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WEAK CONVERGENCE AND OPTIMAL SCALING OF 
RANDOM WALK METROPOLIS ALGORITHMS' 

BY G. 0. ROBERTS, A. GELMAN AND W. R. GILKS 

University of Cambridge, Columbia University and 
Institute of Public Health, Cambridge 

This paper considers the problem of scaling the proposal distribution 
of a multidimensional random walk Metropolis algorithm in order to 
maximize the efficiency of the algorithm. The main result is a weak 
convergence result as the dimension of a sequence of target densities, n, 
converges to oo. When the proposal variance is appropriately scaled accord- 
ing to n, the sequence of stochastic processes formed by the first compo- 
nent of each Markov chain converges to the appropriate limiting Langevin 
diffusion process. 

The limiting diffusion approximation admits a straightforward effi- 
ciency maximization problem, and the resulting asymptotically optimal 
policy is related to the asymptotic acceptance rate of proposed moves for 
the algorithm. The asymptotically optimal acceptance rate is 0.234 under 
quite general conditions. 

The main result is proved in the case where the target density has a 
symmetric product form. Extensions of the result are discussed. 

1. Introduction. The random walk algorithm of Metropolis et al. (1953) 
is known to be an effective Markov chain Monte Carlo method for many 
diverse problems. However, its efficiency depends crucially on the scaling of 
the proposal density. If the variance of the proposal is too small, the Markov 
chain will converge slowly since all its increments will be small. Conversely, 
if the variance is too large, the Metropolis algorithm will reject too high a 
proportion of its proposed moves. A number of authors have suggested 
informal guidelines for scaling proposal to target variance ratios [e.g., Besag 
and Green (1993)] or monitoring accept/reject ratios [see, e.g., Besag, Green, 
Higdon and Mengersen (1995)]. However, although such rules of thumb often 
work well in practice, to date there have been no theoretical results to 
support them. 

In this paper, we consider the asymptotic problem as the dimension of the 
state space, n, converges to infinity. By considering suitably regular se- 
quences of canonical target densities and rescaling the proposal variance by a 
factor (1/n), we obtain a weak convergence result for the sequence of 
algorithms restricted to a fixed finite set of components, C, to the appropriate 
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Langevin diffusion on DRC. Finding the asymptotically optimal scaling is then 
a simple matter of optimizing the speed of the Langevin diffusion. 

Specifically, let 
n 

(1.1) T~n(Xn) =H f( xi) 
i=l1 

be an n-dimensional product density with respect to Lebesgue measure. The 
random walk Metropolis algorithm with Gaussian proposal density, 

q(Xn,yn) n= 
2 

q(x, 20^)/ exp(2(l xI) n 

~ (2im-n) n2)-fln2 2on2 

produces a Markov chain Xn = {Xn, Xn,... }, where Xn is chosen randomly as 
follows. We adopt the notation Xn for an n-vector with components x n,..., x . 
Generate Y' according to qn(Xn - n and set Xn = y n with probability 

a?(Xm_,Yy) 1 A 
n_) 

Otherwise, we set Xn = Xn1. Therefore, a(Q, ) is known as the acceptance 
function. Produced in this way, it is easy to see that {Xn} is a Markov chain, 
reversible with respect to wn, and is 71n-irreducible, aperiodic and hence 
ergodic [see, e.g., Roberts and Smith (1994) or Mengersen and Tweedie 
(1966)]. 

We introduce the following conditions on f: we assume that f'/f is 
Lipschitz continuous and 

(Al) [f]((X) ) M]<<c 

(AS) E t(f ())]< 00 

The main result of this paper is therefore that for each fixed one- 
dimensional component of {Xn, n 2 11, the one-dimensional process converges 
weakly to the appropriate Langevin diffusion. 

