Financial Frictions Under Asymmetric Information and Costly State Verification
General Idea

• Standard dsge model assumes borrowers and lenders are the same people..no conflict of interest.

• Financial friction models suppose borrowers and lenders are different people, with conflicting interests.

• Financial frictions: features of the relationship between borrowers and lenders adopted to mitigate conflict of interest.
Discussion of Financial Frictions

- Simple model to illustrate the basic costly state verification (csv) model.
 - Original analysis of Townsend (1978), Gale-Helwig.

- Later: integrate the csv model into a full-blown dsge model.
 - Follows the lead of Bernanke, Gertler and Gilchrist (1999).
Simple Model

• There are entrepreneurs with all different levels of wealth, N.
 – Entrepreneur have different levels of wealth because they experienced different idiosyncratic shocks in the past.

• For each value of N, there are many entrepreneurs.

• In what follows, we will consider the interaction between entrepreneurs with a specific amount of N with competitive banks.

• Later, will consider the whole population of entrepreneurs, with every possible level of N.
Simple Model, cont’d

- Each entrepreneur has access to a project with rate of return,
 \[(1 + R^k)\omega\]

- Here, \(\omega\) is a unit mean, idiosyncratic shock experienced by the individual entrepreneur after the project has been started,
 \[\int_0^\infty \omega dF(\omega) = 1\]

- The shock, \(\omega\), is privately observed by the entrepreneur.

- \(F\) is lognormal cumulative distribution function.
Banks, Households, Entrepreneurs

\[\omega \sim F(\omega), \quad \int_0^\infty \omega dF(\omega) = 1 \]
• Entrepreneur receives a contract from a bank, which specifies a rate of interest, \(Z \), and a loan amount, \(B \).

 – If entrepreneur cannot make the interest payments, the bank pays a monitoring cost and takes everything.

• Total assets acquired by the entrepreneur:

\[
\hat{A} = \hat{N} + \hat{B}
\]

• Entrepreneur who experiences sufficiently bad luck, \(\omega \leq \bar{\omega} \), loses everything.
• Cutoff, $\bar{\omega}$

$$\frac{\text{gross rate of return experience by entrepreneur with ‘luck’, } \bar{\omega}}{(1 + R^k)\bar{\omega}} \times \frac{\text{total assets}}{A}$$

interest and principle owed by the entrepreneur

$$= \frac{ZB}{A}$$

$$(1 + R^k)\bar{\omega}A = ZB \rightarrow$$

leverage $= L$

$$\bar{\omega} = \frac{Z}{(1+R^k)} \frac{B}{N} \frac{A}{N} = \frac{Z}{(1+R^k)} \frac{A}{N}^{-1} = \frac{Z}{(1+R^k)} \frac{L-1}{L}$$

• Cutoff higher with:
 – higher leverage, L
 – higher $Z/(1 + R^k)$
• Expected return to entrepreneur, over opportunity cost of funds:

\[\int_{\omega}^{\infty} \frac{[(1+R^k)\omega A-ZB]dF(\omega)}{N(1+R)} \]

For lower values of \(\omega \), entrepreneur receives nothing ‘limited liability’.

Expected payoff for entrepreneur

Opportunity cost of funds
• Rewriting entrepreneur’s rate of return:

\[
\int_{\bar{\omega}}^{\infty} \frac{[(1 + R^k)\omega A - ZB]dF(\omega)}{N(1 + R)} = \int_{\bar{\omega}}^{\infty} \frac{[(1 + R^k)\omega A - (1 + R^k)\bar{\omega}A]dF(\omega)}{N(1 + R)}
\]

\[
= \int_{\bar{\omega}}^{\infty} [\omega - \bar{\omega}]dF(\omega) \left(\frac{1 + R^k}{1 + R} \right) L
\]

\[
\bar{\omega} = \frac{Z}{(1+R^k)} \frac{L-1}{L} \rightarrow_{L \to \infty} \frac{Z}{(1+R^k)}
\]

• Entrepreneur’s return unbounded above
 – Risk neutral entrepreneur would always want to borrow an infinite amount (infinite leverage).
In our baseline parameterization, risk spread = 1.0063, return is monotonically increasing in leverage.
Expected entrepreneurial return, over opportunity cost, $N(1+R)$

- High leverage always preferred
- Eventually linearly increasing
- More leverage locally reduces expected return with high risk spread.

