ]
e Then,

using the restriction between p; and aggregate inflation.



Gross Output and Aggregate Input

o Relationship between aggregate inputs and outputs:
Yi = pYy :Pt/ Y di
1 /N, \7
- At/ N;Ytlztvdl At/ (—lt) L; i,
0 \ Lit ’
N,
== p*At< t) It,
Iy

Yi = pi AT (6)

e Tack Yun distortion pj:

or,

«. ] <1
Pt:9 =1 Pyy="Pjy alli,j -



Working Towards an Expression for Gross
Domestic Product (Aggregate Value

Added, GDP)
e Recall
Lip = W Yig,
50,
_ 1 : 1 * yt
L= /O I di = i, /O Vied = i = D0
e Then,

Yo = piANILTT

1—y
— PIAN] (”—:1@)
P;

ANAN
— yt:<ijt (_i) ) N;
Pt

—



Gross Domestic Product (GDP)
e We have

GDP; = Yt—It:( —“—j)yt

1

I=-v\ 7
= _&> * (&) N
< p (p AN > t

=Total Factor Productivity

e Y
1
v

v 1=y
(m (1-20) (%) ) N

Pt Pt

e Note how an increase in technology at the firm level, by Ay,
gives rise to a bigger increase in TFP by A}M.

— In the literature on networks, 1/ is referred to as a ‘multiplier

effect’ (see Jones, 2011).
e The Tack Yun distortion, p;, seems to be associated with the

same multiplier bhenomenon.




Decomposition for Total Factor

Productivity
e To maximize GDP for given aggregate Ny and A; :

1=y
max (piAr(1- )7 (A)7)
0oyt By < \PEAH L= AT (A
— M=1—7,pf =1
e So,
Component due to market distortions=y;

g T

5

A A
TFP — * pt pt

Technology component

Xr<At (1" (1~ 7)1_7)$

ST



Evaluating the Distortions
e The equations characterizing the TFP distortion, x; :

1-L4
Pt

X *
t Pt( ’Y

v o\ Y 7
Pt
1—o

_(e—1)

-1
=&
07ty
*
Pi-1

&1
)

e Potentially, NK model provides an ‘endogenous theory of TFP'.
e Standard practice in NK literature is to set x;, = 1 for all t.
— Set v =1 and linearize around 7; = pf = 1.
— With v =1, x; = p;, and first order expansion of p; around

ﬁtzpleiSZ

pi =p +0x 7 +0(pi_q—p*), withp* =1,

so p; — 1 and is invariant to shocks.



Empirical Assessment of the Distortions
e The TFP distortion, x; :

1 H Y I 1—y %
I i Pi
Xt = | Pt ( ’Y ) (1—’Y>

e Problem: the objects, x; and p;, are not quite observable.

— Still, if we assume }; is constant, at 1 — vy, we can get a feel
about the magnitudes using US inflation data.
o Will consider y = 1/2 (Basu's empirical estimate) and v =1
(standard assumption in NK literature).
e Will consider two values for the markup:
— ¢/ (e—1) = 1.20, the baseline estimate in CEE (JPE, 2005),

which corresponds to € = 6,
— ¢/ (e—1) = 1.15, more competition, i.e., € =7.7.



Empirical Assessment of the Distortions

e First, do ‘back of the envelope calculations in a steady state
when inflation is constant and p* is constant.

i} 1— gD\ &1 gae
pr=1=0) (W) T

. 1—07°
—p = e

(1-0) (1925 2)

e Approximate TFP distortion, x :

1 M\ i 1—v %
N P Pr ~ (¥\1/7
Xt m( ; ) (1_7> ~ (p*)
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Cost of Average Inflation in 1970s Using
Steady State Formulas

e Formulas:
\ 1— 67 1/

g (mmy

e Results

Table 1: Fraction of GDP Lost Due to Inflation, 100(1 — x)

No networks, v = 1 | Networks, ¢ =2

Steady state lost output 2.61 (4.34)F 5.16 (8.50)

Note * number not in parentheses - markup of 20 percent (i.e., € = 6)

number in parentheses - markup of 15 percent. (i.e., € = 7.7)




Next: Assess Costs of Inflation Using
Non-Steady State Formulas



Figure 1a: Graph of Quarterly, Gross US CPI
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Inflation Distortions Displayed are Big
o With ¢ = 6,

— mean(x;) = 0.98, a 2% loss of GDP.
— frequency, x; < 0.955, is 10% (i.e., 10% of the time, the
output loss is greater than 4.5 percent).
e With more competition (i.e., € higher), the losses are greater.

— with higher elasticity of demand, given movements in inflation
imply much greater substitution away from high priced items,
thus greater misallocation (caveat: this intuition is incomplete
since with greater e the consequences of a given amount of
misallocation are smaller).

e Distortions with v = 1/2 are roughly twice the size of
distortions in standard case, v = 1.

