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1 Simple New Keynesian Model

Following are the equations of the log-linearized simple New Keynesian model with no capital
or working capital channel:

πt = βEtπt+1 + κxt (Phillips curve)

xt = − [rt − Etπt+1 − r∗t ] + Etxt+1 (IS curve)

rt = αrt−1 + (1− α) [φππt + φxxt] (policy rule)

r∗t = Et (at+1 − at)−
1

1 + ϕ
Et (τt+1 − τt) (natural rate)

y∗t = at −
1

1 + ϕ
τt (natural output)

xt = yt − y∗t (output gap)

∆at = ρ∆at−1 + εat , τt = λτt−1 + ετt

The above equations represent the equilibrium conditions of an economy, linearized about
its steady state. In the economy, household preferences are given by:

E0

∞∑
t=0

(
logCt − exp (τt)

N1+ϕ
t

1 + ϕ

)
, τt = λτt−1 + ετt , ε

τ
t ˜iid,

where Ct denotes consumption, τt is a time t preference shock and Nt denotes employment.
The budget constraint of the household is:

PtCt +Bt+1 ≤ WtNt +Rt−1Bt + Tt,

where Tt denotes (lump sum) taxes and profits, Pt is the price level, Wt denotes the nominal
wage rate and Bt+1 denotes bonds purchased at time t which deliver a non-state-contingent
rate of return, Rt, in period t+ 1.
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Competitive firms produce a homogeneous output good, Yt, using the following technol-
ogy:

Yt =

[∫ 1

0

Y
ε−1
ε

i,t di

] ε
ε−1

, ε > 1,

where Yi,t denotes the ith intermediate good, i ∈ (0, 1) . The competitive firms takes the
price of the final output good, Pt, and the prices of the intermediate goods, Pi,t, as given and
chooses Yt and Yit to maximize profits. This results in the following first order condition:

Yi,t = Yt

(
Pt
Pi,t

)ε
.

The producer of Yit is a monopolist which takes the above equation as its demand curve.
Note that if this demand curve is substituted back into the production function,

Yt =

[∫ 1

0

Y
ε−1
ε

i,t di

] ε
ε−1

= YtP
ε
t

[∫ 1

0

(
P−εi,t

) ε−1
ε di

] ε
ε−1

= YtP
ε
t

[∫ 1

0

P
(1−ε)
i,t di

] ε
ε−1

,

or, after cancelling Yt and rearranging,

P−εt =

[∫ 1

0

P
(1−ε)
i,t di

] ε
ε−1

Pt =

[∫ 1

0

P
(1−ε)
i,t di

] 1
1−ε

.

Thus, we get a simple expression relating the price of the aggregate good back to the indi-
vidual prices.

The ith intermediate good firm uses labor, Ni,t, to produce output using the following
production function:

Yi,t = exp (at)Ni,t, ∆at = ρ∆at−1 + εat ,

where ∆ is the first difference operator and εat is an iid shock. We refer to the time series
representation of at as a ‘unit root’ representation. The ith firm sets prices subject to Calvo
frictions. In particular,

Pi,t =

{
P̃t with probability 1− θ

Pi,t−1 with probability θ
,

where P̃t denotes the price chosen by the 1− θ firms that can reoptimize their price at time
t. The ith producer is competitive in labor markets, where it pays Wt (1− ν) for one unit
of labor. Here, ν represents a subsidy which has the effect of eliminating the monopoly
distortion on labor in the steady state. That is, 1− ν = (ε− 1) /ε.

At this point it is interesting to observe that if the household and government satisfy their
budget constraints and markets clear, then the resource constraint is satisfied (Walras’ law).
Optimization leads the households to satisfy their budget constraint as a strict equality:

PtCt +Bt+1 = WtNt +Rt−1Bt + Tt

= WtNt +Rt−1Bt +

profits︷ ︸︸ ︷∫ 1

0

Pi,tYi,t − (1− ν)Wt

∫ 1

0

Ni,tdi− T gt ,
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where T gt denotes lump sum taxes raised by the government (profits from the final good
firms need not be considered, because they are zero). The government budget constraint is

νWtNt +Bg
t+1 = T gt +Rt−1B

g
t ,

where Bg
t+1 denotes government purchases of bonds (i.e., ‘lending’, if positive and ‘borrowing’

if negative). Note that, clearing in the labor market implies∫ 1

0

Ni,tdi = Nt.

By the fact that final good firms make zero profits,∫ 1

0

Pi,tYi,t = PtYt.