Let C2 denote the space of real-valued functions with continuous second 
derivative. Let o2 = 12/(n - 1), and for integers n, define UJn = X[n'tI 1. In 
other words Ut' consists of the first component of X[nnt] 

Note that in the definition of 0Jn2 we use the divisor n - 1. This could be 
replaced by n, which seems to be a more appropriate divisor for small n at 
least in the Gaussian case [see Gelman, Roberts and Gilks (1996)]. The 
asymptotic result is unaltered by the choice of divisor; however, our preferred 
choice here leads to a simpler proof 

Let us denote weak convergence of processes in the Skorokhod topology 
by =- [see, e.g., Ethier and Kurtz (1986)]. 

We can now state the result more precisely as follows. 
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THEOREM 1.1. Suppose f is positive and C2 and that (Al) and (A2) hold. 
Let XO = (X,1 X12,2,...) be such that all of its components are distributed 
according to f and assume that XO, j = XO j for all i < j. Then, as n -4 oo, 

Un = U, 

where UO is distributed according to f and U satisfies the Langevin SDE 

(1.2) dUt = (h(l)) 12 dBt + h(l) 2 (T) dt 
2f AUt) 

and 

h(l) =22?( 2 2 

with (F being the standard normal cumulative cdf and 

f'(X) \2 

Here h(l) is sometimes called a speed measure for the diffusion process. 
We can write Ut = Vh(l)t, where V is the Langevin diffusion with speed 
measure unity: 

idV = dB + fIf(Vt) dt. 

Therefore the "most efficient" asymptotic diffusion has the largest speed 
measure. 

The result is illuminating for two reasons. First, since Un is produced by 
speeding up time by a favor of n, the complexity of the algorithm is therefore 
n. Although complexity results exist for Markov chain Monte Carlo with finite 
state spaces [see, e.g., Frigessi and den Hollander (1993)], no such results are 
available in continuous state spaces. In Section 3 we will discuss the general- 
ization of Theorem 1.1 to the case where the components are dependent, and 
the related ideas of phase transition. 

Second, and perhaps more importantly in practice, Theorem 1.1 has the 
following corollary. First let 

an(l) = | n(Xn)a(Xn yn) qn(Xnyn) dxn dyn 

be the average acceptance rate of the random walk Metropolis algorithm in n 
dimensions, and let 

a(l) =2((-2 ) 
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COROLLARY 1.2. 

(i) lim a.(l) = a(l)- 
n -* oo 

(ii) h(l) is maximized (to two decimal places) by 

A 2.38 

Also 
A 

a(l) = 0.23 
A 

and h(l) = 1.3/I. 

This result gives rise to the useful heuristic for random walk Metropolis in 
practice: 

Tune the proposal variance so that the average acceptance rate is roughly 1/4. 

The accompanying paper [Gelman, Roberts and Gilks (1996)] discusses the 
use of this heuristic in practice, and other related issues. 

Note that the optimal value I is scaled, not by the standard deviation of 
the target density (as is often suggested), but by 1/ VI. However if f is 
Gaussian, it is easy to verify that I is exactly the reciprocal of the variance of 
f. In general, I is a measure of "roughness" of f-high values of I lead to I 
having to be small. 

We only state Theorem 1.1 for univariate components, although implicit in 
our method of proof is the stronger statement that for integers c > 1, the 
process consisting of the first c components of X(nn converges to a collection 
of c independent processes each distributed according to (1.2). 

2. Proof of Theorem 1.1. Define the (discrete time) generator of Xn, 

GnV(xn) = nE[(V(Yn) - V(xn))(1 A T ()j 

for any function V for which this definition makes sense. 
The expectation here is taken with respect to the proposal distribution. 

Therefore, yn - xn - N(O, 12/(n - 1)In). In the Skorokhod topology, it does 
not cause any problems to treat Gn as a continuous time generator (of a 
process with jumps at times of a Poisson process at rate n). We shall restrict 
attention to test functions V which are functions of the first component only. 

