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Outline

• State space-observer form.
— convenient for model estimation and many other things.

• Bayesian inference
— Bayes’rule.
— Monte Carlo integation.
— MCMC algorithm.
— Laplace approximation



State Space/Observer Form
• Compact summary of the model, and of the mapping between
the model and data used in the analysis.

• Typically, data are available in log form. So, the following is
useful:

— If x is steady state of xt :

x̂t ≡ xt − x
x

,

=⇒ xt

x
= 1+ x̂t

=⇒ log
(xt

x

)
= log (1+ x̂t) ≈ x̂t

• Suppose we have a model solution in hand:

zt = Azt−1 + Bst

st = Pst−1 + εt, Eεtε
′
t = D.



State Space/Observer Form
• Suppose we are working with the NK model, and

zt =

 πt
xt
rt
r∗t

 , st =
( ∆at

τt

)
.

• Suppose we have data on inflation, πt, and output growth,
∆ log yt.
— Note: we do not have data on all the variables in zt and one
variable, ∆ log yt, is not included in zt, but

xt = log (Xt/X) = log
(

yt

ybestt

)

∆xt = ∆ log yt − ∆ log ybestt = ∆ log yt −

=∆ log Ybestt︷ ︸︸ ︷
∆
(

at −
τt

1+ ϕ

)



State Space/Observer Form
• Mapping from zt, st to ∆yt:

∆ log yt = ∆xt + ∆at −
τt − τt−1

1+ ϕ

= ( 0 1 0 0 ) zt + ( 0 −1 0 0 ) zt−1

+
(

1 − 1
1+ϕ

)
st +

(
0 1

1+ϕ

)
st−1

• Mapping from objects in model to data:

Ydata
t =

( ∆ log yt
πt

)
=
( 0

0

)
+
[ 0 1 0 0

1 0 0 0

]
zt

+
[ 0 −1 0 0

0 0 0 0

]
zt−1

+

[
1 − 1

1+ϕ
0 0

]
st +

[
0 1

1+ϕ
0 0

]
st−1



State Space/Observer Form
Model prediction for data:

Ydata
t =

( ∆ log yt
πt

)
=
( 0

0

)
+
[ 0 1 0 0

1 0 0 0

]
zt

+
[ 0 −1 0 0

0 0 0 0

]
zt−1

+

[
1 − 1

1+ϕ
0 0

]
st +

[
0 1

1+ϕ
0 0

]
st−1

= Hξt,

where

ξt =

 zt
zt−1

st
st−1

 ,

H =

[
0 1 0 0 0 −1 0 0 1 − 1

1+ϕ 0 1
1+ϕ

1 0 0 0 0 0 0 0 0 0 0 0

]



State Space/Observer Form

• The Observer Equation may include measurement error, wt :

Ydata
t = Hξt +wt, Ewtw′t = R.

• Semantics: ξt is the state of the system (not to be confused
with the state in recursive macroeconomics!).



State Space/Observer Form

Law of motion of the state, ξt (state-space equation):

ξt = Fξt−1 + ut, Eutu′t = Q

 zt
zt−1

st
st−1

 =

 A 0 BP 0
I 0 0 0
0 0 P 0
0 0 I 0

 zt−1
zt−2
st−1
st−2

+
 B

0
I
0

 εt+1,

ut =

 B
0
I
0

 εt, Q =

 BDB′ 0 BD 0
0 0 0 0

DB′ 0 D 0
0 0 0 0

 , F =

 A 0 BP 0
I 0 0 0
0 0 P 0
0 0 I 0

 .



State Space/Observer Form

ξt = Fξt−1 + ut, Eutu′t = Q,

Ydata
t = Hξt +wt, Ewtw′t = R.

• Can be constructed from model parameters

θ = (β, δ, ...)

so

F = F (θ) , Q = Q (θ) , H = H (θ) , R = R (θ) .



Uses of State Space/Observer Form
• Estimation of θ and forecasting ξt and Ydata

t
• Can take into account situations in which data represent a
mixture of quarterly, monthly, daily observations.

