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Tutorial on Forecasting, Output Gap Estimation, DSGE Model Estimation and the
MCMC Algorithm Using Dynare

1. Clarida-Gali-Gertler Model

Following are the equations of the Clarida-Gali-Gertler model.

πt = βEtπt+1 + κxt (Calvo pricing equation)

xt = − [rt − Etπt+1 − r∗t ] + Etxt+1 (intertemporal equation)

rt = αrt−1 + (1− α) [φππt + φxxt] + ut (policy rule)

r∗t = ρ∆at +
1

1 + ϕ
(1− λ) τ t (natural rate)

y∗t = at −
1

1 + ϕ
τ t (natural output)

xt = yt − y∗t (output gap)

The above equations represent the equilibrium conditions of an economy, linearized about
its steady state. In the economy, household preferences are given by:

E0

∞∑
t=0

(
logCt − exp (τ t)

N1+ϕ
t

1 + ϕ

)
, τ t = λτ t−1 + ετt , ε

τ
t ˜iid,

where Ct denotes consumption, τ t is a time t preference shock and Nt denotes employment.
The budget constraint of the household is:

PtCt +Bt+1 ≤ WtNt +Rt−1Bt + Tt,

where Tt denotes (lump sum) taxes and profits, Pt is the price level, Wt denotes the nominal
wage rate and Bt+1 denotes bonds purchased at time t which deliver a non-state-contingent
rate of return, Rt, in period t+ 1.
Competitive firms produce a homogeneous output good, Yt, using the following technol-

ogy:

Yt =

[∫ 1

0

Y
ε−1
ε

i,t di

] ε
ε−1

, ε > 1,

where Yi,t denotes the ith intermediate good, i ∈ (0, 1) . The competitive firms takes the
price of the final output good, Pt, and the prices of the intermediate goods, Pi,t, as given and
chooses Yt and Yit to maximize profits. This results in the following first order condition:

Yi,t = Yt

(
Pt
Pi,t

)ε
.



The producer of Yit is a monopolist which takes the above equation as its demand curve.
Note that if this demand curve is substituted back into the production function,

Yt =

[∫ 1

0

Y
ε−1
ε

i,t di

] ε
ε−1

= YtP
ε
t

[∫ 1

0

(
P−εi,t

) ε−1
ε di

] ε
ε−1

= YtP
ε
t

[∫ 1

0

P
(1−ε)
i,t di

] ε
ε−1

,

or, after cancelling Yt and rearranging,

P−εt =

[∫ 1

0

P
(1−ε)
i,t di

] ε
ε−1

Pt =

[∫ 1

0

P
(1−ε)
i,t di

] 1
1−ε

.

Thus, we get a simple expression relating the price of the aggregate good back to the indi-
vidual prices.
The ith intermediate good firm uses labor, Ni,t, to produce output using the following

production function:
Yi,t = exp (at)Ni,t, ∆at = ρ∆at−1 + εat ,

where ∆ is the first difference operator and εat is an iid shock. We refer to the time series
representation of at as a ‘unit root’representation. The ith firm sets prices subject to Calvo
frictions. In particular,

Pi,t =

{
P̃t with probability 1− θ

Pi,t−1 with probability θ
,

where P̃t denotes the price chosen by the 1− θ firms that can reoptimize their price at time
t. The ith producer is competitive in labor markets, where it pays Wt (1− ν) for one unit
of labor. Here, ν represents a subsidy which has the effect of eliminating the monopoly
distortion on labor in the steady state. That is, 1− ν = (ε− 1) /ε.
At this point it is interesting to observe that if the household and government satisfy their

budget constraints and markets clear, then the resource constraint is satisfied (Walras’law).
Optimization leads the households to satisfy their budget constraint as a strict equality:

PtCt +Bt+1 = WtNt +Rt−1Bt + Tt

= WtNt +Rt−1Bt +

profits︷ ︸︸ ︷∫ 1

0

Pi,tYi,t − (1− ν)Wt

∫ 1

0

Ni,tdi− T gt ,

where T gt denotes lump sum taxes raised by the government (profits from the final good
firms need not be considered, because they are zero). The government budget constraint is

νWtNt +Bg
t+1 = T gt +Rt−1B

g
t ,

where Bg
t+1 denotes government purchases of bonds (i.e., ‘lending’, if positive and ‘borrowing’

if negative). Note that, clearing in the labor market implies∫ 1

0

Ni,tdi = Nt.
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By the fact that final good firms make zero profits,∫ 1

0

Pi,tYi,t = PtYt.