— To see this, let p* =1 — w. Then,

1
Xe=(p)r ~1-



Comparison of Steady State and Dynamic
Costs of Inflation in 1970s

e Results

Table 1: Fraction of GDP Lost Due to Inflation, 100(1 — x)

No networks, v =1

Networks, v =2

Steady state lost output

261 (4.34)

5.16 (3.50)

Mean, 1972Q1-1982Q4

313 (5.22)

6.26 (10.44)

Note * number not in parentheses - markup of 20 percent (i.e., € = 6)

number in parentheses - markup of 15 percent. (i.e., € = 7.7)

e Evidently, distortions increase rapidly in inflation,

E [distortion (inflation)] > distortion (Einflation)




Next

e Summarize the equilibrium conditions.
e Compare flexible price and sticky price equilibria
— sticky price equilibrium incomplete.

e One equation short because real allocations in private economy
co-determined along with the nominal quantities.

— flexible price equilibrium (at least, the one without working
capital) dichotomizes.

o real allocations in flexible price model are determined and
monetary policy only delivers inflation and the nominal interest,
things that do not affect utility.

e Evaluate distortions in steady state.



Summarizing the Equilibrium Conditions

e Break up the equilibrium conditions into three sets:
— Conditions (1)-(4) for prices: Ky, Fy, 7tt, py, St
— Conditions (6)-(10) for: Cy, Yy, N, Iy, p,
— Conditions (5) and (11) for R and ;.

e Consider

— conditions for the model as is.
— conditions pertaining to the case of flexible prices, no working
capital and efficient subsidy for monopoly power:

3
9—0, 1/)1—1PN—0, 8_71(1—1/)—1

e equilibrium supports ‘first best" allocations: those that would
occur if a benevolent planner chose the allocations rather than
the market.



Equilibrium Conditions for Prices

e Y 1 \°¢
Ki = —s¢ + BOE; ( ) Kiy1 (1)
e—1C 41

Yt ( 1 )18
F— —L 4+ BOE, | — Fioq (2
F= G BOE; o +1 (2)
1
K [1—ea= V] 3
F 1—6

¢ -1
_(e=1)\ =1 i
1-07 07
— (1-9) —t> + *t (4)
P [ 1-¢6 Pr—1

e When 6 = 0, these boil down to (i) zero price dispersion and (ii)
everyone sets price as markup, €/ (¢ — 1), over marginal cost:

p; =1, 1st =1, Kt = F; = C;/Y}, no restriction on 7T;



Other, Static, Equilibrium Conditions

e Variables:
Ct/ Yf/ Ni‘/ If/ l’lt

e Equations:

) _ Y
Y: = pfANJLTT(6), Ci4 1 =Y (7), I = p,— (8)

Pt
1—
ss = (1—-v) <_1 _ ‘1/’1_+7¢1Rf> !
o (1 — Py + PR
Y
(1—1)s

= A0 A gy ke MO

1

Y
exp () cth) 4O




Other Variables in Flexible Price, no
Working Capital Case
e Suppose e(1—v)/(e—=1)=1,0 =19, =1 =0,
i = [Ap "] N (6), Co=[Ar (1= ) ] N (678
1=y v
1 = - i 7 (1—-v) <ﬁ) (% exp (T¢) CtN;P> I%t 9)
p, = 8;1(&:33 =1-—1(10),

e Combining (6,7,8) and (10):

1
C = [Atfﬂ (1- 7)1*7] " N; (6,7,8,10)

e Consumption maximized, conditional on aggregate employment,
N;.



Other Variables in Flexible Price, no
Working Capital Case (cnt’d)
e Suppose e(1—v)/(e—=1)=1,0=1¢; =1y =0.
e Solve equation (9) for cost of working, exp (7) C,}N;P,

) benefit of working
cost of working P N

——— 1
exp (1) CNY = [A4r(1)” (1=7)""]" (9)

e Conditions (6,7,8,10) and (9) imply that first-best levels of
consumption and employment occur:

Ny = exp (_1 —Ti_t(P)

Ci( = GDP;) = [At (7)" (1 - 7)1_7] g exp (_




Last Equilibrium Conditions

e Distortion:

1- M Y Iy 1—y %
_ * Pt Pt

ine(1—-v)/(e—1)=1,0=1; =1y =0 case,

Xy =1, for all t.

e Intertemporal equation




Real Interest Rate in Flex P Equilibrium
e The real interest rate, R/ 7Ts41.
— Absent uncertainty, R;/ ;11 determined uniquely:
1 1 R
Cr "Crr e

