Perturbation and Projection
Methods for Solving DSGE Models

Discussion of projections taken from Christiano-Fisher, ‘Algorithms for Solving Dynamic Models with Occasionally
Binding Constraints’, 2000, Journal of Economic Dynamics and Control.
Discussion of perturbations taken from Judd’s textbook.



Outline

A Toy Example to lllustrate the basic ideas.

— Functional form characterization of model
solution.

— Use of Projections and Perturbations.

e Neoclassical model.
— Projection methods

— Perturbation methods

 Make sense of the proposition, ‘to a first order
approximation, can replace equilibrium conditions with
linear expansion about nonstochastic steady state and
solve the resulting system using certainty equivalence’



Simple Example

Suppose that x is some exogenous variable
and that the following equation implicitly
defines y:

h(x,y) =0, forallx e X
Let the solution be defined by the ‘policy rule

g.
y = g(x)

‘Error function’
satisfying /

R(x;g) = h(x,g(x)) =0
forall x e X

4
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The Need to Approximate

* Finding the policy rule, g, is a big problem
outside special cases

— ‘Infinite number of unknowns (i.e., one value of g
for each possible x) in an infinite number of
equations (i.e., one equation for each possible x).’

e Two approaches:

— projection and perturbation



Projection

Find a parametric function, g(x;v), where 7 is a
vector of parameters chosen so that it imitates
the property of the exact solution, i.e., R(x;g) =0
for all x € x, as well as possible.

Choose values for 7 so that

R(x;7) = h(x,8(x;7))
is close to zero for x € X .
The method is defined by how ‘close to zero’ is

defined and by the parametric function, g(x;7),
that is used.



Projection, continued

e Spectral and finite element approximations

— Spectral functions: functions, (x;v), in which
each parameter in 7 influences g(x;y) forall x e X

example: _ _
" Y1
g(ry) = D yiHix), y = |
i=0
Yn

H;(x) = x' ~ordinary polynominal (not computationaly efficient)
Hi(x) = Ti(p(x)),
T:(z) : [-1,1] » [-1,1], i” order Chebyshev polynomial
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Projection, continued

— Finite element approximations: functions, £(x;7)
in which each parameter in ¥ influences g(x;7)
over only a subinterval of x € X

glx;y) ?’=[ Y1 Y2 Y3 Y4 V5 Ve V7 ]
V4

\
Y2 N

o




Projection, continued
e ‘Close to zero’: two methods

e Collocation, for n values of x: x1,x2,...,x, € X
choose n elements of 7 = [ Y1 ¥ ] so that

RGxiiy) = h(xi, 8Gei;v)) =0,i=1,...,n

— how you choose the grid of x’s matters...



Example of Importance of Grid Points

e Hereis an example, taken from a related problem, the problem
of interpolation.

— You get to evaluate a function on a set of grid points that you
select, and you must guess the shape of the function
between the grid points.

e Consider the function,

fik) = 1+1k2 ke [-5,5]

 Next slide shows what happens when you select 11 equally-
spaced grid points and interpolate by fitting a 10t order
polynomial.

— As you increase the number of grid points on a fixed interval
grid, oscillations in tails grow more and more violent.

e Chebyshev approximation theorem: distribute more points in
the tails (by selecting zeros of Chebyshev polynomial) and get
convergence in sup norm.



How You Select the Grid Points Matters
Function Approximation with Fixed Interval Grid
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Function Approximation with Chebychev Zeros
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Projection, continued
e ‘Close to zero’: two methods

e Collocation, for n values of x: x1,x2,...,x, € X
choose n elements of 7 = [ Y1 o ¥ ] so that

RGxiiy) = h(xi, 8Gei;v)) =0,i=1,...,n

— how you choose the grid of x’s matters...

 Weighted Residual, for m>n values of
X X1.X2,....x, € X choosethen 'S

ZWJZh(X],gA(X],’)/)) — O’ I = 1,...,1’1
j=1



Perturbation

e Projection uses the ‘global’ behavior of the functional
equation to approximate solution.

— Problem: requires finding zeros of non-linear equations.
Iterative methods for doing this are a pain.

— Advantage: can easily adapt to situations the policy rule is
not continuous or simply non-differentiable (e.g.,
occasionally binding zero lower bound on interest rate).

e Perturbation method uses local properties of
functional equation and Implicit Function/Taylor’s
theorem to approximate solution.

— Advantage: can implement it using non-iterative methods.

— Possible disadvantages:
* may require enormously high derivatives to achieve a decent
global approximation.

* Does not work when there are important non-differentiabilities
(e.g., occasionally binding zero lower bound on interest rate).