Substituting the government budget constraint and the expressions for profits (using labor
market clearing) back into the budget constraint:

PtCt +Bt+1 = WtNt +Rt−1Bt + Tt

= WtNt +Rt−1Bt + PtYt − (1− ν)WtNt −

=T gt︷ ︸︸ ︷[
−Rt−1B

g
t + νWtNt +Bg

t+1

]
= WtNt +Rt−1Bt + PtYt − (1− ν)WtNt +Rt−1B

g
t − νWtNt −Bg

t+1

= Rt−1Bt + PtYt +Rt−1B
g
t −Bg

t+1

or,
PtCt +

(
Bt+1 +Bg

t+1

)
= Rt−1 (Bt +Bg

t ) + PtYt.

But, clearing in the bond market requires

Bt+1 +Bg
t+1 = 0 for all t.

So,
Ct = Yt,

and the resource constraint is satisfied. Incidentally, in this model with lump sum taxes,
the equilibrium allocations are independent of the time pattern of government debt. So, for
convenience, we just set Bg

t = 0 and so market clearing requires Bt = 0. Of course, we could
have Bt not equal to zero, so that there is positive volume in the debt market. However, this
would not be an interesting theory of why there is debt and so we don’t do this.
The Ramsey equilibrium for the model is the equilibrium associated with the optimal

monetary policy. It can be shown that the Ramsey equilibrium is characterized by zero
inflation, πt = 0, at each date and for each realization of at and τ t and that consumption
and employment in the Ramsey equilibrium corresponds to their first best levels.1 That is,
Ct and Nt satisfy the resource constraint

Ct = exp (at)Nt,

and the condition that the marginal rate of substitution between consumption and labor
equals the marginal product of labor

marginal utility of leisure
marginal utility of consumption

= Ct exp (τ t)N
ϕ
t = exp (at) .

Solving for Nt :

log (N∗t ) = − τ t
1 + ϕ

, log (C∗t ) = at −
τ t

1 + ϕ
,

1For a discussion, see http://faculty.wcas.northwestern.edu/~lchrist/course/optimalpolicyhandout.pdf
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where ∗ indicates that the variable corresponds to the Ramsey equilibrium. In the descrip-
tion of the model above, yt denotes log output and y∗t denotes log output in the Ramsey
equilibrium, i.e., log (C∗t ) . The gross interest rate in the Ramsey equilibrium, R∗t , satisfies
the intertemporal household first order condition,

1 = βEt
u∗c,t+1
u∗c,t

R∗t
1 + π∗t+1

,

where u∗c,t indicates the marginal utility of consumption in the Ramsey equilibrium. Also,
π∗t = 0. With our utility function:

1 = βEt
C∗t
C∗t+1

R∗t = βEt
R∗t

exp
[
∆at+1 − τ t+1−τ t

1+ϕ

] = βEt exp

[
log (R∗t )−∆at+1 +

τ t+1 − τ t
1 + ϕ

]
,

Approximately, one can ‘push’the expectation operator into the power of the exponential.
Doing so and taking the log of both sides, one obtains:

0 = log β + log (R∗t )− Et∆at+1 + Et
τ t+1 − τ t

1 + ϕ
,

or,

r∗t = Et∆at+1 − Et
τ t+1 − τ t

1 + ϕ
,

where r∗t ≡ log (R∗tβ) , the log deviation of R∗t from its value in the non-stochastic steady
state. The variable, r∗t , corresponds to the ‘natural rate of interest’and y

∗
t corresponds to

the ‘natural rate of output’.
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2. Computer Exercises