— With uncertainty, household intertemporal condition simply
places a single linear restriction across all the period t 41
values for R;/ ;11 that are possible given period t.
e The real interest rate, 7, on a risk free one-period bond that
pays in t + 1 is uniquely determined:

1 1

- = ?tﬁEt_-
C Cr1
e By no-arbitrage, only the following weighted average of
R/ 7ts11 across period t + 1 states of nature is determined:
1 Ry 1
7 — P/ E G Re Ry
o 1 o 1 ’
1 47T T
E Cii1 E Crpp tH1 t+1




Classical Dichotomy and New Keynesian
Economics

e Captured by flexible price, no working capital, no monopoly
distortion version of model.
— Real variables determined independent of monetary policy.
— The things that matter - consumption, employment - are first
best and there is no constructive role for monetary policy.
— Monetary policy irrelevant. Money is a veil.

e With price frictions.

— Now, all aspects of the system are interrelated and jointly
determined.

— Whole system depends on the nature of monetary policy.

— Within the context of a market system, monetary policy has an
essential role as a potential ‘lubricant’, to help the economy to
get as close as possible to the first best.

— Monetary policy:

e has the potential to do a good job.
e or, if mismanaged, could get very bad outcomes.



Steady State

The steady state may found by implementing the following
calculations in sequence, for given 7T :

7 K |[1-erlED | e—1 1—Bor
R= B l=F="129 ] s =K BoE1
(1—0) (1—(971(5*1>>m (1-v)(1- Y+ 1PIR)
0




Steady State, Continued

1

(1+o)y
S
1=+, R\ 1Y 1=+ R A\ 7
(1-v) (FER) ()
C Y 1/Cy
QN’Y:1_£’I:MP_*’P:W’K:KJ’XF

p*



Now, Move to the Standard Three
Equation Model

e Model described above with

— no network effects, ¥ = 1.
— price-setting frictions, 6 > 0.
— no working capital, ¥, = ¥, = 0.



The Linearized Private Sector Equilibrium
Conditions of Standard Model

v =1 and No Working Capital Channel.
e Derive, as a benchmark, best possible equilibrium:
— Ramsey or ‘natural’ equilibrium.
e Study ‘actual equilibrium’: equilibrium in which monetary policy
is government by a Taylor rule.

— as is standard in literature, Taylor rule forces inflation to be
zero in steady state.

— in long run, market economy functions well.

— in short run, it could get off track.

e Derive classic IS curve as difference between log-linear
intertemporal Euler equation in actual and natural equilibrium.

e Display linearized Phillips curve.



The Linearized Private Sector Equilibrium
Conditions of Standard Model

e v =1, no working capital:
Ci=Y:

e Can show that best possible equilibrium (i.e., Ramsey or
Natural equilibrium) satisfies:

T = 1/
pp=1
logC; = a;— 124)
logN; = —1 :(i‘t(P

®  See http://faculty.wcas.northwestern.edu/~Ichrist/course/IMF2015/intro_ NK _handout.pdf



The Linearized Private Sector Equilibrium
Conditions of Standard Model

e Intertemporal First Order Condition:

1
= = RtEtL_-
Ct Cr17T41

or, in Ramsey

—logC; = logp+logR;+logE;

Ciia
= logp +log R + log E;exp [—log C 4]
~ logp + log R + logexp [—E;log Ci 4]

or
£
T

—~
logC; = —logp —logR; + E¢log Cf 4
so, Ramsey (Natural) rate of interest:

rf = —log B+ E; [log Cf, ; — log C|



The Linearized Private Sector Equilibrium
Conditions of Standard Model

e Intertemporal First Order Condition:
1 R
E B R

~ —E A
Ct Cit1 41

or, in actual (not necessarily Ramsey) equilibrium:

—~ == 1
logC; = —logp — logR; — logE;

Cii T

-

=TT
= —logp—rt—logEiexp | —logCii1 — log itr41

or, approximately

logC; = —log B — (1t — E¢mtpyq) + Erlog Ciyq



The IS Equation

e Ramsey and actual intertemporal conditions:

logC; = —logp — (1t — E¢rteqq) + Elog Gy
logCf = —logpB —ri +EilogCyy

e Subtract second from first to obtain IS equation:
*
xt = — (1t — Eymte1 — 17) + Exxp 1
where x; is the ‘output gap':

x¢ = log (C¢) —log (C;)



Standard Linearized Analysis About Steady
State With No Price and Monopoly
Distortions

e The linearized equations of the model (interpreting ¢ and r} as
deviations from steady states):

xt = Exxppq — [re— Eympgq — 17
T-0)(1
T, = M 8 + BEsTTi 1
= ((P+1)xt
= Et |ap4q —ap —

Tr41—Tt
14+¢

e Monetary policy rule:
e =arp_1+ (1 - DC) [4)7'[7Tt + 4)th]

®  Sce: http://faculty.wcas.northwestern.edu/~Ichrist/course/CIED _2014/NK_model _handout.pdf for a formal

derivation.