Our proof of Theorem 1.1 will demonstrate uniform convergence of Gn to 
G, the generator of the limiting (one-dimensional) Langevin diffusion, for a 
suitably large class of real-valued functions V, where 

G1 1 d 
GV( x) = h( l) - V" (x) + - ,-(log f) (x)V'( x). 
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Notice that G, acts on functions of R', whereas in the limit we are merely 
interested in functions of the first component, so that G generally just acts on 
functions of R1. This will involve a minor abuse of notation, but this will 
nevertheless add to the clarity of the sequel. Now, by Theorem 2.1 of Chap- 
ter 8 of Ethier and Kurtz (1986), since (d/dx)log f is Lipschitz, a core for the 
generator has domain Cc (infinitely differentiable functions on compact 
support). This will enable us to restrict attention to functions in Cc. 

Although the putative diffusion limit is Markov, the sequence of approxi- 
mations {U', n > 11 is not, although the approximations can be considered to 
be embedded in the sequence of Markov processes {Zn , n > 11 with 

zn _{nx t = X[nnt] 1, 1* .. * X[nnt 1,n 

so that Un is the first component of Zn. 
Define the sequence of sets {Fn c RDn n > 11 by 

Fn = {IRn(x2 ... Xn) -II< n-1/8} n {ISn(x2X ... X xn) - II < n-1/8 

where 
1n 

Rn(X2, ... I = n-1 _E [(log f(Xi))']2 

and 
-1n 

Sn(X21 ..*.* = 1 E [(log f(xi))"]X 
n- i=2 

LEMMA 2.1. For fixed t, 

1P4[Zn EFn,O<s<t] > 1 asn ->oo. 

PROOF. Since Z n 
ITn, Z n i O < s < t, since iT is stationary. There- 

fore, 

p[Zn e Fn, for some O < s < t] < tnp,n[Z e Fn] 

Note that E[ Rn(X2,..., Xn)](according to -rn) = I, so that, by the weak law of 
large numbers, for all e > 0, 

PIT-n IRn(Z) - II > 0 as n -> oo. 

Moreover, by Markov's inequality and (Al), 

[ Fn] < E [(Rn(Z) -I)41n1/2 

3M 

<n )3/2 

It follows that 

p[Zsn E {IR - II < n-1/8}, 0 < s < t] 1 
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as required. The proof that 

p[ZnE {ISE(x2,... xn)-I < n-1/8}, 0 < s < t] 1 

follows similarly using (A2). C 

In the sequel, we shall use the following collection of preliminary results. 

PROPOSITION 2.2. The function g(x) = 1 A ex is Lipschitz with coefficient 
1. That is, 

Ig(x) - g(Y)I ? Ix - YI Vx, y E R 

LEMMA 2.3. Let 

W~(=~(x~) -n [(log f(X,))" 
Xi 2+ 

12 
f((og Xi))~2j Wn(= Wn(xi)) = E 2 Yi -X 

2(n -1) (log 

where Yi N(xi, 12/(n - 1)) independently for all i = 2,..., n. Then 

sup E[IWnI] >O asn- oo. 
x eFn 

PROOF. 

Q lnI]2 E E[Wn ] 

= 4(n 1)2 ( (log f(xi))" + ((log f(xi))I)2) 

2 n 
+ 2 E ((log f(xi))") 

4(n - 1) i=2 

by direct calculation. However, for xn E Fn 
n (log f(xi))" + ((log f(xi))') - 1/8 

Ji=1 ~2(n - 1) 

and, since (log f )" is bounded, E[ Wn I]2 -> 0 uniformly for Xn E Fn. C 

PROPOSITION 2.4. If A N( A, a 2), then 

E[1 A eA] = (- + exp(A + (T /2)?( -( -?), 

where 1(Q) is the standard normal cumulative distribution function. 

Armed with these preliminary results, we are now in a position to state 
two uniform convergence results which play major roles in the proof of 
Theorem 1.1 

LEMMA 2.5. For VEQ, Cc 
lim sup sup nIE[V(Y1)-V(x1)] < 00, 

n-*oo xleR 
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where as usual, Y1 is distributed N(xj, qn2) and the expectation is taken with 
respect to this normal random variable. 

PROOF. 