You will need the Dynare files, cggsim.mod and cggest.mod, as well as the MATLAB m
files, plots.m, analyzegap.m, suptitle.m and HPFAST.m, to do this assignment (you can see
answers in cggsimans.mod and cggestans.mod).
The HP filter is defined as follows:

min
{yTt }t=1

T∑
t=1

(
yt − yTt

)2
+ λ

T−1∑
t=2

[(
yTt+1 − yTt

)
−
(
yTt − yTt−1

)]2
The parameter, λ, controls how ‘smooth’ yTt is. If λ = 0, then yt = yTt . If λ = ∞,
then yTt is a time trend (i.e., a line whose second derivative is zero). In business cy-
cle analysis, it is customary to use λ = 1600 in studying quarterly. The MATLAB m-
file, [y_hp,y_hptrend]=HPFAST(y,lambda) takes y as input and puts out y_hp=yt − yTt ,
y_hptrend=yTt .
This assignment explores four things: (i) the estimation of the output gap using the HP

filter and a model (ii) estimation, by Bayesian and maximum likelihood methods, of a model,
and (iii) the MCMC algorithm as a device for approximating a posterior distribution (iv)
basic economic properties of the model.

1. Before turning to the econometric part of the assignment, it is useful to study the
economics of the CGG model, by seeing how the CGG economy responds to a shock.
Consider the following parameterization:

β = 0.97, φx = 0, φπ = 1.5, α = 0, ρ = 0.2, λ = 0.5, δ = 0.2,

ϕ = 1, θ = 0.75, σa = στ = 0.02, σu = 0.

1. In the case of the technology and preference shocks, use Dynare to compute the
impulse response functions of the variables to each shock. The m file, plots.m,
can be used for this purpose.

1. Consider the response of the economy to a technology shock and a preference
shock. In each case, indicate whether the economy over- or under- responds
to the shock, relative to their ‘natural’ responses. What is the economic
intuition in each case?

2. Replace the time series representation of at with

at = ρat−1 + εat .

How does the response of the economy to εat with this representation compare
to the response to εat with the unit root representation?

2. Do the calculations with φπ = 0.99. What sort of message does Dynare generate,
and can you provide the economic intuition for it? (In this case, there is ‘indeter-
minacy’, which means a type of multiplicity of equilibria...this happens whenever
φπ < 1.) Provide intuition for this result.
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3. Return to the parameterization, φπ = 1.5. Now, insert rt into the Cavlo pricing
equation. Redo the calculations and note how Dynare reports indeterminacy
again. Provide economic intuition for your result.

4. Explain why it is that when the monetary policy rule is replaced by the rt = r∗t ,
the natural equilibrium (i.e., Ramsey) is a solution to the equilibrium conditions.
Explain why the natural equilibrium is not the only solution to the equilibrium
conditions (i.e., the indicated policy rule does not support the natural equilibrium
uniquely). Verify this result computationally in Dynare.

5. Now replace the monetary policy rule with

rt = r∗t + α
(
rt−1 − r∗t−1

)
+ (1− α) [φππt + φxxt] .

Explain why the natural equilibrium is a solution to the equilibrium conditions
with this policy. Verify computationally that this policy rule uniquely supports
the natural equilibrium (in the sense of satisfying determinacy), as long as φπ is
large enough. Provide intuition. Conclude that the Taylor rule uniquely supports
the natural equilibrium if the natural rate of interest is included in the rule.

6. Consider the following alternative representation for the technology shock:

at = ρat−1 + ξ0t + ξ1t−1,

where both shocks are iid, so that the sum is iid too. Here, we assume agents see
ξ0t at time t and they see ξ

1
t−1 at t − 1. Thus, agents have advance information

(or, ‘news’) about the future realization of a shock. Introduce this change into
the code and set ρ = 0.2. Verify that when there is a shock to ξ1t , inflation
falls contemporaneously and the output gap jumps. Provide intuition for this
apparently contradictory result. What happens when the natural rate of interest
is introduced in the policy rule?

2. We now explore the MCMC algorithm and the Laplace approximation in a simple
example. Technical details about both these objects are discussed in lecture notes.2

One practical consideration not mentioned in the notes is relevant for the case in which
the pdf of interest is of a non-negative random variable. Since the jump distribution
is Normal, a negative candidate, x, is possible (see the notes for a detailed discussion
of x and the ‘jump distribution’). As a result, we should assign a zero value to the
density of a Weibull over negative random variables when implementing the MCMC
algorithm.