• ‘Data Rich’estimation. Could include several data measures
(e.g., employment based on surveys of establishments and
surveys of households) on a single model concept.

• Useful for solving the following forecasting problems:
— Filtering (mainly of technical interest in computing likelihood
function):

P
[
ξt|Ydata

t−1 , Ydata
t−2 , ..., Ydata

1

]
, t = 1, 2, ..., T.

— Smoothing:

P
[
ξt|Ydata

T , ..., Ydata
1

]
, t = 1, 2, ..., T.

— Example: ‘real rate of interest’and ‘output gap’can be
recovered from ξt using simple New Keynesian model.

• Useful for deriving a model’s implications vector autoregressions
(VARs).



Mixed Monthly/Quarterly Observations
• Different data arrive at different frequencies: daily, monthly,
quarterly, etc.

• This feature can be easily handled in state space-observer
system.

• Example:
— suppose inflation and hours are monthly, t = 0, 1/3, 2/3, 1,

4/3, 5/3, 2, ...
— suppose gdp is quarterly, t = 0, 1, 2, 3, ....

Ydata
t =


GDPt

monthly inflationt
monthly inflationt−1/3
monthly inflationt−2/3

hourst
hourst−1/3
hourst−2/3

 , t = 0, 1, 2, ... .

that is, we can think of our data set as actually being quarterly,
with quarterly observations on the first month’s inflation,
quarterly observations on the second month’s inflation, etc.



Mixed Monthly/Quarterly Observations

• Problem: find state-space observer system in which observed
data are:

Ydata
t =


GDPt

monthly inflationt
monthly inflationt−1/3
monthly inflationt−2/3

hourst
hourst−1/3
hourst−2/3

 , t = 0, 1, 2, ... .

• Solution: easy!



Mixed Monthly/Quarterly Observations
• Model timing: t = 0, 1/3, 2/3, ...

zt = Azt−1/3 + Bst,
st = Pst−1/3 + εt, Eεtε

′
t = D.

• Monthly state-space observer system, t = 0, 1/3, 2/3, ...

ξt = Fξt−1/3 + ut, Eutu′t = Q, ut˜iid t = 0, 1/3, 2/3, ...

Yt = Hξt, Yt =

(
yt
πt
ht

)
.

• Note:
first order vector autoregressive representation for quarterly state︷ ︸︸ ︷

ξt = F3ξt−1 + ut + Fut−1/3 + F2ut−2/3 ,

ut + Fut−1/3 + F2ut−2/3 ~iid for t = 0, 1, 2, ...!!



Mixed Monthly/Quarterly Observations
Consider the following system: ξt

ξt− 1
3

ξt− 2
3

 =

 F3 0 0
F2 0 0
F 0 0

 ξt−1
ξt− 4

3
ξt− 5

3

+[ I F F2

0 I F
0 0 I

] ut
ut− 1

3
ut− 2

3

 .

Define

ξ̃t =

 ξt
ξt− 1

3
ξt− 2

3

 , F̃ =

 F3 0 0
F2 0 0
F 0 0

 , ũt =

[
I F F2

0 I F
0 0 I

] ut
ut− 1

3
ut− 2

3

 ,

so that

ξ̃t = F̃ξ̃t−1 + ũt, ũt˜iid in quarterly data, t = 0, 1, 2, ...

Eũtũ′t = Q̃ =

[
I F F2

0 I F
0 0 I

] [
D 0 0
0 D 0
0 0 D

] [
I F F2

0 I F
0 0 I

]′



Mixed Monthly/Quarterly Observations
• Conclude: state space-observer system for mixed
monthly/quarterly data, for t = 0, 1, 2, ...

ξ̃t = F̃ξ̃t−1 + ũt, ũt˜iid, Eũtũ′t = Q̃,

Ydata
t = H̃ξ̃t +wt, wt˜iid, Ewtw′t = R.

• Here, H̃ selects elements of ξ̃t needed to construct Ydata
t

— can easily handle distinction between whether quarterly data
represent monthly averages (as in flow variables), or
point-in-time observations on one month in the quarter (as in
stock variables).