Perturbation, cnt’d

e Suppose there is a point, x* € X, where we
know the value taken on by the function, g,
that we wish to approximate:

g(x*) = g*, some x*

e Use the implicit function theorem to
approximate g in a neighborhood of x*

* Note:
R(x;g) =0forallx e X

—

RO (x; g) = %R(x;g) — Oforallj, all x € X.



Perturbation, cnt’d

e Differentiate R with respect to xand evaluate
the result at x*:

ROG) = L g()lerr = et ,g7) + hae g)g () = 0

hl(X*ig*)
hZ(X*’g*)

> g (") = -
Do it again!

2
ROG) = “Loh(r, g0l = hus,8) + 2hia (', g)g ()

hao(x*,2*)[g' (x*)]° + ha(x*,g*)g" (x*).

— Solve this linearly for g" (x*).



Perturbation, cnt’d

* Preceding calculations deliver (assuming
enough differentiability, appropriate
invertibility, a high tolerance for painful

notation!), recursively:
g'(x*),g"(x*),...,g"(x*)

 Then, have the following Taylor’s series
approximation:

g(x) = g(x)
gx) =g"+g'(x") x (x —x*)

+ 5" () x (x—=x) 4+ (67) x (x - x7)"



Perturbation, cnt’d

e Check....
e Study the graph of

R(x; )

—over X € X to verify that it is everywhere close
to zero (or, at least in the region of interest).



Example of Implicit Function Theorem

, hi(x*,g*) x*
*) — _ = —=2— (h, had better not be zero!
g0 = ey — g )




Neoclassical Growth Model

e Objective:
& |
Eo D Buen), ule) = “—
=0

e Constraints:
C; + exp(qu.]_) Sﬂk;,at), [ = 0,1,2,....

a; = pa, 1+ &, e~Ee; =0, Eg? =V,

ks a;) = exp(ak,)exp(a;) + (1 —06)exp(k;)



Efficiency Condition

E;I:l/l, (],((kt, Clt) — exp(km_]_ 5)

Cir1 period ++1 marginal product of capital
— ,Bul<f(kt+l, pa; + th+1) — exp(kt+2)> fK(kt+1, pa; + th+1) ] = 0.

k:, a; ~given numbers
* Here, g1 ~random variable
time ¢ choice variable, k.1

e Parameter, o , indexes a set of models, with
the model of interest corresponding to

o=1



Solution
e A policy rule,

ki1 = gk, ay4,0).
e With the property:

R(k; a,,0,2) = Et{u’<],‘(kt,at) — eXIS[g(kt,at,G)j)
. \

kirl a1 B kirl Al ]
_ﬂu, g(kt,at;a),bat+68t+£ _exp g g(khat,a),bat"'agﬁi;g

kt+l Al
XfK(é(kt,at,G),bat + th+£>} = 0,

e forall a; k;, 0.



Projection Methods

e Let
g(khah 61 7)

— be a function with finite parameters (could be either
spectral or finite element, as before).

 Choose parameters,y, to make

R(kl"ahg;g)

— as close to zero as possible, over a range of values of
the state.

— use weighted residuals or Collocation.



Occasionally Binding Constraints

e Suppose we add the non-negativity constraint on
investment:

exp(g(ks,ar,0)) — (1 —0)exp(k;) >0

e Express problem in Lagrangian form and optimum is
characterized in terms of equality conditions with a
multiplier and with a complementary slackness condition
associated with the constraint.

e Conceptually straightforward to apply preceding method.
For details, see Christiano-Fisher, ‘Algorithms for Solving
Dynamic Models with Occasionally Binding Constraints’,
2000, Journal of Economic Dynamics and Control.

— This paper describes alternative strategies, based on

parameterizing the expectation function, that may be easier,
when constraints are occasionally binding constraints.



Perturbation Approach

e Straightforward application of the perturbation approach, as in the simple
example, requires knowing the value taken on by the policy rule at a point.

e The overwhelming majority of models used in macro do have this
property.

— In these models, can compute non-stochastic steady state without any
knowledge of the policy rule, g.

— Non-stochastic steady state is k*such that

a=0 (nonstochastic steady state in no uncertainty case) o=0 (no uncertainty)
f_/R f_/R

k=gl &, 0 0

1

T ke iy |




Perturbation

* Error function:

R(k: a:,0,2) = Et{u’<}(kt,at) - eX[S[g(kt,at,G)j>

Cr+1

— Pu’ }‘(g(kt, a:,0),pa; +o&n1) —explg(glks, a:,0), pas + o€441, G)j

XfK(g(khat,G);Pat + Ggl‘+1)} — O’

— for all values of &;,a;,o.

e So, all order derivatives of R with respect to its
arguments are zero (assuming they exist!).