Hopefully, it is apparent that the MCMC algorithm is quite simple, and can be pro-
grammed by anyone with a relatively small exposure to MATLAB. A useful exercise
to understand how the algorithm works, is to use it to see how well it approximates
a simple known function. Thus, consider the Weibull probability distribution function
(pdf),

ba−bθb−1e−( θa)
b

, θ ≥ 0,

2See http://faculty.wcas.northwestern.edu/~lchrist/course/Gerzensee_2013/estimationhandout.pdf
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where a, b are parameters. (For an explanation of this pdf, see the MATLAB doc-
umentation for wblpdf(θ, a, b).) Consider a = 10, b = 20. Graph this pdf over the
grid, [7, 11.5] , with intervals 0.001 (i.e., graph g on the vertical axis, where g =
wblpdf(x, 10, 20), and x on the horizontal axis, where x = 7 : .001 : 11.5). Com-
pute the mode of this pdf by finding the element in your grid with the highest value
of g. Let f denote the log of the Weibull density function and compute the second
derivative of f at the mode point numerically, using the formula,

f ′′ (x) =
f (x+ 2ε)− 2f (x) + f (x− 2ε)

4ε2
,

for ε small (for example, you could set ε = 0.000001.) Here, x denotes θ∗ and f denotes
the log of the output of the MATLAB function, wblpdf. Set V = −f ′′ (θ∗)−1 .3

SetM = 1, 000 (a very small number!) and try k = 2, 4, 6.Which implies an acceptance
rate closer to the recommended value of around 0.23? Choose the value of k that gets
closest to that acceptance rate and note that the MCMC estimate of the distribution
is quite volatile. Change M to 10,000. If you have time (now, the simulations takes
time) try M = 100, 000. Note how the MCMC estimate of the distribution is starting
to smooth out. When I set M = 100, 000 and k = 4, I obtained (see the MATLAB
code MCMC.m, with the parameter iw set to unity) the following result:

7 7.5 8 8.5 9 9.5 10 10.5 11 11.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Weibull distribution, mode = 9.974, a = 10, b = 20, number of MCMC simulations = 99000
Weibull
Laplace approximation
MCMC, k = 4, % acceptance = 27.866

3The strategy for computing the mode of the Weibull and f ′′ in the text are meant to resemble what is
done in practice, when the form of the density function is unknown. In the case of the Weibull, these objects
are straightforward to compute analytically. In particular,

f ′ (θ) =
b− 1
θ
− b

(
θ

a

)b−1
1

a
, f ′′ (θ) = −b− 1

θ2
− (b− 1) b

(
θ

a

)b−2
1

a2
.

and the mode of f is θ∗ = ((b− 1) /b)1/b a.
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Note how well the MCMC approximation works. The Laplace approximation assigns
too much density near the mode, and lacks the skewness of the Weibull. Still, for
practical purposes the Laplace may be workable, at least as a first approximation in
the initial stages of a research project. This could be verified in the early stages of the
project by doing a run using the MCMC algorithm and comparing the results with
those of the Laplace approximation. In practice, posterior distributions may not be as
skewed as the Weibull is.

We subject the MCMC algorithm to a much tougher test if we posit that the true
distribution is bimodal, as in the case of a mixture of two Normals. Suppose the ith

Normal has mean and variance, µi and σ
2
i , respectively, i = 1, 2. Suppose also that the

i = 1 Normal is selected with probability, π, and the i = 2 normal is selected with
probability 1− π. In addition, suppose

µ1 = −0.06, µ2 = 0.06, σ1 = 0.02, σ2 = 0.01, π = 1/2.