• Can use Kalman filter to forecast (‘nowcast’) current quarter
data based on first month’s (day’s, week’s) observations.



Connection Between DSGE’s and VAR’s

• Fernandez-Villaverde, Rubio-Ramirez, Sargent, Watson Result
• Vector Autoregression

Yt = B1Yt−1 + B2Yt−2 + ...+ ut,

where ut is iid.
• ‘Matching impulse response functions’strategy for building
DSGE models fits VARs and assumes ut are a rotation of
economic shocks (for details, see later notes).

• Can use the state space, observer representation to assess this
assumption from the perspective of a DSGE.



Connection Between DSGE’s and VAR’s
• System (ignoring constant terms and measurement error):

(‘State equation’) ξt = Fξt−1 +Dεt, D =

(
B
0
I

)
,

(‘Observer equation’) Yt = Hξt.

• Substituting:
Yt = HFξt−1 +HDεt

• Suppose HD is square and invertible. Then

εt = (HD)−1 Yt − (HD)−1 HFξt−1 (∗∗)
Substitute latter into the state equation:

ξt = Fξt−1 +D (HD)−1 Yt −D (HD)−1 HFξt−1

=
[
I−D (HD)−1 H

]
Fξt−1 +D (HD)−1 Yt.



Connection Between DSGE’s and VAR’s
We have:

ξt = Mξt−1 +D (HD)−1 Yt, M =
[
I−D (HD)−1 H

]
F.

If eigenvalues of M are less than unity,

ξt = D (HD)−1 Yt +MD (HD)−1 Yt−1 +M2D (HD)−1 Yt−2 + ...

Substituting into (∗∗)

εt = (HD)−1 Yt − (HD)−1 HF

×
[
D (HD)−1 Yt−1 +MD (HD)−1 Yt−2 +M2D (HD)−1 Yt−3 + ...

]
.

or,
Yt = B1Yt−1 + B2Yt−2 + ... + ut,

where

ut = HDεt, Bj = HFMj−1D (HD)−1 , j = 1, 2, ...

• The latter is the VAR representation.



Connection Between DSGE’s and VAR’s
• The VAR repersentation is:

Yt = B1Yt−1 + B2Yt−2 + ... + ut,

where

ut = HDεt, Bj = HFMj−1D (HD)−1 , j = 1, 2, ...

• Notes:
— εt is ‘invertible’because it lies in space of current and past

Yt’s.
— VAR is infinite-ordered.
— assumed system is ‘square’(same number of elements in εt
and Yt). Sims-Zha (Macroeconomic Dynamics) show how to
recover εt from current and past Yt when the dimension of εt
is greater than the dimension of Yt.



Quick Review of Probability Theory

• Two random variables, x ∈ (x1, x2) and y ∈ (y1, y2) .
• Joint distribution: p (x, y)

x1 x2
y1 p11 p12
y2 p21 p22

=
x1 x2

y1 0.05 0.40
y2 0.35 0.20

where
pij = probability

(
x = xi, y = yj

)
.

• Restriction: ∫
x,y

p (x, y) dxdy = 1.



Quick Review of Probability Theory

• Joint distribution: p (x, y)

x1 x2
y1 p11 p12
y2 p21 p22

=
x1 x2

y1 0.05 0.40
y2 0.35 0.20

• Marginal distribution of x : p (x)

Probabilities of various values of x without reference to the value of
y:

p (x) =
{ p11 + p21 = 0.40 x = x1

p12 + p22 = 0.60 x = x2
.

or,

p (x) =
∫

y
p (x, y) dy



Quick Review of Probability Theory

• Joint distribution: p (x, y)

x1 x2
y1 p11 p12
y2 p21 p22

=
x1 x2

y1 0.05 0.40
y2 0.35 0.20

• Conditional distribution of x given y : p (x|y)
— Probability of x given that the value of y is known

p (x|y1) =

{
p (x1|y1)

p11
p11+p12

= p11
p(y1)

= 0.05
0.45 = 0.11

p (x2|y1)
p12

p11+p12
= p12

p(y1)
= 0.40

0.45 = 0.89

or,

p (x|y) = p (x, y)
p (y)

.



