Solving DSGE Models by Linearization

Lawrence J. Christiano For details, see http://faculty.wcas.northwestern.edu/~lchrist/d16/ d1614/generallinearizationmethods.pdf

Solving the Model by First Order Perturbation (linearization)

• Express the equilibrium conditions for the $n \times 1$ vector of variables as follows:

$$E_t v\left(Z_{t-1}, Z_t, Z_{t+1}, s_t, s_{t+1}\right) = \underbrace{0}_{n \times 1}$$

- $Z_t \sim n \times 1$ vector of the time t endogenous variables.

- s_t ~ column vector of (zero mean) shocks, with law of motion:

$$s_t = Ps_{t-1} + \epsilon_t$$

- In our example,
 - $s_t \, \tilde{} \, 2 \times 1$ vector composed of technology, a_t , and the labor supply shock, τ_t .
 - $Z_t \sim 12 \times 1$ vector composed of the 12 endogenous variables (n = 12).
 - $v \sim$ the 12 nonlinear equations of the model, including monetary policy rule.

Solving the Model by First Order Perturbation (linearization)

• First step: find *steady state*, Z such that

$$v\left(Z,Z,Z,0,0\right)=0.$$

• Step two: replace v by

$$\alpha_0 z_{t+1} + \alpha_1 z_t + \alpha_2 z_{t-1} + \beta_0 s_{t+1} + \beta_1 s_t,$$

where

$$\begin{aligned} z_t &\equiv Z_t - Z \\ \alpha_i &= \frac{dv \left(Z_{t-1}, Z_t, Z_{t+1}, s_t, s_{t+1} \right)}{dZ'_{t+1-i}}, \ i = 0, 1, 2, \\ \beta_i &= \frac{dv \left(Z_{t-1}, Z_t, Z_{t+1}, s_t, s_{t+1} \right)}{ds'_{t+1-i}}, \ i = 0, 1. \end{aligned}$$

where derivatives evaluated at $Z_{t-1} = Z_t = Z_{t+1} = Z$, $s_t = s_{t+1} = 0$.

Simulation

• System of (linearized) equilibrium conditions:

$$E_t \left[\alpha_0 z_{t+1} + \alpha_1 z_t + \alpha_2 z_{t-1} + \beta_0 s_{t+1} + \beta_1 s_t \right] = 0$$

$$s_t - P s_{t-1} - \epsilon_t = 0.$$

- Would like to determine the response of z_t to a realization of shocks up to time t (simulation).
- Problem: in equilibrium conditions, z_t is a function of past *and the future*. (Not convenient!).
- Need an expression of the following form:

$$z_t = A z_{t-1} + B s_t (**)$$

- Previous expression convenient for simulation.
 - draw a sequence, $\epsilon_0, \epsilon_1, ..., \epsilon_T$ using a computer random number generator (e.g., randn.m in MATLAB).
 - compute a sequence, s_0, s_1, \dots, s_T using the law of motion for the shocks, and s_{-1} .
 - compute a sequence, $z_0, z_1, ..., z_T$ using (**).

How to Construct A, B?

• Equilibrium conditions:

$$E_t \left[\alpha_0 z_{t+1} + \alpha_1 z_t + \alpha_2 z_{t-1} + \beta_0 s_{t+1} + \beta_1 s_t \right] = 0$$

$$s_t - P s_{t-1} - \epsilon_t = 0.$$

• How to find A and B such that when (**) is used to do simulation, the equilibrium conditions are satisfied?

- Answer (easy to verify): A and B in (**)

$$z_t = A z_{t-1} + B s_t$$
 (**)

must satisfy:

$$\alpha_0 A^2 + \alpha_1 A + \alpha_2 I = 0,$$

and

$$(\beta_0 + \alpha_0 B)P + [\beta_1 + (\alpha_0 A + \alpha_1)B] = 0$$

How to Construct A, B?

• Equilibrium conditions:

$$E_t \left[\alpha_0 z_{t+1} + \alpha_1 z_t + \alpha_2 z_{t-1} + \beta_0 s_{t+1} + \beta_1 s_t \right] = 0$$

$$s_t - P s_{t-1} - \epsilon_t = 0$$

$$z_t = A z_{t-1} + B s_t (**)$$

• Solve for *A*, *B* :

$$\alpha_0 A^2 + \alpha_1 A + \alpha_2 I = 0$$

(\beta_0 + \alpha_0 B)P + [\beta_1 + (\alpha_0 A + \alpha_1)B] = 0.

- Problem: more than one matrix A solves the matrix polynomial.
 - If there is exactly one A which has eigenvalues all less than unity in absolute value, then pick that one and then solve for B.

How to Construct A, B?

• Equilibrium conditions:

$$E_t \left[\alpha_0 z_{t+1} + \alpha_1 z_t + \alpha_2 z_{t-1} + \beta_0 s_{t+1} + \beta_1 s_t \right] = 0$$

$$s_t - P s_{t-1} - \epsilon_t = 0$$

$$z_t = A z_{t-1} + B s_t (**)$$

• Solve for *A*, *B* :

$$\alpha_0 A^2 + \alpha_1 A + \alpha_2 I = 0$$

(\beta_0 + \alpha_0 B)P + [\beta_1 + (\alpha_0 A + \alpha_1)B] = 0.

- Problem: more than one matrix A solves the matrix polynomial.
 - If there is exactly one A which has eigenvalues all less than unity in absolute value, then pick that one and then solve for B.

Things That Can go Wrong With Linearization Strategy

- More than one matrix A satisfying eigenvalue condition: multiple solutions (*indeterminacy* of the steady state equilibrium in the nonlinear system).
 - Some potentially interesting economics.
 - The standard (e.g., no networks not working capital) New Keynesian model when the Taylor principle is *not* satisfied:

$$R_t/R = (R_{t-1}/R)^{
ho} \exp\left[(1-
ho) \phi_{\pi}(\bar{\pi}_t - \bar{\pi}) + u_t
ight], \ (0 < \phi_{\pi} < 1)$$
 or,

$$r_t = \rho r_{t-1} + (1-\rho) \phi_{\pi}(\bar{\pi}_t - \bar{\pi}), \ r_t \equiv \log(R_t) - \log(R).$$

- No matrix A satisfying eigenvalue restriction: any equilibrium leaves a neighborhood of steady state if you start even only slightly away from steady state.
 - Linearization not useful in this case, since there is no equilibrium that remains arbitrarily close to steady state.