The mode of this distribution is the mode of the Normal with i = 2. If we apply exactly
the same MCMC algorithm applied above, with M = 100, 000 and k = 15, we obtain
the following result:
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mixture of normals, mu1 = 0.06, mu2 = 0.06, sig1 = 0.02, sig2 = 0.01, mix = 0.5
number of MCMC simulations = 99000

Mixture of Normals
Laplace approximation
MCMC, k = 15, % acceptance = 20.233

These results (produced by running MCMC.m with iw set to zero) are comparable
in accuracy to what was reported for the Weibull distribution. Taken together these
sets of results suggest that the MCMC algorithm is quite good. It is not surprising
that the Laplace approximation does poorly in this second example. It does a Normal
approximation around the mode on the right. Because it ‘thinks’that all the density
is around that right mode and that density must integrate to unity, it follows that the
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Laplace approximation must rise up much higher than the right mode. To verify that
the MCMC distribution in fact is converging to the right answer, the MCMC was run
a second time with M = 10, 000, 000. The results are displayed in the following figure.
Note that it is almost impossible to distinguish between the actual and the MCMC-
generated distributions, so that the MCMC algorithm has roughly converged to the
right answer. It is hard to say whether this bimodal example is empirically realistic.
These kind of posterior distributions have not been reported in the literature. Of
course, this may simply be that the MCMC has failed to find them even though they
do exist.4
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mixture of normals, mu1 = 0.06, mu2 = 0.06, sig1 = 0.02, sig2 = 0.01, mix = 0.5
number of MCMC simulations = 9999000

Mixture of Normals
Laplace approximation
MCMC, k = 15, % acceptance = 20.309

3. From here on, consider the following alternative parameterization, which is more ap-
pealing than the one in question 1 from an empirical point of view:

β = 0.97, φx = 0.15, φπ = 1.5, α = 0.8, ρ = 0.9, λ = 0.5, δ = 0.2,

ϕ = 1, θ = 0.75, σa = στ = 0.02, σu = 0.

Generate T = 200 artificial observations on the ‘endogenous’(in the sense of Dynare)
variables of the model. These are the variables in the ‘var’list. The mod file provided,
cggsim.mod, has 7 variables. Before doing the simulation, you should add the growth
rate of output to the equations of the model and to the var list (call it ‘dy’.) That way,

4An early paper by Thomas Sargent suggests that bimodality may be generic in dynamic macroeconomic
models. He displays an example in which a parameterization in which persistence reflects the effects of
endogenous mechanisms is hard to distinguish econometrically from a parameterization in which persistence
reflects the persistence of shocks. See, Sagent, 1978, "Estimation of Dynamic Labor Demand Schedules
under Rational Expectations," Journal of Political Economy, Vol. 86, No. 6, Dec., pp. 1009-1044.
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Dynare will also simulate output growth. The variables simulated by Dynare are placed
in the n× T matrix, oo_.endo_simul.5 The n rows of oo_.endo_simul correspond to
the n = 8 variables in var, listed in the order in which you have listed them in the
var statement from the first to the last row. To verify the order that Dynare puts the
variables in, see how they are ordered in M_.endo_names in the Dynare-created file,
cggsim.m.

Retrieve output growth from oo_.endo_simul and get the log level of output, y, using
y =cumsum(dysim), where dysim is the name I arbitrarily assigned to the row of
oo_.endo_simul corresponding to output growth. Also, retrieve x from the appropriate
row of oo_.endo_simul and create natural output from the relation, y∗ = y − x.

1. Compute the HP filter of y with λ = 1 and display a graph with y and yT . Do
this also for λ = 1600 and for λ =160,000,000. Do the results accord with what
you would expect, given the formula for the HP filter above?

2. Graph the HP filter trend, yT , (λ = 1600) along with y and y∗. Note how actual
output is somewhat more volatile than potential or natural output (recall, the
economy overreacts to technology shocks). As a result, the HP filter with λ =
1600 over smooths the data. Graph yt − yTt and the true output gap, xt, as
well as y, yT and y∗. Compute the correlation between yt − yTt and xt. Also
compute the correlation for the case where technology shocks are dominant (i.e.,
σa = 2, στ = 0.02) and for the case where preference shocks are dominant (i.e.,
σa = 0.02, στ = 2). Interpret the results. The MATLAB command for computing
the correlation between two variables, wt and ut, is corrcoef(w,u). The result of
this calculation is a 2 × 2 matrix with unity on the diagonal and the correlation
on the off-diagonal.