Quick Review of Probability Theory
• Joint distribution: p (x, y)

x1 x2
y1 0.05 0.40 p (y1) = 0.45
y2 0.35 0.20 p (y2) = 0.55

p (x1) = 0.40 p (x2) = 0.60

• Mode
— Mode of joint distribution (in the example):

argmaxx,yp (x, y) = (x2, y1)

— Mode of the marginal distribution:

argmaxxp (x) = x2, argmaxyp (y) = y2

— Note: mode of the marginal and of joint distribution
conceptually different.



Maximum Likelihood Estimation
• State space-observer system:

ξt+1 = Fξt + ut+1, Eutu′t = Q,

Ydata
t = a0 +Hξt +wt, Ewtw′t = R

• Reduced form parameters, (F, Q, a0, H, R), functions of θ.
• Choose θ to maximize likelihood, p

(
Ydata|θ

)
:

p
(

Ydata|θ
)
= p

(
Ydata

1 , ..., Ydata
T |θ

)
= p

(
Ydata

1 |θ
)
× p

(
Ydata

2 |Ydata
1 , θ

)

× · · · ×

computed using Kalman Filter︷ ︸︸ ︷
p
(

Ydata
t |Ydata

t−1 · · · Ydata
1 , θ

)
× · · · ×p

(
Ydata

T |Ydata
T−1, · · ·, Ydata

1 , θ
)

• Kalman filter straightforward (see, e.g., Hamilton’s textbook).



Bayesian Inference
• Bayesian inference is about describing the mapping from prior
beliefs about θ, summarized in p (θ) , to new posterior beliefs in
the light of observing the data, Ydata.

• General property of probabilities:

p
(

Ydata, θ
)
=

{
p
(
Ydata|θ

)
× p (θ)

p
(
θ|Ydata)× p

(
Ydata) ,

which implies Bayes’rule:

p
(

θ|Ydata
)
=

p
(
Ydata|θ

)
p (θ)

p
(
Ydata

) ,

mapping from prior to posterior induced by Ydata.



Bayesian Inference

• Report features of the posterior distribution, p
(
θ|Ydata) .

— The value of θ that maximizes p
(
θ|Ydata), ‘mode’of posterior

distribution.
— Compare marginal prior, p (θi) , with marginal posterior of
individual elements of θ, g

(
θi|Ydata) :

g
(

θi|Ydata
)
=
∫

θj 6=i

p
(

θ|Ydata
)

dθj 6=i (multiple integration!!)

— Probability intervals about the mode of θ (‘Bayesian
confidence intervals’), need g

(
θi|Ydata) .

• Marginal likelihood for assessing model ‘fit’:

p
(

Ydata
)
=
∫

θ
p
(

Ydata|θ
)

p (θ) dθ (multiple integration)



Monte Carlo Integration: Simple Example
• Much of Bayesian inference is about multiple integration.
• Numerical methods for multiple integration:

— Quadrature integration (example: approximating the integral as
the sum of the areas of triangles beneath the integrand).

— Monte Carlo Integration: uses random number generator.

• Example of Monte Carlo Integration:
— suppose you want to evaluate∫ b

a
f (x) dx, -∞ ≤ a < b ≤ ∞.

— select a density function, g (x) for x ∈ [a, b] and note:∫ b

a
f (x) dx =

∫ b

a

f (x)
g (x)

g (x) dx = E
f (x)
g (x)

,

where E is the expectation operator, given g (x) .



Monte Carlo Integration: Simple Example
• Previous result: can express an integral as an expectation
relative to a (arbitrary, subject to obvious regularity conditions)
density function.

• Use the law of large numbers (LLN) to approximate the
expectation.

— step 1: draw xi independently from density, g, for i = 1, ..., M.
— step 2: evaluate f (xi) /g (xi) and compute:

µM ≡
1
M

M

∑
i=1

f (xi)

g (xi)
→M→∞ E

f (x)
g (x)

.

• Exercise.
— Consider an integral where you have an analytic solution
available, e.g.,

∫ 1
0 x2dx.