Four (Easy to Show) Results About
Perturbations

* Taylor series expansion of policy rule:

linear component of policy rule

g(ks,a;,0) =~ i+ gi(ky— k) + gqa, + goa\

second and higher order terms

A\

N\

N

+5 [gu (ke — k)2 + Gua? + 9560%] + gra(ks — K)a; + gio (ki — K)o + Gusa,o +...

N

- g5 = 0: to a first order approximation, ‘certainty equivalence’

— All terms found by solving linear equations, except coefficient on past
endogenous variable,&k% ,which requires solving for eigenvalues

— To second order approximation: slope terms certainty equivalent —

ko — aoc — 0

— Quadratic, higher order terms computed recursively.



First Order Perturbation

 Working out the following derivatives and
evaluating at &k = k*,a;, =0 =0

Rk(kt,at;G;g) — Ra(kt,aha;g) — RG(khahG;g) — O

‘problematic term’ Source of certainty equivalence

° |mp|ie53 \ In linear approximation

Ri = u"(fi — e2gr) — Pu'frrgi — Pu" (figr — €322 )k =

R, = ””(fa —e8g,) — ﬂu/[kaga + fkap] = /(fkga +fap —e8[grga + gup])fk =0

Ry, = —[u'e® + Bu" (fi — efgi)fx]gs = 0

Absence of arguments in these functions reflects they are evaluated in &k, = k*,a, =0 =10



Technical notes for following slide

u" (fi — e2gi) — Pu'frrg — Pu" (fige — e2gi )k = 0
 Jxn

8k~ (frgr — e5gi)fk = 0
/ka

16—t -
%f K
b ottt L Jerat =0
Folre g Jorai-o

e Simplify this further using:

]gk +esgifx =

Bfx ~steady state equation
fx = aK*texp(a) + (1-96), K = exp(k)
=aexp[(a—Dk+a]+(1-9)
fi = aexplak+a] + (1 —8)exp(k) = fxe?
fxe = ala—1)exp[(a —1)k+ a]
fxx = ala —1)K*?exp(a) = a(a - 1)exp[(a — 2)k + a] = free™®

e to obtain polynomial on next slide.



First Order, cont’d

Rewriting R; = Oterm:

%_[1+ % T Zl//J;flf]gk‘Fgl%:O
1

There are two solutions, 0 < gx <1, g > =

— Theory (see Stokey-Lucas) tells us to pick the smaller
one.

— In general, could be more than one eigenvalue less
than unity: multiple solutions.

Conditional on solution to €+ £« solved for
linearly using R, = 0 equation.

These results all generalize to multidimensional
case




Numerical Example

e Parameters taken from Prescott (1986):

B =0.99 y =2(20), «a = 0.36, § = 0.02, p = 0.95, V., = 0.01°

e Second order approximation:

3.88 0.98 (0.996) 0.06 (0.07) 0
g(ki,as1,€4,0) :? + ’é? (ke — k™) + ’_é? a; +’§? o
0.014 (0.00017) 0.067 (0.079) 0.000024 (0.00068) f_}\
+%[ 2 (k=K + Ga a2+ Zoo o2 ]
~0.035 (~0.028) 0 0

+ Zra (ki —k)a; + gro (ki —k)o+ g4 a:o



* Following is a graph that compares the policy
rules implied by the first and second order
perturbation.

 The graph itself corresponds to the baseline
parameterization, and results are reported in
parentheses for risk aversion equal to 20.



‘If initial capital is 20 percent away from steady state, then capital
choice differs by 0.03 (0.035) percent between the two approximations.’

‘If shock is 6 standard deviations away from its mean, then capital
choice differs by 0.14 (0.18) percent between the two approximations’
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Number in parentheses at top correspondto 7 = 20.



Conclusion

 For modest US-sized fluctuations and for
aggregate quantities, it is reasonable to work
with first order perturbations.

e First order perturbation: linearize (or, log-
linearize) equilibrium conditions around non-
stochastic steady state and solve the resulting
system.

— This approach assumes ‘certainty equivalence’. Ok, as
a first order approximation.



List of endogenous variables determined at t

Solution by Linearization
* (log) Linearized Equilibrium Conditions:

E/oozm1 + a1z, + a2z 1 + Posy1 + P1s:] =0

e Posit Linear Solution:
St%t = 0.
zi = Aziq + Bsy Exogenous shocks

e To satisfy equil conditions, A and B must:

oA’ +a1A+al =0, F=(Bo+aoB)P+[B1+ (aod+0a1)B] =0

e |f there is exactly one A with eigenvalues less
than unity in absolute value, that’s the solution.
Otherwise, multiple solutions.

 Conditional on A, solve linear system for B.