Solving the Model

e Vision about evolution of actual data:

— Nature draws the exogenous shocks.

— The economy transforms exogenous shocks into realization of
endogenous variables, inflation, output, unemployment, etc.

e ‘Solving the model’:

— Using the computer to imitate nature - drawing shocks from
random number generator and transforming these into
movements in the endogenous variables.

— Problem: equilibrium conditions cannot be used for this pupose

® In equilibrium conditions current variables are functions of past
data and expected future value of endogenous variables.
e One strategy for solving a model:

— Find a representation (‘policy rule’) of the endogenous

variables, z;, in terms of current and past data only:

Zy = AZt_l + BSt

such that the (linearized) equilibrium conditions are satisfied.



* Exogenous shocks:

Aay p O Aay g et
St = = +

Tt 0 2 Tt-1 6{
St = PSt_l + €t

* Equilibrium Conditions:

B0O0O Tu -1 S g 46) 0 0
1100 X |, 0 -1 11
0000 M1 A-a)p: (A-a)px -1 0
0000 I 0 0 01
0000 Tt 0 0 0 0
0000 et 0 o0 0 0

"l 004qo0 e |l 0 o P70 o
0000 I, -1 4 0 -1

Et[a0Zti1 + 012t + @2Zt-1 + PoStr + P15t] = 0

Xt
I't
r

St



Collecting:

Et [wozi41 + @126 + @2zi—1 + BySe1 + 15t = O
ss—Ps; 1 —e = 0.

Policy rule:
zy = Azi—1 + Bsy

As before, want A such that
apA% + a1 A + apl = 0,
Want B such that:
(By + %oB)P + [B, + (xpA +a1)B] = 0

Note: if « = 0, then A = 0 is one solution (there is another
one!).



¢ =0 ¢z =15 =099, p=1p=020=075a=05=02 A=05

Dynamic Response to a Technology Shock
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Dynamic Response to a Preference Shock

inflation output gap nominal rate
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Next, to Assignment 9.....



Next, Analysis of Bigger Model with
Networks and Working Capital Channel

e See how the nonlinear equilibrium conditions of the model are
input into Dynare.

e Use the Dynare to solve and simulate the model with first and
second order perturbation method.

— Resuts suggest that for plausible model parameterization, there
is little difference between the two methods, suggesting that
linearization is ok, at least for US-sized fluctuations.

e See the impact of working capital on the stabilizing properties
of the Taylor principle.



Magnitude of TFP Distortion Stochastic

Simulations
e Parameter values
1
o= 1.025%, ;= ¢, = T=>3 B =1.0370%,
€ 1
= . et _ = ]. = 1 = -,
0 0.75, ¢ 6(5—1 12),4) , v .

o, = 001, 0 =0.01, p, =0.95, p. =0.90.
Technology shock:

ar = 0y +0y) a1 — 10,02 + &, Eef = 0017,
0, = 099 andp, =03

e Monetary policy rule:

Ri/R = (Ri_1/R)*®exp [(1 — 0.8) 1.5(7t; — 1.0062)]
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Results in Previous Graph

Differences between first and second order perturbations

— Negligible for consumption, and small for distortion, x.
Effect of reducing 7y to 1/2.

— Volatility of consumption rises noticeably, consistent with the

‘multiplier’ discussed in the input-output literature.
— Distortion, x;, not as great as the emprical estimate.
e this is because the model does not generate the high inflation
of the 1970s.

The overall volatility of GDP in the example is somewhat higher
than in the data. Prescott (1986) reports the standard
deviation of log, HP filtered GDP to be around 2 percent. For
the model, the standard deviation of log consumption is around
2.5 percent (v = 1) and around 4.7 percent (y = 1/2).
The US data calculations suggest that the distortions are
increased when the degree of competition is increased, as one
can see in the next figure where & was increased from 6 to 7.7.
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Conclusion

e Some evidence of misallocation distortions from price setting
frictions when production done in networks.

— The evidence is very substantial when measured from the data
using minimal restrictions from the model.

— The evidence is less dramatic (though still non-negligible)
when based on all the restrictions of the model using
stochastic simulation.

e An extensive discussion of the implications for the Taylor
principle appears in my 2011 handbook chapter.

— When the smoothing parameter is set to zero and
Y; = Py = 1, then the model has indeterminacy, even when
the coefficient on inflation is 1.5. So, the likelihood of the
Taylor principle breaking down goes up when 7 is reduced,
consistent with intuition.

— When the smoothing parameter is at its empirically plausible
value of 0.8, then the solution of the model does not display
indeterminacy.