V(Y1) - V(x1) = V'(xJ)(Y1 - x1) + 2V (Z)(Yl -X1) 

for some Z1 E (xl, Y1) or (Y1, xl). Therefore, 
1 n 

nE[V(Yl) - V(x1)] < 2Kn- 

where K is an upper bound for V". [1 

LEMMA 2.6. Suppose V E C' is a function of the first component of Zn. 
Then 

sup IGnV(Xn)-GV(xl)I --O as d -> oo. 
xneFn 

PROOF. Decomposing yn (the proposal) into (Y1, yn-), 

GnV(Xn) = nE Y1[(V(Yn) -V(Xn))Eyn- [(1 A T(j )]]' 

we begin by concentrating on the inner expectation, which we will call E 
[= E(Y)]. Write 

E = E[1 A exp{8(Yi) + E (log f(Yj) - log f(xi))}j 

[where we write e(Y1) = log MYI)) 
(f(x)) I 

= E[1 Aexpe(Y ) + E [(log f(x ))'(Yi -x ) + " (log f(x ))"(Yi -x )2 

+ (log f(Zi)) .(Yy - xi)3]} 

for some Zi E (xi, YL) or (Yi, xi). 
Therefore, by Proposition 2.2, we can write 

E - E[1 A exp (((Yl) + 2 [(log f(xi ))'(Yi - x) 

2(n - 1) ((log 

1 413 
< E [Wn 1] + sup Ilog f( z) ..I 1/2 1/2) 

zE=- 6(n - 1)1/ (2ir)1" 
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where W,, is as defined in Lemma 2.3. Also by that result, 

sup E-E[1 A exp{e(Yi) + E [(log f(xJ))'(Yi - xi) 
xn E-Fn i=2 

12 2i 
2(n - 1) ((logf(xi))')j, 

=q(n) (say) O as n -oo. 
However, 

-(Y1) + E [(log f(X1))'(Yi - X) ((log f(Xi))') 

is distributed N(e(Y1) - 12Rn/2, 12Rn), so that, by Proposition 2.4, 

E[1 A exp {(Yi) + 3 [(log f(xJ))'(Yi - xi) 

12 
((log f xi) ')2 2(n -1) 

= >(R-1/2 (I-1(y)_IRn 

ex(8Y)t -RR-fX ))n} 

+ 

exp-(?(Y 

q)e(Y)R 
1/21 -1) 

-()say. 
Therefore we can write 

sup GnV-nE (V(Yl) - V(xl))M log Y,)) 

<: o(n)nE[lV(Yl) - V(xl)l] , 0 as n oo. 

It therefore remains to consider the term 

nE[(V(Yi) - v(x))M log$ j 

Now a Taylor series expansion of the integrand about x, gives 

(V(Y1) - V(X))M (log {Y ) 

1 ~~~2 V________ 

-( X -)(Yl- xl) + 2V"(X))(Yl- X + ( (Y1X X)3) 2 [ M(O) + ( Y1 - x16 

x M(0) + (Y1 - x1)M'(0)(log f(x))' + -(Y1 ~xl)2T(xl, Wi)j 
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where 

T(x1, W1) = M" (log f($W) ((ogf(W1))')2 

+(log f(W))" M'log f(WJ) 

and where Z1, W1 E [x1, Y1] or [Y1, x1]. However, since V has compact 
support, S say, there exists K < ?? such that Ilog f)(')(x)l, V(')(x)l ? K for 
x e S, i = 1,2,3, and it is easy to check that M' and M" are bounded (again 
by K say). Now 

M(O) = 2M'(O) =2F( - lR/) 

so that 

E[n(V(Yl) - V(xl))M(log A;j)j 

(R 1'2l\rh1 1 
2n(D n__ -)[ (l) 1logf( x)) 'V'(x)] E[( - X)2] 

+E[B(xl, Y1, n)], 

where 

E[IB(x1, Y1, n)J] < a1(K)nE[IY1 - X13] + a2(K)nE[IY1 - X114] 

+ a3(K)nE[IY1 - x115] 

and al, a2 and a3 are polynomials in K. Therefore, E[IB(xl, Y1, n)J] is 
uniformly O(n-1/2) and so 

sup IGnV(x) - GV(x)I - 0 as n - oo. 
n 

E-Fn 

PROOF OF THEOREM 1.1. From Lemma 2.6, we have uniform convergence 
for vectors contained in a set of limiting probability 1. This essentially proves 
the result by Theorem 8.7 of Chapter 4 of Ethier and Kurtz (1986). There 
remains one further technical point: we need that Cc separates points [see 
Ethier and Kurtz (1986), page 113]. However, this is easily checked. 0 

The proof of Corollary 1.2 follows directly from the proof of Theorem 1.1. 