Substituting the government budget constraint and the expressions for profits (using labor
market clearing) back into the budget constraint:

PtCt +Bt+1 = WtNt +Rt−1Bt + Tt

= WtNt +Rt−1Bt +

Tt=profits, net of taxes︷ ︸︸ ︷
PtYt − (1− ν)WtNt −

=T gt︷ ︸︸ ︷[
−Rt−1B

g
t + νWtNt +Bg

t+1

]
= WtNt +Rt−1Bt + PtYt − (1− ν)WtNt +Rt−1B

g
t − νWtNt −Bg

t+1

= Rt−1Bt + PtYt +Rt−1B
g
t −B

g
t+1

or,
PtCt +

(
Bt+1 +Bg

t+1

)
= Rt−1 (Bt +Bg

t ) + PtYt.

But, clearing in the bond market requires

Bt+1 +Bg
t+1 = 0 for all t.

So,
Ct = Yt,

and the resource constraint is satisfied. Incidentally, in this model with lump sum taxes,
the equilibrium allocations are independent of the time pattern of government debt. So, for
convenience, we just set Bg

t = 0 and so market clearing requires Bt = 0. Of course, we could
have Bt not equal to zero, so that there is positive volume in the debt market. However, this
would not be an interesting theory of why there is debt and so we don’t do this.

The Ramsey equilibrium for the model is the equilibrium associated with the optimal
monetary policy. It can be shown that the Ramsey equilibrium is characterized by zero
inflation, πt = 0, at each date and for each realization of at and τt and that consumption
and employment in the Ramsey equilibrium corresponds to their first best levels.1 That is,
Ct and Nt satisfy the resource constraint

Ct = exp (at)Nt,

1For a discussion, see http://faculty.wcas.northwestern.edu/˜lchrist/course/optimalpolicyhandout.pdf
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and the condition that the marginal rate of substitution between consumption and labor
equals the marginal product of labor

marginal utility of leisure

marginal utility of consumption
= Ct exp (τt)N

ϕ
t = exp (at) .

Solving for Nt :

log (N∗t ) = − τt
1 + ϕ

, log (C∗t ) = at −
τt

1 + ϕ
,

where ∗ indicates that the variable corresponds to the Ramsey equilibrium. In the descrip-
tion of the model above, yt denotes log output and y∗t denotes log output in the Ramsey
equilibrium, i.e., log (C∗t ) . The gross interest rate in the Ramsey equilibrium, R∗t , satisfies
the intertemporal household first order condition,

1 = βEt
u∗c,t+1

u∗c,t

R∗t
1 + π∗t+1

,

where u∗c,t indicates the marginal utility of consumption in the Ramsey equilibrium. Also,
π∗t = 0. With our utility function:

1 = βEt
C∗t
C∗t+1

R∗t = βEt
R∗t

exp
[
∆at+1 − τt+1−τt

1+ϕ

] = βEt exp

[
log (R∗t )−∆at+1 +

τt+1 − τt
1 + ϕ

]
,

Approximately, one can ‘push’ the expectation operator into the power of the exponential.
Doing so and taking the log of both sides, one obtains:

0 = log β + log (R∗t )− Et∆at+1 + Et
τt+1 − τt

1 + ϕ
,

or,

r∗t = Et∆at+1 − Et
τt+1 − τt

1 + ϕ
,

where r∗t ≡ log (R∗tβ) , the log deviation of R∗t from its value in the non-stochastic steady
state. The variable, r∗t , corresponds to the ‘natural rate of interest’ and y∗t corresponds to
the ‘natural rate of output’.

2 Exercises

1. Before turning to the econometric part of the assignment, it is useful to study the eco-
nomics of the simple NK model, by seeing how the model economy responds to a shock.
Consider the following parameterization:

β = 0.97, φx = 0, φπ = 1.5, α = 0, ρ = 0.2, λ = 0.5,

ϕ = 1, θ = 0.75, σa = στ = 0.02.

(a) In the case of the technology and preference shocks, use Dynare to compute the
impulse response functions of the variables to each shock. The m file, plots.m, can
be used for this purpose.
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i. Consider the response of the economy to a technology shock and a preference
shock. In each case, indicate whether the economy over- or under- responds to
the shock, relative to their ‘natural’ responses. What is the economic intuition
in each case?

ii. Replace the time series representation of at with

at = ρat−1 + εat .

How does the response of the economy to εat with this representation compare to
the response to εat with the unit root representation?

(b) Do the calculations with φπ = 0.99. What sort of message does Dynare generate, and
can you provide the economic intuition for it? (In this case, there is ‘indeterminacy’,
which means a type of multiplicity of equilibria...this happens whenever φπ < 1.)
Provide intuition for this result.

(c) Return to the parameterization, φπ = 1.5. Now, insert rt into the Cavlo pricing
equation. Redo the calculations and note how Dynare reports indeterminacy again.
Provide economic intuition for your result.

(d) Explain why it is that when the monetary policy rule is replaced by the rt = r∗t , the
natural equilibrium (i.e., Ramsey) is a solution to the equilibrium conditions. Explain
why the natural equilibrium is not the only solution to the equilibrium conditions (i.e.,
the indicated policy rule does not support the natural equilibrium uniquely). Verify
this result computationally in Dynare.