The model of this question lies close to the heart of the main paradigm underlying the
current view about the monetary transmission mechanism. Note that in the case of
this model, the hp-filter is not terrible as a guide to the output gap. This is because the
technology shock is the important shock in the dynamics of the data, and the actual
data overreact to the technology shock. That is, the natural rate of output is a smooth
version of the data. Of course, this is only an example, and is something worth pursuing
more carefully using a DSGE model that has more solid empirical foundations.

4. Now we will do some estimation. First, we generate artificial data from the baseline
parameterization of the model. Place the simulated data, oo_.endo_simul, in the
matrix, sim. Then, save these data to a MATLAB file, data, using the instruction,
save data sim. Also, set periods = 5000 in the stoch_simul command. Run the mod
file using Dynare. This saves the simulated data. Second, open cggest.mod.

1. First, do maximum likelihood estimation. Use 4,000 observations to verify that
everything is working properly. Consistency of maximum likelihood implies that
with this many observations, the probability that the estimates are far from the

5Here, endo_simul is the matrix, which is a ‘field’in the structure, oo_.
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true parameter values is low. Try doing the estimation when you start far from
the true parameter value, say with rho=lambda=0.9. Despite the bad initial guess
about the parameter values, you should end up roughly at the true values.

2. Redo (a), but now with 30 observations, and you should see that maximum like-
lihood still works well. Note that although the point estimates look quite good,
the standard error on lambda is rather large.

5. Now do Bayesian estimation, using the inverted gamma distribution as the prior on
the two standard deviations and the beta distribution as the prior on the two autocor-
relations.

1. Set the mean of the priors over the parameters to the corresponding true values.
Set the standard deviation of the inverted gamma to 10 and of the beta to 0.04.
(It’s hard to interpret these standard deviations directly, but you will see graphs of
the priors, which are easier to interpret.) Use 30 observations in the estimation.
Adjust the value of k, so that you get a reasonable acceptance rate. I found
that k = 1.2 works well. Have a look at the posteriors, and notice how, with
one exception, they are much tighter than the priors. The exception is lambda,
where the posterior and prior are very similar. This is evidence that there is little
information in the data about lambda.

2. Redo (a), but set the mean and standard deviation of the prior on lambda equal
to 0.95 and 0.04, respectively. Note how the prior and posterior are again very
similar. There is not much information in the data about the value of lambda!

3. Note how the priors on σa and ρ have faint ‘shoulders’on the right side. Redo
(a), with M = 4, 000 (M is mh_replic, which controls the number of MCMC
replications). Note that the posteriors are now smoother. Actually, M = 4, 000
is a small number of replications to use in practice.

4. Now set the mean of the priors on the standard deviations to 0.1, far from the
truth. Set the prior standard deviation on the inverted gamma distributions to
1. Keep the observations at 30, and see how the posteriors compare with the
priors. (Reset M = 1, 000 so that the computations go quickly.) Note that the
posteriors move sharply back into the neighborhood of 0.02. Evidently, there is a
lot of information in the data about these parameters.

5. Repeat (a) with 4,000 observations. Compare the priors and posteriors. Note
how, with one exception, the posteriors are ‘spikes’. The exception, of course, is
lambda. Still, the difference between the prior and posterior in this case indicates
there is information in the data about lambda.

6. It is of interest to compare the posterior densities approximated by the MCMC algo-
rithm with the Laplace approximation. Consider the setup in 5 (a). You can recover
all the information you need for these calculations from the structure, oo_. The pos-
terior distributions of the parameters and shock standard errors are in the structure
oo_.posterior_density. Posterior modes are in oo_.posterior_mode. Posterior stan-
dard deviations (taken from the relevant diagonal parts of the inverse of the hessian
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of the log criterion) appear in oo_.posterior_variance (my code for recovering these
objects is compareMCMCLaplace.m. Setting M = 10, 000, I found
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When I set M = 100, 000, the MCMC posteriors became smoother:
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Note how much more similar the MCMC and Laplace posteriors are. The tail areas of
the MCMC posteriors have thinned out and now resemble more closely the Laplace.
Next, I set M = 1, 000, 000 and obtained virtually the same result as with M =
100, 000 :
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Thus, in this example it seems that the MCMC algorithm has roughly converged
for M = 100, 000. In addition the Laplace and MCMC approximations deliver very
similar results, consistent with the conclusion that the Laplace approach can used at
the start and middle of a research project, while the MCMC can be done later on.
Note that in any particular project, you can ‘test’this proposition doing comparison
of the posterior distribution obtained by the Laplace approximation with the posterior
distribution obtained by MCMC.

