Estimating the Effects of Shocks to the Economy

• Vector Autoregression for a $N \times 1$ vector of observed variables:

$$Y_t = B_1 Y_{t-1} + \dots + B_p Y_{t-p} + u_t,$$

$$Eu_tu_t' = V$$

- B/s, u's and V are Easily Obtained by OLS.
- Problem: u's are statistical innovations.
 - We want impulse response functions to fundamental economic shocks, e_t .

$$u_t = Ce_t,$$

$$Ee_te_t' = I,$$

$$CC' = V$$

Estimating the Effects of a Shock to the Economy ...

VAR:
$$Y_t = B_1 Y_{t-1} + ... + B_p Y_{t-p} + Ce_t$$

• Impulse Response to i^{th} Shock:

$$Y_t - E_{t-1}Y_t = C_i e_{it},$$

$$E_t Y_{t+1} - E_{t-1} Y_{t+1} = B_1 C_i e_{it}$$

. . .

ullet To Compute Dynamic Response of Y_t to i^{th} Element of e_t We Need

$$B_1,...,B_p$$
 and C_i .

Identification Problem

$$Y_t = B_1 Y_{t-1} + \dots + B_p Y_{t-p} + u_t$$

$$u_t = Ce_t, Eu_tu_t' = CC' = V$$

- We know B's and V, we need C.
- Problem
 - $-N^2$ Unknown Elements in C,
 - Only N(N+1)/2 Equations in

$$CC' = V$$

- Identification Problem: Not Enough Restrictions to Pin Down C
- Need More Identifying Restrictions!

Bivariate Blanchard and Quah Example

• Identification Assumption:
Technology Shock is *Only* Shock that Has Long-Run Impact on (Forecast of)
Level of Labor Productivity:

(exclusion restriction)
$$\lim_{j\to\infty} \left[E_t y_{t+j} - E_{t-1} y_{t+j}\right] = f(\text{technology shock only})$$
(sign restriction) $f'>0$

$$y_t = \frac{\text{output}}{\text{hour}}$$

Blanchard-Quah/Jordi Gali:
 This Assumption Makes it Possible to Estimate Technology Shock, Even Without Direct Observations on Technology

Bivariate Blanchard and Quah Example ...

• Bivariate VAR:

$$Y_t = BY_{t-1} + u_t, \ Eu_tu_t' = V$$
 $u_t = Ce_t$
 $Y_t = \begin{pmatrix} \Delta y_t \\ x_t \end{pmatrix}, \ C = \begin{bmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{bmatrix}, \ e_t = \begin{pmatrix} e_{1t} \\ e_{2t} \end{pmatrix}$
 e_{zt} Technology Shock.

• From Applying OLS To Both Equations in VAR, We Know:

- Problem: CC' = V Provides only **Three** Equations in **Four** Unknowns in C.
- Result: Assumption that e_{2t} Has No Long Run Impact on y_t Supplies the Extra Required Equation

Bivariate Blanchard and Quah Example ...

• Easy to Verify:

$$E_{t}[\Delta y_{t+1} - E_{t-1}\Delta y_{t+1}] + [E_{t}\Delta y_{t} - E_{t-1}\Delta y_{t}]$$

$$E_{t}[\Delta y_{t+1} + \Delta y_{t}] - E_{t-1}[\Delta y_{t+1} + \Delta y_{t}]$$

$$= (1,0)[B+I]Ce_{t}$$

$$E_{t}[y_{t+1}] - E_{t-1}[y_{t+1}] = (1,0)[B^{2} + B + I]Ce_{t}$$

$$E_{t}[y_{t+2}] - E_{t-1}[y_{t+2}] = (1,0)[B^{j} + B^{j-1} + \dots + B^{2} + B + I]Ce_{t}$$

as $j \to \infty$:

$$\lim_{j \to \infty} E_t[y_{t+j}] - E_{t-1}[y_{t+j}] =$$

$$\lim_{j \to \infty} (1,0) \left[\dots + B^j + B^{j-1} + \dots + B^2 + B + I \right] Ce_t$$

$$= (1,0) \left[I - B \right]^{-1} Ce_t$$

--

Bivariate Blanchard and Quah Example ...

• As $j \to \infty$: $\lim_{j \to \infty} E_t[y_{t+j}] - E_{t-1}[y_{t+j}] = (1,0) [I - B]^{-1} Ce_t$

• Identification Assumption About Technology:

$$[I - B]^{-1}C = \begin{bmatrix} \text{number} & 0\\ \text{number number} \end{bmatrix}$$

• Final Result: Solve for C Using

(exclusion restriction) 1, 2 element of $[I - B]^{-1}C$ is zero

(sign restriction) 1, 1 element of
$$[I - B]^{-1}C$$
 is positive $CC' = V$

• Conclude: Long-Run Restriction Supplies Extra Equation Needed to Achieve Identification.

Arbitrary Variables, Arbitrary Lags

• More General Case of Arbitrary Number (N) of Variables and Lags:

$$X_t = B_1 X_{t-1} + B_2 X_{t-2} + \dots + B_p X_{t-p} + u_t$$

- To Compute Impulse Response to Technology Shock,
 - Require: $B_1, ..., B_p$ and C_1 , First Column of C in CC' = V
 - Can Obtain by OLS: $B_1, ..., B_p$ and V
 - Identification Problem: Find C_1
- Solution: Use Restriction, as $j \to \infty$:

$$\lim_{j \to \infty} E_t[y_{t+j}] - E_{t-1}[y_{t+j}] = (1, 0, ..., 0) [I - B(1)]^{-1} Ce_t$$

$$B(1) \equiv B_1 + B_2 + ... + B_n.$$

Arbitrary Variables, Arbitrary Lags ...

• VAR:

$$X_t = B_1 X_{t-1} + B_2 X_{t-2} + \dots + B_p X_{t-p} + u_t$$

• Long-Run Restriction:

(exclusion restriction)
$$[I-B(1)]^{-1}C=\begin{bmatrix} \text{number}&0,...,0\\ \text{numbers}&\text{numbers} \end{bmatrix}$$
 (sign restriction) $(1,1)$ element of $[I-B(1)]^{-1}C$ is $positive$
$$CC'=V$$

• There Are Many C That Satisfy These Constraints. All Have the Same C_1 .

Arbitrary Variables, Arbitrary Lags ...

- Using the Restrictions to Uniquely Pin Down C_1
- Let

$$D \equiv [I - B(1)]^{-1} C$$

so, $DD' = [I - B(1)]^{-1} V [I - B(1)']^{-1} \equiv S_0$ (Since $CC' = V$)

• Exclusion Restriction Requires:

$$D = \begin{bmatrix} d_{11} & 0, ..., 0 \\ D_{21} & D_{22} \end{bmatrix}$$

• So

$$DD' = \begin{bmatrix} d_{11}^2 & d_{11}D'_{21} \\ D_{21}d_{11} & D_{21}D'_{21} + D_{22}D'_{22} \end{bmatrix} = \begin{bmatrix} S_0^{11} & S_0^{21'} \\ S_0^{21} & S_0^{22} \end{bmatrix}.$$

• Sign Restriction:

$$d_{11} > 0$$
.

• Then, First Column of D Uniquely Pinned Down:

$$d_{11} = \sqrt{S_0^{11}}, \ D_{21} = S_0^{21}/d_{11}$$

• First Column of C Uniquely Pinned Down:

$$C_1 = [I - B(1)] D_1.$$