3. Extensions. Theorem 1.1 assumes that Tn has the product form 
given in (1.1). In this section we will discuss generalizations of this result. 

Assume in this section that {#,n, n 2 1} is a sequence of densities satisfying 
the projective consistency requirement 

f7Tn+l(Xn Xn+J) dxn+l =n(Xn) 
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Crucial to the asymptotic arguments of Section 2 is the fact that the limiting 
value of GnV(xn) only depends on x' through x1. Therefore the first compo- 
nent of the process is asymptotically Markov. The following condition is 
therefore an essential condition in any generalization of Theorem 1.1 

(El) The tail o--algebra, f= nn > 1 o-{Xn, n ? 1} is IT-trivial (where T is 
the appropriate limiting measure of the ITn's). 

In a thermodynamic context, (E1) is a phase transition condition. The 
product form for IT given in (1.1) is essentially the infinite temperature case. 

It is difficult to formulate (E1) into a general result giving sufficient 
conditions for Theorem 1.1 to hold for a larger class of densities than those 
satisfying the form of (1.1). However, there are a number of interesting 
examples where extensions are possible. We briefly sketch three directions for 
extensions, although we do not give any formal proofs. 

1. Suppose that iTn has the form 
n 

Ifn(Xn) = H fi(Xi) 

We allow the functions to be different; however, in order for any sensible 
limit to be possible, an extra law of large numbers condition on these 
functions is necessary to ensure that analogy of Lemma 2.1 holds. Under 
such a condition, the proof of Theorem 1.1 can easily be generalized, and 
weak convergence is obtained to the Langevin diffusion in (1.2). We omit 
details of this. The most interesting consequence of this result is that 
although the form of h(l) in this example will turn out to be more 
complicated than that appearing in (1.2), relative efficiency as a function of 
acceptance rate is unaltered, so that the "optimal efficiency" is again 
achieved at an acceptance rate of 0.234. The robustness of this result is the 
most useful practical implication of this paper. The product form density 
appearing here serves only to preclude the possibility of nontrivial tail 
ou-algebras. However the robustness of the relationship between acceptance 
rates and efficiency is likely to hold far more generally, where the tail 
o-algebra is trivial. 

2. Suppose Tn has the Markov form 
n-i 

Trn(Xn) =f1(xl) H P(Xi, Xi+1), 

where P is the transition kernal of an ergodic'Markov chain (which 
therefore has a trivial trail u--algebra). In this case a generalization of 
Theorem 1.1 is possible. Here the weak limiting process needs to be an 
infinite-dimensional diffusion to preserve the Markov property, and the 
details of the analogous results to Lemmas 2.1, 2.5 and 2.6 need to be more 
involved, requiring a rate of convergence condition (such as geometric 
ergodicity for P). 
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3. Suppose wT has an exchangeable form. Suppose X1, X2,... is a random 
sequence distributed according to T,,. Then by de Finetti's theorem, for 0 
measurable in -IT XA IO, X2 10, ... are conditionally iid. Therefore we would 
expect the limiting Langevin diffusion to be the conditioned diffusion 

hl1"2 dB 1 d(log k) 
dXt, 1=h(I) dBt + -h(l) (Xt'1) dt, 

2 dx (X,)t 

where k is the conditional density (assuming that this exists) of X1 given 
0, where 0 is determined by the initial behavior of the initial sequence XO. 
Recall that the initial value for the Markov chain is a initial sequence from 
the stationary distribution of the limiting process on RW. In this example, 
the limiting probability measure is not even defined. This gives therefore a 
kind of asymptotic reducibility, and so the Metropolis algorithm in this 
case is not 0(n). 
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