# Financial Frictions Under Asymmetric Information and Costly State Verification

#### General Idea

- Standard dsge model assumes borrowers and lenders are the same people..no conflict of interest.
- Financial friction models suppose borrowers and lenders are different people, with conflicting interests.
- Financial frictions: features of the relationship between borrowers and lenders adopted to mitigate conflict of interest.

#### Discussion of Financial Frictions

- Simple model to illustrate the basic costly state verification (csv) model.
  - Original analysis of Townsend (1978), Gale-Helwig.
- Later: integrate the csv model into a fullblown dsge model.
  - Follows the lead of Bernanke, Gertler and Gilchrist (1999).
  - Empirical analysis of Christiano, Motto and Rostagno (2003,2009).

# Simple Model

- There are entrepreneurs with all different levels of wealth, N.
  - Entrepreneur have different levels of wealth because they experienced different idiosyncratic shocks in the past.
- For each value of N, there are many entrepreneurs.
- In what follows, we will consider the interaction between entrepreneurs with a specific amount of N with competitive banks.
- Later, will consider the whole population of entrepreneurs, with every possible level of *N*.

# Simple Model, cont'd

- Each entrepreneur has access to a project with rate of return,  $(1 + R^k)\omega$
- Here,  $\omega$  is a unit mean, idiosyncratic shock experienced by the individual entrepreneur after the project has been started,

$$\int_0^\infty \omega dF(\omega) = 1$$

- The shock,  $\omega$  , is privately observed by the entrepreneur.
- *F* is lognormal cumulative distribution function.

# Banks, Households, Entrepreneurs



Standard debt contract

- Entrepreneur receives a contract from a bank, which specifies a rate of interest, Z, and a loan amount, B.
  - If entrepreneur cannot make the interest payments, the bank pays a monitoring cost and takes everything.
- Total assets acquired by the entrepreneur:

total assets net worth loans
$$A = N + B$$

• Entrepreneur who experiences sufficiently bad luck,  $\omega \leq \bar{\omega}$  , loses everything.

#### • Cutoff, $\bar{\omega}$

gross rate of return experience by entrepreneur with 'luck',  $\bar{\omega}$ 

total assets

$$(1+R^k)\bar{\omega}$$
 ×

interest and principle owed by the entrepreneur

$$\overline{ZB}$$

$$(1 + R^{k})\overline{\omega}A = ZB \rightarrow \text{leverage = } L$$

$$\overline{\omega} = \frac{Z}{(1+R^{k})} \frac{\frac{B}{N}}{\frac{A}{N}} = \frac{Z}{(1+R^{k})} \frac{\frac{A}{N} - 1}{\frac{A}{N}} = \frac{Z}{(1+R^{k})} \frac{L-1}{L}$$

- Cutoff higher with:
  - higher leverage, L
  - higher  $Z/(1+R^k)$

 Expected return to entrepreneur, over opportunity cost of funds:



For lower values of  $\omega$ , entrepreneur receives nothing 'limited liability'.

opportunity cost of funds

Rewriting entrepreneur's rate of return:

$$\frac{\int_{\bar{\omega}}^{\infty} [(1+R^k)\omega A - ZB]dF(\omega)}{N(1+R)} = \frac{\int_{\bar{\omega}}^{\infty} [(1+R^k)\omega A - (1+R^k)\bar{\omega}A]dF(\omega)}{N(1+R)}$$

$$= \int_{\bar{\omega}}^{\infty} [\omega - \bar{\omega}] dF(\omega) \left( \frac{1 + R^k}{1 + R} \right) L$$

$$\bar{\omega} = \frac{Z}{(1+R^k)} \frac{L-1}{L} \to_{L\to\infty} \frac{Z}{(1+R^k)}$$

- Entrepreneur's return unbounded above
  - Risk neutral entrepreneur would always want to borrow an infinite amount (infinite leverage).

Expected entrepreneurial return, over opportunity cost, N(1+R)



Expected entrepreneurial return, over opportunity cost, N(1+R)



- If given a fixed interest rate, entrepreneur with risk neutral preferences would borrow an unbounded amount.
- In equilibrium, bank can't lend an infinite amount.
- This is why a loan contract must specify *both* an interest rate, *Z*, and a loan amount, *B*.
- Need to represent preferences of entrepreneurs over Z and B.
  - Problem, possibility of local decrease in utility with more leverage makes entrepreneur indifference curves 'strange'...