Baseline parameters:

$$Z/(1+R) = 1.0063$$

$$Z/(1+R) = 1.5$$
• If given a fixed interest rate, entrepreneur with risk neutral preferences would borrow an unbounded amount.

• In equilibrium, bank can’t lend an infinite amount.

• This is why a loan contract must specify both an interest rate, \(Z \), and a loan amount, \(B \).

• Need to represent preferences of entrepreneurs over \(Z \) and \(B \).
 – Problem, possibility of local decrease in utility with more leverage makes entrepreneur indifference curves ‘strange’ ..
Indifference Curves Over Z and B Problematic

Entrepreneurial indifference curves

Downward-sloping indifference curves reflect local fall in net worth with rise in leverage when risk premium is high.
Solution to Technical Problem Posed by Result in Previous Slide

• Think of the loan contract in terms of the loan amount (or, leverage, \((N+B)/N \)) and the cutoff, \(\bar{\omega} \)

\[
\int_{\bar{\omega}}^{\infty} \frac{[(1+R^k)\omega A-ZB]}{N(1+R)}dF(\omega) = \int_{\bar{\omega}}^{\infty} [\omega - \bar{\omega}]dF(\omega) \left(\frac{1+R^k}{1+R} \right) L
\]

\[L = \frac{A}{N} = \frac{N+B}{N}\]
Banks

• Source of funds from households, at fixed rate, R

• Bank borrows B units of currency, lends proceeds to entrepreneurs.

• Provides entrepreneurs with standard debt contract, (Z, B)
Banks, cont’d

• Monitoring cost for bankrupt entrepreneur
 with \(\omega < \bar{\omega} \)
 \[\mu(1 + R^k)\omega A \]

• Bank zero profit condition

 fraction of entrepreneurs with \(\omega > \bar{\omega} \)
 \[\left[1 - F(\bar{\omega}) \right] \]

 quantity paid by each entrepreneur with \(\omega > \bar{\omega} \)
 \[\frac{ZB}{\hat{\rho}} \]

 quantity recovered by bank from each bankrupt entrepreneur
 \[+ (1 - \mu) \int_{0}^{\bar{\omega}} \omega dF(\omega)(1 + R^k)A \]

 amount owed to households by bank
 \[= (1 + R)B \]
Banks, cont’d

• Simplifying zero profit condition:

\[
[1 - F(\bar{\omega})]ZB + (1 - \mu) \int_0^{\bar{\omega}} \omega dF(\omega)(1 + R^k)A = (1 + R)B
\]

• Expressed naturally in terms of \((\bar{\omega}, L)\)
Bank zero profit condition, in (leverage, \(\omega\) - bar) space

- Free entry of banks ensures zero profits

- Zero profit curve represents a ‘menu’ of contracts, \((\bar{\omega},L)\), that can be offered in equilibrium.

- Only the upward-sloped portion of the curve is relevant, because entrepreneurs would never select a high value of \(\bar{\omega}\) if a lower one was available at the same leverage.
Some Notation and Results

• Let

\[G(\bar{\omega}) = \int_{0}^{\bar{\omega}} \omega dF(\omega) \quad , \quad \Gamma(\bar{\omega}) = \bar{\omega}[1 - F(\bar{\omega})] + G(\bar{\omega}) , \]

• Results:

\[G'(\bar{\omega}) = \frac{d}{d\bar{\omega}} \int_{0}^{\bar{\omega}} \omega dF(\omega) \quad \overset{\text{Leibniz's rule}}{=} \quad \bar{\omega}F'(\bar{\omega}) \]

\[\Gamma'(\bar{\omega}) = 1 - F(\bar{\omega}) - \bar{\omega}F'(\bar{\omega}) + G(\bar{\omega}) = 1 - F(\bar{\omega}) \]
Moving Towards Equilibrium Contract