(e) Now replace the monetary policy rule with

rt = r∗t + α
(
rt−1 − r∗t−1

)
+ (1− α) [φππt + φxxt] .

Explain why the natural equilibrium is a solution to the equilibrium conditions with
this policy. Verify computationally that this policy rule uniquely supports the natural
equilibrium (in the sense of satisfying determinacy), as long as φπ is large enough.
Provide intuition. Conclude that the Taylor rule uniquely supports the natural equi-
librium if the natural rate of interest is included in the rule.

(f) Consider the following alternative representation for the technology shock:

at = ρat−1 + ξ0
t + ξ1

t−1,

where both shocks are iid, so that the sum is iid too. Here, we assume agents see ξ0
t at

time t and they see ξ1
t−1 at t− 1. Thus, agents have advance information (or, ‘news’)

about the future realization of a shock. Introduce this change into the code and set
ρ = 0.2. Verify that when there is a shock to ξ1

t , inflation falls contemporaneously
and the output gap jumps. Provide intuition for this apparently contradictory result.
What happens when the natural rate of interest is introduced in the policy rule?

2. We now explore the MCMC algorithm and the Laplace approximation in a simple ex-
ample. Technical details about both these objects are discussed in lecture notes.2 One

2See http://faculty.wcas.northwestern.edu/˜lchrist/course/Gerzensee 2013/estimationhandout.pdf
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practical consideration not mentioned in the notes is relevant for the case in which the pdf
of interest is of a non-negative random variable. Since the jump distribution is Normal,
a negative candidate, x, is possible (see the notes for a detailed discussion of x and the
‘jump distribution’). As a result, we should assign a zero value to the density of a Weibull
over negative random variables when implementing the MCMC algorithm.

Hopefully, it is apparent that the MCMC algorithm is quite simple, and can be pro-
grammed by anyone with a relatively small exposure to MATLAB. A useful exercise to
understand how the algorithm works, is to use it to see how well it approximates a simple
known function. Thus, consider the Weibull probability distribution function (pdf),

ba−bθb−1e−( θa)
b

, θ ≥ 0,

where a, b are parameters. (For an explanation of this pdf, see the MATLAB documenta-
tion for wblpdf(θ, a, b).) Consider a = 10, b = 20. Graph this pdf over the grid, [7, 11.5] ,
with intervals 0.001 (i.e., graph g on the vertical axis, where g = wblpdf(x, 10, 20), and
x on the horizontal axis, where x = 7 : .001 : 11.5). Compute the mode of this pdf
by finding the element in your grid with the highest value of g. Let f denote the log of
the Weibull density function and compute the second derivative of f at the mode point
numerically, using the formula,

f ′′ (x) =
f (x+ 2ε)− 2f (x) + f (x− 2ε)

4ε2
,

for ε small (for example, you could set ε = 0.000001.) Here, x denotes θ∗ and f denotes
the log of the output of the MATLAB function, wblpdf. Set V = −f ′′ (θ∗)−1 .3

Set M = 1, 000 (a very small number!) and try k = 2, 4, 6. Which implies an acceptance
rate closer to the recommended value of around 0.23? Choose the value of k that gets
closest to that acceptance rate and note that the MCMC estimate of the distribution is
quite volatile. Change M to 10,000. If you have time (now, the simulations takes time)
try M = 100, 000. Note how the MCMC estimate of the distribution is starting to smooth
out. When I set M = 100, 000 and k = 4, I obtained (see the MATLAB code MCMC.m,
with the parameter iw set to unity) the following result:

3The strategy for computing the mode of the Weibull and f ′′ in the text are meant to resemble what is
done in practice, when the form of the density function is unknown. In the case of the Weibull, these objects
are straightforward to compute analytically. In particular,

f ′ (θ) =
b− 1

θ
− b

(
θ

a

)b−1
1

a
, f ′′ (θ) = −b− 1

θ2
− (b− 1) b

(
θ

a

)b−2
1

a2
.

and the mode of f is θ∗ = ((b− 1) /b)
1/b

a.
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Note how well the MCMC approximation works. The Laplace approximation assigns too
much density near the mode, and lacks the skewness of the Weibull. Still, for practical
purposes the Laplace may be workable, at least as a first approximation in the initial
stages of a research project. This could be verified in the early stages of the project by
doing a run using the MCMC algorithm and comparing the results with those of the
Laplace approximation. In practice, posterior distributions may not be as skewed as the
Weibull is.

