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Equilibrium Conditions
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Steady State
Conditional on π̄, ν
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which is six equations in six unknowns: K, F, C, N, p∗, R.



Log Linearization
• Hat notation:
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• Log linearize equation (1) about steady state:
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Phillips Curve

• Linearizing (1), (2) and (3), about steady state,
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• Substitute out for K̂t in (a) using (c) and then substitute out
for F̂t from (b) to obtain the equation on the next slide.



Phillips Curve

• Performing the substitutions described on the previous slide:
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Phillips Curve
• Collecting terms,
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ŝt + βEt ̂̄πt+1

+ (1− π̄)
(

1− θπ̄(ε−1)
)

β

×Et

(
F̂t+1 +

(
ε+

θπ̄(ε−1)

1− θπ̄(ε−1)

) ̂̄πt+1

)
.

• Don’t actually get standard Phillips curve unless π̄ = 1.

— More generally, get standard Phillips curve as long as there are
no price distortions in steady state.

• Going for the Phillips curve in terms of the output gap.



Linearized Marginal Cost
• Real Marginal Cost:
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where

Xt =
Actual consumption
Ramsey consumption

= ”output gap"



Log linearizing Marginal Cost
• We have,
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Phillips Curve in Terms of Output Gap
• Collecting terms,
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• Phillips curve in principle quite complicated since it includes
F̂t+1 and p̂∗t , and their laws of motion!

• Not surprising since prices appear in several equations:
(1),(2),(3),(4).



Where Does the Standard Phillips Curve
Come From?

• In the special case, π̄ = 1, then
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so with zero inflation, then there is no dispersion in steady state
(i.e., the cross-industry resource allocation problem is solved).

• Also, when π̄ = 1 then first order approximation to law of
motion of Tack Yun distortion, (4), is:

p̂∗t = θ × p̂∗t−1,

so eventually p̂∗t = 0 (easy to verify).
• Conclude: when π̄ = 1 then p∗t = p∗ = 1, to a first order
approximation.



Where Does the Standard Phillips Curve
Come From?

• In steady state,
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Where Does the Standard Phillips Curve
Come From?

• From before, when π̄ = 1, then

s =
ε− 1

ε
.

• At the same time,

s = (1− ν)X1+ϕ (p∗)−ϕ

= (1− ν)X1+ϕ,

when π̄ = 1.
• Thus, if 1− ν = (ε− 1) /ε, then output gap is zero in steady
state:

X = 1.
• Conclude: achieve first best effi ciency in steady state with

1− ν = (ε− 1) /ε, guarantees effi cient level of employment
π̄ = 1 guarantees effi cient cross-sectoral allocation.



Where Does the Standard Phillips Curve
Come From?

• Answer:
π̄ = 1.

• In this case, obtain
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Where Does the Standard Phillips Curve
Come From?

• In practice, sometimes also suppose that

X = 1,

which requires
1− ν = (ε− 1) /ε.

• In this case,

xt = log (Xt) = log Ct − log C∗t ,

where C∗t is natural consumption (i.e., Ramey consumption)
and Ct is actual consumption.

• This reflects the sunny disposition in traditional New Keynesian
literature, that after the storm has subsided (i.e., all the shocks
have settled down) then everything will be well (ie., first best).

• A darker cloud has settled over these models, in the form of
secular stagnation, but that is another story.