— Evaluate the accuracy of the Monte Carlo method using
various distributions on [0, 1] like uniform or Beta.



Monte Carlo Integration: Simple Example
• Standard classical sampling theory applies.
• Independence of f (xi) /g (xi) over i implies:

var

(
1
M

M

∑
i=1

f (xi)

g (xi)

)
=

vM

M
,

vM ≡ var
(

f (xi)

g (xi)

)
' 1

M

M

∑
i=1

[
f (xi)

g (xi)
− µM

]2

.

• Central Limit Theorem
— Estimate of

∫ b
a f (x) dx is a realization from a Nomal

distribution with mean estimated by µM and variance, vM/M.
— With 95% probability,

µM − 1.96×
√

vM

M
≤

∫ b

a
f (x) dx ≤ µM + 1.96×

√
vM

M

— Pick g to minimize variance in f (xi) /g (xi) and M to
minimize (subject to computing cost) vM/M.



Markov Chain, Monte Carlo (MCMC)
Algorithms

• Among the top 10 algorithms "with the greatest influence on
the development and practice of science and engineering in the
20th century".

— Reference: January/February 2000 issue of Computing in
Science & Engineering, a joint publication of the American
Institute of Physics and the IEEE Computer Society.’

• Developed in 1946 by John von Neumann, Stan Ulam, and Nick
Metropolis (see http://www.siam.org/pdf/news/637.pdf)



MCMC Algorithm: Overview

• compute a sequence, θ(1), θ(2), ..., θ(M), of values of the N× 1
vector of model parameters in such a way that

lim
M→∞

Frequency
[
θ(i) close to θ

]
= p

(
θ|Ydata

)
.

• Use θ(1), θ(2), ..., θ(M) to obtain an approximation for

— Eθ, Var (θ) under posterior distribution, p
(
θ|Ydata)

— g
(

θi|Ydata
)
=
∫

θi 6=j
p
(
θ|Ydata) dθdθ

— p
(
Ydata) = ∫θ p

(
Ydata|θ

)
p (θ) dθ

— posterior distribution of any function of θ, f (θ) (e.g., impulse
responses functions, second moments).

• MCMC also useful for computing posterior mode,
arg maxθ p

(
θ|Ydata) .



MCMC Algorithm: setting up
• Let G (θ) denote the log of the posterior distribution (excluding
an additive constant):

G (θ) = log p
(

Ydata|θ
)
+ log p (θ) ;

• Compute posterior mode:

θ∗ = arg max
θ

G (θ) .

• Compute the positive definite matrix, V :

V ≡
[
−∂2G (θ)

∂θ∂θ′

]−1

θ=θ∗

• Later, we will see that V is a rough estimate of the
variance-covariance matrix of θ under the posterior distribution.



MCMC Algorithm: Metropolis-Hastings

• θ(1) = θ∗

• to compute θ(r), for r > 1
— step 1: select candidate θ(r), x,

draw x︸︷︷︸
N×1

from θ(r−1) +

‘jump’distribution’︷ ︸︸ ︷
k×N

 0︸︷︷︸
N×1

, V

, k is a scalar

— step 2: compute scalar, λ :

λ =
p
(
Ydata|x

)
p (x)

p
(

Ydata|θ(r−1)
)

p
(

θ(r−1)
)

— step 3: compute θ(r) :

θ(r) =

{
θ(r−1) if u > λ

x if u < λ
, u is a realization from uniform [0, 1]



Practical issues
• What is a sensible value for k?

— set k so that you accept (i.e., θ(r) = x) in step 3 of MCMC
algorithm are roughly 23 percent of time

• What value of M should you set?
— want ‘convergence’, in the sense that if M is increased further,
the econometric results do not change substantially

— in practice, M = 10, 000 (a small value) up to M = 1, 000, 000.
— large M is time-consuming.

• could use Laplace approximation (after checking its accuracy)
in initial phases of research project.

• more on Laplace below.
• Burn-in: in practice, some initial θ(i)’s are discarded to
minimize the impact of initial conditions on the results.

