Solving DSGE Models by Linearization

Lawrence J. Christiano For details, see
http://faculty.wcas.northwestern.edu/~Ichrist/d16/ d1614/generallinearizationmethods.pdf

Solving the Model by First Order Perturbation (linearization)

- Express the equilibrium conditions for the $n \times 1$ vector of variables as follows:

$$
E_{t} v\left(Z_{t-1}, Z_{t}, Z_{t+1}, s_{t}, s_{t+1}\right)=\underbrace{0}_{n \times 1}
$$

- $Z_{t} \sim n \times 1$ vector of the time t endogenous variables.
- $s_{t} \sim$ column vector of (zero mean) shocks, with law of motion:

$$
s_{t}=P s_{t-1}+\epsilon_{t}
$$

- In our example,
- $s_{t} \sim 2 \times 1$ vector composed of technology, a_{t}, and the labor supply shock, τ_{t}.
- $Z_{t} \sim 12 \times 1$ vector composed of the 12 endogenous variables ($n=12$).
$-v^{\sim}$ the 12 nonlinear equations of the model, including monetary policy rule.

Solving the Model by First Order Perturbation (linearization)

- First step: find steady state, Z such that

$$
v(Z, Z, Z, 0,0)=0
$$

- Step two: replace v by

$$
\alpha_{0} z_{t+1}+\alpha_{1} z_{t}+\alpha_{2} z_{t-1}+\beta_{0} s_{t+1}+\beta_{1} s_{t}
$$

where

$$
\begin{aligned}
z_{t} & \equiv Z_{t}-Z \\
\alpha_{i} & =\frac{d v\left(Z_{t-1}, Z_{t}, Z_{t+1}, s_{t}, s_{t+1}\right)}{d Z_{t+1-i}^{\prime}}, i=0,1,2 \\
\beta_{i} & =\frac{d v\left(Z_{t-1}, Z_{t}, Z_{t+1}, s_{t}, s_{t+1}\right)}{d s_{t+1-i}^{\prime}}, i=0,1 .
\end{aligned}
$$

where derivatives evaluated at $Z_{t-1}=Z_{t}=Z_{t+1}=Z$, $s_{t}=s_{t+1}=0$.

Simulation

- System of (linearized) equilibrium conditions:

$$
\begin{aligned}
E_{t}\left[\alpha_{0} z_{t+1}+\alpha_{1} z_{t}+\alpha_{2} z_{t-1}+\beta_{0} s_{t+1}+\beta_{1} s_{t}\right] & =0 \\
s_{t}-P s_{t-1}-\epsilon_{t} & =0 .
\end{aligned}
$$

- Would like to determine the response of z_{t} to a realization of shocks up to time t (simulation).
- Problem: in equilibrium conditions, z_{t} is a function of past and the future. (Not convenient!).
- Need an expression of the following form:

$$
z_{t}=A z_{t-1}+B s_{t}\left({ }^{* *}\right)
$$

- Previous expression convenient for simulation.
- draw a sequence, $\epsilon_{0}, \epsilon_{1}, \ldots, \epsilon_{T}$ using a computer random number generator (e.g., randn.m in MATLAB).
- compute a sequence, $s_{0}, s_{1}, \ldots, s_{T}$ using the law of motion for the shocks, and s_{-1}.
- compute a sequence, $z_{0}, z_{1}, \ldots, z_{T}$ using $\left({ }^{* *}\right)$.

How to Construct A, B?

- Equilibrium conditions:

$$
\begin{aligned}
E_{t}\left[\alpha_{0} z_{t+1}+\alpha_{1} z_{t}+\alpha_{2} z_{t-1}+\beta_{0} s_{t+1}+\beta_{1} s_{t}\right] & =0 \\
s_{t}-P s_{t-1}-\epsilon_{t} & =0 .
\end{aligned}
$$

- How to find A and B such that when (**) is used to do simulation, the equilibrium conditions are satisfied?
- Answer (easy to verify): A and B in (${ }^{* *}$)

$$
z_{t}=A z_{t-1}+B s_{t}(* *)
$$

must satisfy:

$$
\alpha_{0} A^{2}+\alpha_{1} A+\alpha_{2} I=0,
$$

and

$$
\left(\beta_{0}+\alpha_{0} B\right) P+\left[\beta_{1}+\left(\alpha_{0} A+\alpha_{1}\right) B\right]=0
$$

How to Construct A, B?

- Equilibrium conditions:

$$
\begin{aligned}
E_{t}\left[\alpha_{0} z_{t+1}+\alpha_{1} z_{t}+\alpha_{2} z_{t-1}+\beta_{0} s_{t+1}+\beta_{1} s_{t}\right] & =0 \\
s_{t}-P s_{t-1}-\epsilon_{t} & =0 \\
z_{t}=A z_{t-1}+B s_{t}(* *) &
\end{aligned}
$$

- Solve for A, B :

$$
\begin{aligned}
\alpha_{0} A^{2}+\alpha_{1} A+\alpha_{2} I & =0 \\
\left(\beta_{0}+\alpha_{0} B\right) P+\left[\beta_{1}+\left(\alpha_{0} A+\alpha_{1}\right) B\right] & =0
\end{aligned}
$$

- Problem: more than one matrix A solves the matrix polynomial.
- If there is exactly one A which has eigenvalues all less than unity in absolute value, then pick that one and then solve for B.

How to Construct A, B?

- Equilibrium conditions:

$$
\begin{aligned}
E_{t}\left[\alpha_{0} z_{t+1}+\alpha_{1} z_{t}+\alpha_{2} z_{t-1}+\beta_{0} s_{t+1}+\beta_{1} s_{t}\right] & =0 \\
s_{t}-P s_{t-1}-\epsilon_{t} & =0 \\
z_{t}=A z_{t-1}+B s_{t}(* *) &
\end{aligned}
$$

- Solve for A, B :

$$
\begin{aligned}
\alpha_{0} A^{2}+\alpha_{1} A+\alpha_{2} I & =0 \\
\left(\beta_{0}+\alpha_{0} B\right) P+\left[\beta_{1}+\left(\alpha_{0} A+\alpha_{1}\right) B\right] & =0
\end{aligned}
$$

- Problem: more than one matrix A solves the matrix polynomial.
- If there is exactly one A which has eigenvalues all less than unity in absolute value, then pick that one and then solve for B.

Things That Can go Wrong With Linearization Strategy

- More than one matrix A satisfying eigenvalue condition: multiple solutions (indeterminacy of the steady state equilibrium in the nonlinear system).
- Some potentially interesting economics.
- The standard (e.g., no networks not working capital) New Keynesian model when the Taylor principle is not satisfied:

$$
\begin{aligned}
& R_{t} / R=\left(R_{t-1} / R\right)^{\rho} \exp \left[(1-\rho) \phi_{\pi}\left(\bar{\pi}_{t}-\bar{\pi}\right)+u_{t}\right],\left(0<\phi_{\pi}<1\right) \\
& \text { or, }
\end{aligned}
$$

$$
r_{t}=\rho r_{t-1}+(1-\rho) \phi_{\pi}\left(\bar{\pi}_{t}-\bar{\pi}\right), r_{t} \equiv \log \left(R_{t}\right)-\log (R) .
$$

- No matrix A satisfying eigenvalue restriction: any equilibrium leaves a neighborhood of steady state if you start even only slightly away from steady state.
- Linearization not useful in this case, since there is no equilibrium that remains arbitrarily close to steady state.