We subject the MCMC algorithm to a much tougher test if we posit that the true distri-
bution is bimodal, as in the case of a mixture of two Normals. Suppose the ith Normal
has mean and variance, µi and σ2

i , respectively, i = 1, 2. Suppose also that the i = 1
Normal is selected with probability, π, and the i = 2 normal is selected with probability
1− π. In addition, suppose

µ1 = −0.06, µ2 = 0.06, σ1 = 0.02, σ2 = 0.01, π = 1/2.

The mode of this distribution is the mode of the Normal with i = 2. If we apply exactly
the same MCMC algorithm applied above, with M = 100, 000 and k = 15, we obtain the
following result:
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These results (produced by running MCMC.m with iw set to zero) are comparable in
accuracy to what was reported for the Weibull distribution. Taken together these sets
of results suggest that the MCMC algorithm is quite good. It is not surprising that the
Laplace approximation does poorly in this second example. It does a Normal approxi-
mation around the mode on the right. Because it ‘thinks’ that all the density is around
that right mode and that density must integrate to unity, it follows that the Laplace
approximation must rise up much higher than the right mode. To verify that the MCMC
distribution in fact is converging to the right answer, the MCMC was run a second time
with M = 10, 000, 000. The results are displayed in the following figure. Note that it
is almost impossible to distinguish between the actual and the MCMC-generated distri-
butions, so that the MCMC algorithm has roughly converged to the right answer. It is
hard to say whether this bimodal example is empirically realistic. These kind of posterior
distributions have not been reported in the literature. Of course, this may simply be that
the MCMC has failed to find them even though they do exist.4

4An early paper by Thomas Sargent suggests that bimodality may be generic in dynamic macroeconomic
models. He displays an example in which a parameterization in which persistence reflects the effects of
endogenous mechanisms is hard to distinguish econometrically from a parameterization in which persistence
reflects the persistence of shocks. See, Sagent, 1978, ”Estimation of Dynamic Labor Demand Schedules
under Rational Expectations,” Journal of Political Economy, Vol. 86, No. 6, Dec., pp. 1009-1044.
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3. From here on, consider the following alternative parameterization, which is more appealing
than the one in question 1 from an empirical point of view:

β = 0.97, φx = 0.15, φπ = 1.5, α = 0.8, ρ = 0.9, λ = 0.5,

ϕ = 1, θ = 0.75, σa = στ = 0.02.

Generate T = 4, 000 artificial observations on the ‘endogenous’ (in the sense of Dynare)
variables of the model. These are the variables in the ‘var’ list. The mod file provided,
cggsim.mod, has 6 variables. Before doing the simulation, you should add the growth rate
of output to the equations of the model and to the var list (call it ‘dy’.) That way, Dynare
will also simulate output growth. The variables simulated by Dynare are placed in the
n × T matrix, oo .endo simul.5 The n rows of oo .endo simul correspond to the n = 7
variables in var, listed in the order in which you have listed them in the var statement
from the first to the last row. To verify the order that Dynare puts the variables in, see
how they are ordered in M .endo names in the Dynare-created file, cggsim.m.

Now do Bayesian estimation, using the inverted gamma distribution as the prior on the
two standard deviations and the beta distribution as the prior on the two autocorrelations.

(a) Set the mean of the priors over the parameters to the corresponding true values. Set
the standard deviation of the inverted gamma to 10 and of the beta to 0.04. (It’s
hard to interpret these standard deviations directly, but you will see graphs of the
priors, which are easier to interpret.) Use 30 observations in the estimation. Adjust
the value of k, so that you get a reasonable acceptance rate. I found that k = 1.5
works well. Have a look at the posteriors, and notice how, with one exception, they
are much tighter than the priors. The exception is lambda, where the posterior and
prior are very similar. This is evidence that there is little information in the data
about lambda.

5Here, endo simul is the matrix, which is a ‘field’ in the structure, oo .
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(b) Redo (a), but set the mean and standard deviation of the prior on lambda equal to
0.95 and 0.04, respectively. Note how the prior and posterior are again very similar.
There is not much information in the data about the value of lambda!

(c) Note how the priors on σa and ρ have faint ‘shoulders’ on the right side. Redo (a),
with M = 4, 000 (M is mh replic, which controls the number of MCMC replications).
Note that the posteriors are now smoother. Actually, M = 4, 000 is a small number
of replications to use in practice.

(d) Now set the mean of the priors on the standard deviations to 0.1, far from the truth.
Set the prior standard deviation on the inverted gamma distributions to 1. Keep
the observations at 30, and see how the posteriors compare with the priors. (Reset
M = 1, 000 so that the computations go quickly.) Note that the posteriors move
sharply back into the neighborhood of 0.02. Evidently, there is a lot of information
in the data about these parameters.

(e) Repeat (a) with 4,000 observations. Compare the priors and posteriors. Note how,
with one exception, the posteriors are ‘spikes’. The exception, of course, is lambda.
Still, the difference between the prior and posterior in this case indicates there is
information in the data about lambda.
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