• Entrepreneurial utility:

\[
\int_{\bar{\omega}}^{\infty} [\omega - \bar{\omega}]dF(\omega) \frac{1 + R^k}{1 + R} L
\]

\[
= (1 - G(\bar{\omega}) - \bar{\omega}[1 - F(\bar{\omega})]) \frac{1 + R^k}{1 + R} L
\]

share of entrepreneur return going to entrepreneur

\[
= \frac{1 + R^k}{1 + R} L
\]
Moving Towards Equilibrium Contract, cn’t

• Bank profits:

\[
(1 - F(\tilde{\omega}))\tilde{\omega} + (1 - \mu) \int_{0}^{\tilde{\omega}} \omega dF(\omega) = \frac{1 + R}{1 + R^k} \frac{L - 1}{L}
\]

\[
\Gamma(\tilde{\omega}) - \mu G(\tilde{\omega}) = \frac{1 + R}{1 + R^k} \frac{L - 1}{L}
\]

\[
L = \frac{1}{1 - \frac{1+R^k}{1+R} [\Gamma(\tilde{\omega}) - \mu G(\tilde{\omega})]}
\]
Equilibrium Contract

• Entrepreneur selects the contract is optimal, given the available menu of contracts.

• The solution to the entrepreneur problem is the $\tilde{\omega}$ that solves:

$$
\log \left\{ \int_{\tilde{\omega}}^{\infty} \left[\omega - \tilde{\omega} \right] dF(\omega) \frac{1 + R^k}{1 + R} \times \frac{1}{1 - \frac{1 + R^k}{1 + R} \left[\Gamma(\tilde{\omega}) - \mu G(\tilde{\omega}) \right]} \right\}
$$

- Higher $\tilde{\omega}$ drives share of profits to entrepreneur down (bad!)
- Higher $\tilde{\omega}$ drives leverage up (good!)

$$
= \log \left[1 - \Gamma(\tilde{\omega}) \right] + \log \frac{1 + R^k}{1 + R} - \log \left(1 - \frac{1 + R^k}{1 + R} \left[\Gamma(\tilde{\omega}) - \mu G(\tilde{\omega}) \right] \right)
$$
Equilibrium Contracting Problem Not Globally Concave, But Has Unique Solution Characterized by First Order Condition

entrepreneurial utility as a function of ω - bar only

Close up of the objective, in neighborhood of optimum

Non-concave part
Computing the Equilibrium Contract

- Solve first order optimality condition uniquely for the cutoff, $\bar{\omega}$:

$$\frac{1 - F(\bar{\omega})}{1 - \Gamma(\bar{\omega})} = \frac{1+R^k}{1+R} \frac{[1 - F(\bar{\omega}) - \mu F'(\bar{\omega})]}{\left[\Gamma(\bar{\omega}) - \mu G(\bar{\omega})\right]}$$

- Given the cutoff, solve for leverage:

$$L = \frac{1}{1 - \frac{1+R^k}{1+R} \left[\Gamma(\bar{\omega}) - \mu G(\bar{\omega})\right]}$$

- Given leverage and cutoff, solve for risk spread:

$$\text{risk spread} \equiv \frac{Z}{1+R} = \frac{1+R^k}{1+R} \bar{\omega} \frac{L}{L-1}$$
Result

• Leverage, L, and entrepreneurial rate of interest, Z, **not a function of net worth**, N.

• Quantity of loans proportional to net worth:

\[
L = \frac{A}{N} = \frac{N + B}{N} = 1 + \frac{B}{N}
\]

\[
B = (L - 1)N
\]

• To compute L, $Z/(1+R)$, must make assumptions about F and parameters.

\[
\frac{1 + R^k}{1 + R}, \mu, F
\]
The Distribution, F

Log normal density function, $E_\omega = 1$, $\sigma = 0.82155$
Results for log-normal

• Need: \[G(\bar{\omega}) = \int_{0}^{\bar{\omega}} \omega dF(\omega), \quad F'(\omega) \]

Can get these from the pdf and the cdf of the standard normal distribution.

These are available in most computational software, like MATLAB.