#### Indifference Curves Over Z and B Problematic



Downward-sloping indifference curves reflect local fall in net worth with rise in leverage when risk premium is high.

# Solution to Technical Problem Posed by Result in Previous Slide

• Think of the loan contract in terms of the loan amount (or, leverage, (N+B)/N) and the cutoff,  $\bar{\omega}$ 

$$\frac{\int_{\bar{\omega}}^{\infty} [(1+R^k)\omega A - ZB]dF(\omega)}{N(1+R)} = \int_{\bar{\omega}}^{\infty} [\omega - \bar{\omega}]dF(\omega) \left(\frac{1+R^k}{1+R}\right) L$$
Indifference curve, (leverage,  $\omega$  - bar) space
$$L = \frac{A}{N} = \frac{N+B}{N}$$
Utility increasing

#### Banks

 Source of funds from households, at fixed rate, R

 Bank borrows B units of currency, lends proceeds to entrepreneurs.

 Provides entrepreneurs with standard debt contract, (Z,B)

# Banks, cont'd

Monitoring cost for bankrupt entrepreneur

with  $\omega < \bar{\omega}$ Bankruptcy cost parameter  $\mu(1+R^k)\omega A$ 

Bank zero profit condition

fraction of entrepreneurs with  $\omega > \bar{\omega}$  quantity paid by each entrepreneur with  $\omega > \bar{\omega}$ 

$$[1-F(\bar{\omega})]$$
  $ZB$ 

quantity recovered by bank from each bankrupt entrepreneur

$$+ (1-\mu)\int_0^{\bar{\omega}} \omega dF(\omega)(1+R^k)A$$

amount owed to households by bank

$$=$$
  $(1+R)B$ 

# Banks, cont'd

Simplifying zero profit condition:

$$[1 - F(\bar{\omega})]ZB + (1 - \mu) \int_0^{\bar{\omega}} \omega dF(\omega) (1 + R^k) A = (1 + R)B$$
$$[1 - F(\bar{\omega})]\bar{\omega} (1 + R^k) A + (1 - \mu) \int_0^{\bar{\omega}} \omega dF(\omega) (1 + R^k) A = (1 + R)B$$

$$[1 - F(\bar{\omega})]\bar{\omega} + (1 - \mu) \int_{0}^{\bar{\omega}} \omega dF(\omega) = \frac{1 + R}{1 + R^{k}} \frac{B/N}{A/N}$$
$$= \frac{1 + R}{1 + R^{k}} \frac{L - 1}{L}$$

• Expressed naturally in terms of  $(\bar{\omega}, L)$ 

#### Bank zero profit condition, in (leverage, $\omega$ - bar) space



#### Some Notation and Results

#### Let

expected value of  $\omega$ , conditional on  $\omega < \bar{\omega}$ 

$$G(\bar{\omega}) = \int_{0}^{\bar{\omega}} \omega dF(\omega)$$
 ,  $\Gamma(\bar{\omega}) = \bar{\omega}[1 - F(\bar{\omega})] + G(\bar{\omega})$ ,

#### Results:

$$G'(\bar{\omega}) = \frac{d}{d\bar{\omega}} \int_0^{\bar{\omega}} \omega dF(\omega) \stackrel{\text{Leibniz's rule}}{=} \bar{\omega} F'(\bar{\omega})$$

$$\Gamma'(\bar{\omega}) = 1 - F(\bar{\omega}) - \bar{\omega}F'(\bar{\omega}) + G(\bar{\omega}) = 1 - F(\bar{\omega})$$

# Moving Towards Equilibrium Contract

Entrepreneurial utility:

$$\int_{\bar{\omega}}^{\infty} [\omega - \bar{\omega}] dF(\omega) \frac{1 + R^k}{1 + R} L$$

$$= (1 - G(\bar{\omega}) - \bar{\omega}[1 - F(\bar{\omega})]) \frac{1 + R^k}{1 + R} L$$

share of entrepreneur return going to entrepreneur

$$= \frac{1 + R^k}{1 + R} L$$

# Moving Towards Equilibrium Contract, cn't

#### Bank profits:

share of entrepreneurial profits (net of monitoring costs) given to bank

$$(1 - F(\bar{\omega}))\bar{\omega} + (1 - \mu) \int_0^{\bar{\omega}} \omega dF(\omega) = \frac{1 + R}{1 + R^k} \frac{L - 1}{L}$$

$$\Gamma(\bar{\omega}) - \mu G(\bar{\omega}) = \frac{1+R}{1+R^k} \frac{L-1}{L}$$

$$L = \frac{1}{1 - \frac{1 + R^k}{1 + R} \left[ \Gamma(\bar{\omega}) - \mu G(\bar{\omega}) \right]}$$