• Multiple chains: may promote effi ciency.
— increase independence among θ(i)’s.
— can do MCMC utilizing parallel computing (Dynare can do
this).



MCMC Algorithm: Why Does it Work?
• Proposition that MCMC works may be surprising.

— Whether or not it works does not depend on the details, i.e.,
precisely how you choose the jump distribution (of course, you
had better use k > 0 and V positive definite).
• Proof: see, e.g., Robert, C. P. (2001), The Bayesian Choice,
Second Edition, New York: Springer-Verlag.

— The details may matter by improving the effi ciency of the
MCMC algorithm, i.e., by influencing what value of M you
need.

• Some Intuition
— the sequence, θ(1), θ(2), ..., θ(M), is relatively heavily populated
by θ’s that have high probability and relatively lightly
populated by low probability θ’s.

— Additional intuition can be obtained by positing a simple scalar
distribution and using MATLAB to verify that MCMC
approximates it well (see, e.g., question 2 in assignment 9).



MCMC Algorithm: using the Results

• To approximate marginal posterior distribution, g
(
θi|Ydata) , of

θi,

— compute and display the histogram of θ
(1)
i , θ

(2)
i , ..., θ

(M)
i ,

i = 1, ..., M.

• Other objects of interest:
— mean and variance of posterior distribution θ :

Eθ ' θ̄ ≡ 1
M

M

∑
j=1

θ(j), Var (θ) ' 1
M

M

∑
j=1

[
θ(j) − θ̄

] [
θ(j) − θ̄

]′
.



MCMC Algorithm: using the Results
• More complicated objects of interest:

— impulse response functions,
— model second moments,
— forecasts,
— Kalman smoothed estimates of real rate, natural rate, etc.

• All these things can be represented as non-linear functions of
the model parameters, i.e., f (θ) .
— can approximate the distribution of f (θ) using

f
(

θ(1)
)

, ..., f
(

θ(M)
)

→ Ef (θ) ' f̄ ≡ 1
M

M

∑
i=1

f
(

θ(i)
)

,

Var (f (θ)) ' 1
M

M

∑
i=1

[
f
(

θ(i)
)
− f̄
] [

f
(

θ(i)
)
− f̄
]′



MCMC: Remaining Issues

• In addition to the first and second moments already discused,
would also like to have the marginal likelihood of the data.

• Marginal likelihood is a Bayesian measure of model fit.



MCMC Algorithm: the Marginal Likelihood

• Consider the following sample average:

1
M

M

∑
j=1

h
(

θ(j)
)

p
(

Ydata|θ(j)
)

p
(

θ(j)
) ,

where h (θ) is an arbitrary density function over the N−
dimensional variable, θ.

By the law of large numbers,

1
M

M

∑
j=1

h
(

θ(j)
)

p
(

Ydata|θ(j)
)

p
(

θ(j)
) →

M→∞
E

(
h (θ)

p
(
Ydata|θ

)
p (θ)

)



MCMC Algorithm: the Marginal Likelihood

1
M

M

∑
j=1

h
(

θ(j)
)

p
(

Ydata|θ(j)
)

p
(

θ(j)
) →M→∞ E

(
h (θ)

p
(
Ydata|θ

)
p (θ)

)

=
∫

θ

(
h (θ)

p
(
Ydata|θ

)
p (θ)

)
p
(
Ydata|θ

)
p (θ)

p
(
Ydata

) dθ =
1

p
(
Ydata

) .

• When h (θ) = p (θ) , harmonic mean estimator of the marginal
likelihood .

• Ideally, want an h such that the variance of

h
(

θ(j)
)

p
(

Ydata|θ(j)
)

p
(

θ(j)
)

is small (recall the earlier discussion of Monte Carlo
integration). More on this below.



Laplace Approximation to Posterior
Distribution

• In practice, MCMC algorithm very time intensive.

• Laplace approximation is easy to compute and in many cases it
provides a ‘quick and dirty’approximation that is quite good.