Also, they have simple analytic representations.
Results for log-normal

- Need: \(G(\bar{\omega}) = \int_{0}^{\bar{\omega}} \omega dF(\omega), F'(\omega) \)

\[
\int_{0}^{\bar{\omega}} \omega dF(\omega) = \int_{-\infty}^{\log\bar{\omega}} e^x e^{-\frac{(x-Ex)^2}{2\sigma_x^2}} dx
\]

\(E_{\omega}=1 \) requires \(Ex=-\frac{1}{2}\sigma_x^2 \)

\[
= \int_{-\infty}^{\log\bar{\omega}} e^x e^{-\frac{(x+\frac{1}{2}\sigma_x^2)^2}{2\sigma_x^2}} dx
\]

combine powers of \(e \) and rearrange

\[
= \int_{-\infty}^{\log\bar{\omega}} e^{-\frac{(x-\frac{1}{2}\sigma_x^2)^2}{2\sigma_x^2}} dx
\]

change of variables, \(\nu = \frac{x-\frac{1}{2}\sigma_x^2}{\sigma_x} \)

\[
= prob \left[\nu < \frac{\log(\bar{\omega}) + \frac{1}{2}\sigma_x^2}{\sigma_x} - \sigma_x \right] \quad \text{cdf for standard normal}
\]
Results for log-normal, cnt’d

• The log-normal cumulative density:

\[
F(\bar{\omega}) = \int_0^{\bar{\omega}} dF(\omega) = \frac{1}{\sigma_x \sqrt{2\pi}} \int_{-\infty}^{\log\bar{\omega}} e^{\frac{-(x+\frac{1}{2}\sigma_x^2)^2}{2\sigma_x^2}} dx
\]

• Differentiating (using Leibniz’s rule):

\[
F_{\bar{\omega}}(\omega; \sigma) = \frac{1}{\bar{\omega}\sigma} \frac{1}{\sqrt{2\pi}} \exp\left(-\left[\frac{\log(\bar{\omega})+\frac{1}{2}\sigma^2}{\sigma}\right]^2\right)
\]

\[
= \frac{1}{\bar{\omega}\sigma} \text{Standard Normal pdf}\left(\frac{\log(\bar{\omega}) + \frac{1}{2}\sigma^2}{\sigma}\right)
\]
‘Test’ of the Model

• Obtain the following for each firm from a micro dataset:

\[
\begin{align*}
\hat{F}(\bar{\omega}), \\
\bar{L}, \\
\bar{Z}
\end{align*}
\]

• Using definition of \(F \), risk spread, first order condition associated with optimal contract and zero profit condition of banks, can compute:

\[
\begin{align*}
\hat{R}^k, \\
\hat{\sigma}, \\
\hat{\mu}, \\
\hat{\omega}
\end{align*}
\]

• Test the model: do the results look sensible?
A jump in spreads occurred here, interpreted by the model as a jump (in part) of bankruptcy costs.
Changes in idiosyncratic volatility not very important

Figure 7: Time Variation in Idiosyncratic Shock Volatility

NOTES: Each line denotes the specified sales-weighted percentile for the idiosyncratic risk parameter σ_{it}.
Figure 6: Cross-Sectional Distribution of \[400 \left(\frac{1 + R^k}{1 + R} - 1 \right) \]

Percentage Points

- **75th Percentile**
- **50th Percentile**
- **25th Percentile**

High values consistent with high bankruptcy costs.

Notes: Each line denotes the specified sales-weighted percentile for the model-implied constructed using our benchmark estimates of the bankruptcy cost parameter \(\mu_t \).
Effect of Increase in Risk, σ

• Keep
 \[\int_{0}^{\infty} \omega dF(\omega) = 1 \]

• But, double standard deviation of Normal underlying F.

Impact on lognormal cdf of doubling standard deviation

Doubled standard deviation

Increasing standard deviation raises density in the tails.
Effect of a 5% jump in σ

Risk spread $= 400 \left(\frac{Z}{1 + R} - 1 \right)$, Leverage $= (B+N)/N$

Entrepreneur Indifference curve

Risk spread $= 2.67$
Leverage $= 1.12$

Zero profit curve

Risk spread $= 2.52$
Leverage $= 1.13$
Issues With the Model

- Strictly speaking, applies only to ‘mom and pop grocery stores’: entities run by entrepreneurs who are bank dependent for outside finance.
 - Not clear how to apply this to actual firms with access to equity markets.

- Assume no long-run connections with banks.

- Entrepreneurial returns independent of scale.

- Overly simple representation of entrepreneurial utility function.

- Ignores alternative sources of risk spread (risk aversion, liquidity)

- Seems not to allow for bankruptcies in banks.