# **Equilibrium Contract**

 Entrepreneur selects the contract is optimal, given the available menu of contracts.

• The solution to the entrepreneur problem is the  $\bar{\omega}$  that solves:

$$\log \left\{ \begin{array}{c} \text{profits, per unit of leverage, earned by entrepreneur, given } \bar{\omega} \\ \int_{\bar{\omega}}^{\infty} [\omega - \bar{\omega}] dF(\omega) \frac{1 + R^k}{1 + R} \end{array} \right. \times \underbrace{\frac{1}{1 - \frac{1 + R^k}{1 + R} \left[\Gamma(\bar{\omega}) - \mu G(\bar{\omega})\right]}}^{\text{leverage offered by bank, conditional on } \bar{\omega} \right\}$$

higher 
$$\bar{\omega}$$
 drives share of profits to entrepreneur down (bad!)
$$= \log \frac{1 + R^k}{1 + R} - \log \left(1 - \frac{1 + R^k}{1 + R} \left[\Gamma(\bar{\omega}) - \mu G(\bar{\omega})\right]\right)$$

# Equilibrium Contracting Problem Not Globally Concave, But Has Unique Solution Characterized by First Order Condition



# Computing the Equilibrium Contract

• Solve first order optimality condition uniquely for the cutoff,  $\bar{\omega}$ :

elasticity of entrepreneur's expected return w.r.t. 
$$\bar{\omega}$$

$$\frac{1 - F(\bar{\omega})}{1 - \Gamma(\bar{\omega})} = \frac{\frac{1 + R^k}{1 + R} \left[1 - F(\bar{\omega}) - \mu F'(\bar{\omega})\right]}{1 - \frac{1 + R^k}{1 + R} \left[\Gamma(\bar{\omega}) - \mu G(\bar{\omega})\right]}$$

Given the cutoff, solve for leverage:

$$L = \frac{1}{1 - \frac{1 + R^k}{1 + R} [\Gamma(\bar{\omega}) - \mu G(\bar{\omega})]}$$

Given leverage and cutoff, solve for risk spread:

risk spread 
$$\equiv \frac{Z}{1+R} = \frac{1+R^k}{1+R} \bar{\omega} \frac{L}{L-1}$$

#### Result

 Leverage, L, and entrepreneurial rate of interest, Z, not a function of net worth, N.

Quantity of loans proportional to net worth:

$$L = \frac{A}{N} = \frac{N+B}{N} = 1 + \frac{B}{N}$$

$$B = (L-1)N$$

• To compute L, Z/(1+R), must make assumptions about F and parameters.

$$\frac{1+R^k}{1+R}, \ \mu, \ F$$

# The Distribution, F

Log normal density function,  $E_{\omega}$  = 1,  $_{\sigma}$  = 0.82155



# Results for log-normal

• Need: 
$$G(\bar{\omega}) = \int_0^{\bar{\omega}} \omega dF(\omega), F'(\omega)$$

Can get these from the pdf and the cdf of the standard normal distribution.

These are available in most computational software, like MATLAB.

Also, they have simple analytic representations.

# Results for log-normal

• Need:  $G(\bar{\omega}) = \int_{0}^{\omega} \omega dF(\omega), F'(\omega)$ 

$$\int_{0}^{\bar{\omega}} \omega dF(\omega) \stackrel{\text{change of variables, } x = \log \omega}{=} \frac{1}{\sigma_{x} \sqrt{2\pi}} \int_{-\infty}^{\log \bar{\omega}} e^{x} e^{\frac{-(x - Ex)^{2}}{2\sigma_{x}^{2}}} dx$$