7. The output gap is not in the dataset used in the econometric estimation. However, it
is possible to use the Kalman filter to estimate the output gap (actually, all the vari-
ables in the var and varexo commands in Dynare) from the available data. There are
two ways to do this: ‘smoothing’uses all observations on the variables in the dataset
(i.e., all the variables in the varobs command) and ‘filtering’only uses the part of the
dataset prior to the date for which the estimate of the gap is formed (thus, filtered data
are one-step-ahead forecasts). To activate the Kalman smoother in Dynare, include
the argument, smoother, in the estimation argument list. The smoothed estimates will
then be placed in a MATLAB structure oo_.SmoothedVariables. This structure can
be accessed either directly from the command line. Alternatively (at least, in MAT-
LAB R2013a) it can be accessed from the ‘Home’tab in MATLAB. In the ‘variable’
portion of that tab, press the drop down arrow next to ‘Open Variable’. Then, you
will see all the variables in the MATLAB memory. Select oo_ and you will see the
contents of that structure. Some of the objects in that structure are simply numbers
(they are indicated by cube with four boxes inside) and some of the objects in the
structure are themselves structures. Select ‘SmoothedVariables’ and you will see a
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number of subcategories with output related to the Bayesian estimation (for exam-
ple, oo_.SmoothedVariables.Median.x displays the median smoothed estimate of the
output gap, x). To see how well the Dynare-estimated version of the model does at
producing a good guess of the output gap, include the code, analyzegap.m, at the
end of your mod file. This shows you how to recover the smoothed output gap from
Dynare, and allows you to compare it with the actual output gap, as well as with the
hp-filtered estimate of the output gap.

8. Dynare also reports confidence intervals for the smoothed variables (e.g., oo_.SmoothedVariables.HPDinf.x
contains the lower bound of the 95 percent confidence interval for x, in case you set
conf_sig =0.95 in the Dynare estimation command). These reflect parameter uncer-
tainty, as well as the diffi culty of recovering these variables from the observed data
when they are not in the data set. If you run analyzegap.m down to line 42, you
will see what this confidence interval looks like, by comparison with the actual gap.
Note that occasionally, the actual gap lies outside the confidence interval, as is to be
expected.

9. The analysis in the previous question suggests that the output gap can be estimated
reliably using the estimated DSGE model. However, in practice one needs the output
gap in real time. For this, the smoothed estimates of the output gap are not a reliable
indicator. Instead, it is useful to look at the filtered estimates. These are found by run-
ning analyzegap.m to line 57, and the filtered data are found in oo_.FilteredVariables.
Note that there is a systematic phase shift between the estimated and actual gaps. This
is as expected. Turning points are hard to ‘see’ in real time. They become evident
only after the fact. (Dynare also reports ‘updated’variables in oo_.UpdatedVariables.
These are forecasts of the variables in the var command based on current and past
observations on the variables in the varobs command. Not surprisingly, the updated
‘estimates’of variables that to be in the econometrician’s data set (i.e., appear in the
varobs command) coincide with their true values. This is obviously not so for filtered
variables.

10. It is interesting to see how the HP filter works in real time. By running analyze.m
down to line 76 one obtains an estimate of this. Note that the HP filter does not
exhibit the same phase shift as the filtered data. This is because for date t I have
computed the HP filter using data up to and including date t. Also graphed are the
updated variables, described above. These also do not display a phase shift relative to
the data because these estimates of the date t gap include information at date t and
earlier in the econometrician’s dataset.

11. Dynare will also do forecasting. For this, one includes the argument, forecast=xx,
where xx indicates how many periods in the future you want to forecast. (Put in
xx=12.) To obtain the forecasts, as well as forecast uncertainty, execute the rest of
analyzegap.m. You can see from the analyzegap.m code where in oo_.PointForecast
the forecasts as well as the forecast uncertainty is stored.
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