Let θ ∈ RN denote the N−dimensional vector of parameters and, as
before,

G (θ) ≡ log p
(

Ydata|θ
)

p (θ)

p
(

Ydata|θ
)
~likelihood of data

p (θ) ~prior on parameters
θ∗ ~maximum of G (θ) (i.e., mode)



Laplace Approximation
Second order Taylor series expansion of
G (θ) ≡ log

[
p
(
Ydata|θ

)
p (θ)

]
about θ = θ∗ :

G (θ) ≈ G (θ∗) +Gθ (θ
∗) (θ − θ∗)− 1

2
(θ − θ∗)′ Gθθ (θ

∗) (θ − θ∗) ,

where

Gθθ (θ
∗) = −

∂2 log p
(
Ydata|θ

)
p (θ)

∂θ∂θ′
|θ=θ∗

Interior optimality of θ∗ implies:

Gθ (θ
∗) = 0, Gθθ (θ

∗) positive definite

Then:

p
(

Ydata|θ
)

p (θ)

' p
(

Ydata|θ∗
)

p (θ∗) exp
{
−1

2
(θ − θ∗)′ Gθθ (θ

∗) (θ − θ∗)

}
.



Laplace Approximation to Posterior
Distribution

Property of Normal distribution:∫
θ

1

(2π)
N
2
|Gθθ (θ

∗)|
1
2 exp

{
−1

2
(θ − θ∗)′ Gθθ (θ

∗) (θ − θ∗)

}
dθ = 1

Then,∫
p
(

Ydata|θ
)

p (θ) dθ '
∫

p
(

Ydata|θ∗
)

p (θ∗)

× exp
{
−1

2
(θ − θ∗)′ Gθθ (θ

∗) (θ − θ∗)

}
dθ

=
p
(
Ydata|θ∗

)
p (θ∗)

1

(2π)
N
2
|Gθθ (θ

∗)|
1
2

.



Laplace Approximation
• Conclude:

p
(

Ydata
)
'

p
(
Ydata|θ∗

)
p (θ∗)

1

(2π)
N
2
|Gθθ (θ

∗)|
1
2

.

• Laplace approximation to posterior distribution:

p
(
Ydata|θ

)
p (θ)

p
(
Ydata

) ' 1

(2π)
N
2
|Gθθ (θ

∗)|
1
2

× exp
{
−1

2
(θ − θ∗)′ Gθθ (θ

∗) (θ − θ∗)

}
• So, posterior of θi (i.e., g

(
θi|Ydata)) is approximately

θi ~N
(

θ∗i ,
[
Gθθ (θ

∗)−1
]

ii

)
.



Modified Harmonic Mean Estimator of
Marginal Likelihood

• Harmonic mean estimator of the marginal likelihood, p
(
Ydata): 1

M

M

∑
j=1

h
(

θ(j)
)

p
(

Ydata|θ(j)
)

p
(

θ(j)
)
−1

,

with h (θ) set to p (θ) .
— In this case, the marginal likelihood is the harmonic mean of
the likelihood, evaluated at the values of θ generated by the
MCMC algorithm.

— Problem: the variance of the object being averaged is likely to
be high, requiring high M for accuracy.

• When h (θ) is instead equated to Laplace approximation of
posterior distribution, then h (θ) is approximately proportional
to p

(
Ydata|θ(j)

)
p
(

θ(j)
)
so that the variance of the variable

being averaged in the last expression is low.
— In this case, the estimator of p

(
Ydata) is called Geweke’s

Modified Harmonic Mean estimator.
— This is a standard way to approximate the marginal likelihood
of the data.



The Marginal Likelihood and Model
Comparison

• Suppose we have two models, Model 1 and Model 2.
— compute p

(
Ydata|Model 1

)
and p

(
Ydata|Model 2

)
• Suppose p

(
Ydata|Model 1

)
> p

(
Ydata|Model 2

)
. Then,

posterior odds on Model 1 higher than Model 2.

— ‘Model 1 fits better than Model 2’

• Can use this to compare across two different models, or to
evaluate contribution to fit of various model features: habit
persistence, adjustment costs, etc.

— For an application of this and the other methods in these
notes, see Smets and Wouters, AER 2007.