Eω=1 requires 
$$Ex = -\frac{1}{2}\sigma_x^2$$

$$\frac{1}{\sigma_x \sqrt{2\pi}} \int_{-\infty}^{\log \bar{\omega}} e^x e^{\frac{-\left(x + \frac{1}{2}\sigma_x^2\right)^2}{2\sigma_x^2}} dx$$

combine powers of 
$$e$$
 and rearrange 
$$\frac{1}{\sigma_x \sqrt{2\pi}} \int_{-\infty}^{\log \bar{\omega}} e^{\frac{-\left(x - \frac{1}{2}\sigma_x^2\right)^2}{2\sigma_x^2}} dx$$

change of variables, 
$$v = \frac{x - \frac{1}{2}\sigma_x^2}{\sigma_x}$$

$$\frac{1}{\sigma_x \sqrt{2\pi}} \int_{-\infty}^{\frac{\log(\bar{\omega}) + \frac{1}{2}\sigma_x^2}{\sigma_x} - \sigma_x} \exp^{\frac{-v^2}{2}} \sigma_x dv$$

$$= prob \left[ v < \frac{\log(\bar{\omega}) + \frac{1}{2}\sigma_x^2}{\sigma_x} - \sigma_x \right] \leftarrow \text{cdf for standard normal}$$

# Results for log-normal, cnt'd

The log-normal cumulative density:

$$F(\bar{\omega}) = \int_0^{\bar{\omega}} dF(\omega) = \frac{1}{\sigma_x \sqrt{2\pi}} \int_{-\infty}^{\log \bar{\omega}} e^{\frac{-\left(x + \frac{1}{2}\sigma_x^2\right)^2}{2\sigma_x^2}} dx$$

Differentiating (using Leibniz's rule):

$$F_{\bar{\omega}}(\omega;\sigma) = \frac{1}{\bar{\omega}\sigma} \frac{1}{\sqrt{2\pi}} \exp^{\frac{-\left[\frac{\log(\bar{\omega}) + \frac{1}{2}\sigma^{2}}{\sigma}\right]^{2}}{2}}$$

$$= \frac{1}{\bar{\omega}\sigma} \text{Standard Normal pdf}\left(\frac{\log(\bar{\omega}) + \frac{1}{2}\sigma^{2}}{\sigma}\right)$$

#### 'Test' of the Model

 Obtain the following for each firm from a micro dataset:

probability of default (from rating agency) firm leverage interest rate 
$$F(\bar{\omega})$$
 ,  $L$  ,  $Z$ 

 Using definition of F, risk spread, first order condition associated with optimal contract and zero profit condition of banks, can compute:

ex ante mean return on firm investment project ex ante idiosyncratic uncertainty monitoring costs cutoff productivity 
$$R^k$$
,  $R^k$ ,  $R^k$ ,  $R^k$ ,  $R^k$ ,  $R^k$ ,  $R^k$ 

Test the model: do the results look sensible?

• Levin, Natalucci, Zakrajsek, 'The Magnitude and Cyclical Behavior of Financial Market Frictions', Finance and Economics Discussion Series, Federal Reserve Board, 2004-70.

Figure 5: Benchmark Results for the Bankruptcy Cost Parameter



Figure 7: Time Variation in Idiosyncratic Shock Volatility





Notes: Each line denotes the specified sales-weighted percentile for the idiosyncratic risk parameter  $\sigma_{it}$ .

Figure 6: Cross-Sectional Distribution of  $400\left(\frac{1+R^k}{1+R}-1\right)$ 



Notes: Each line denotes the specified sales-weighted percentile for the model-implied constructed using our benchmark estimates of the bankruptcy cost parameter  $\mu_t$ .  $400\left(\frac{1+R^k}{1+R}-1\right)$ 

# Effect of Increase in Risk, $\sigma$

Keep

$$\int_0^\infty \omega dF(\omega) = 1$$

 But, double standard deviation of Normal underlying F.



#### Effect of a 5% jump in $\sigma$



#### Issues With the Model

- Strictly speaking, applies only to 'mom and pop grocery stores': entities run by entrepreneurs who are bank dependent for outside finance.
  - Not clear how to apply this to actual firms with access to equity markets.
- Assume no long-run connections with banks.
- Entrepreneurial returns independent of scale.
- Overly simple representation of entrepreneurial utility function.
- Ignores alternative sources of risk spread (risk aversion, liquidity)
- Seems not to allow for bankruptcies in banks.