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Model Solution

• Model solution: a procedure for computing the response of the
N× 1 vector of endogenous variables, zt, of a model to a
sequence of values of (potentially stochastic) exogenous
variables, yt.

• Model is summarized by a set of equilibrium conditions:

Etv (zt−1, zt, zt+1, yt, yt+1) = 0, t ≥ 1.

and a specification of a stochastic process (possibly
deterministic) for the exogenous shocks.



Standard Model Solution Method: Policy
Rule

• Standard strategies to model solution -
— policy rule approach:

• find zt = g
(

zt−1, yt
)
such that

Etv
(

zt−1, g
(

zt−1, yt
)

, g
(

g
(

zt−1, yt
)

, yt+1
)

, yt, yt+1
)
= 0, t ≥ 1.

— methods for finding policy rule
• perturbation (with pruning) and projection.

— Given a realization, y1, y2, ..., yT, compute a sequence,
z1, ..., zT :

z1 = g (z0, y1)

z2 = g (z1, y2)

...



Problems with Standard Method
• Has diffi culties with certain exotic situations that have become
of interest recently.

• Example: forward guidance monetary policy (‘Evans rule’)
— keep interest rate at zero until either the unemployment rate
hits 6.5 percent or the inflation rate rises to 2.5 percent.

— as soon as one of these thresholds is achieved, revert to Taylor
rule:

Rt = max
{

1, ρRt−1 + (1− ρ)
[
φππt + φyyt

]}
— problem: equilibrium conditions, v, now include ‘if, then’
statements and max operator. Rules out perturbation (not
differentiable) and makes projection diffi cult (though not
impossible..see Christiano-Fisher, JEDC, 2001).

— see Christiano, Eichenbaum and Trabandt, “Understanding the
Great Recession,” (forthcoming, AEJ-M) for application of
extended path.



Extended Path Model Solution Method
• The extended path method can be used for deterministic
simulations and for stochastic simulations.
— A simple stochastic version of the simulation procedure
imposes the following condition wherever the expectation
operator appears:

Ef (x) = f (Ex) .

— We apply this (certainty equivalence) condition, even though it
is at best only approximately correct in the non-linear
equilibrium conditions that we consider.

• The extended path method was originally proposed in Fair and
Taylor, 1983, “Solution and Maximum Likelihood Estimation of
Dynamic Nonlinear Rational Expectations Models,”
Econometrica, vol. 51, no. 4, July, pp. 1169-1185.

• Recent work towards dropping the certainty equivalence
assumption is described in Stephane Adjemian and Michel
Juillard, “Stochastic Extended Path Approach”(it is not
discussed here).



Extended Path: Deterministic Case

• Suppose we have a sequence of values for the exogenous
variables, y1, y2, ...., yT, with limj→∞ yT+j = y

• Compute z, nonstochastic steady state value of zt:

v (z, z, z, y, y) = 0.



Extended Path: Deterministic Case, cnt’d

• For given z0, solve for z1, ..., zT∗−1 in the following system of
T∗ − 1 equations:

v (z0, z1, z2, y1, y2) = 0
v (z1, z2, z3, y2, y3) = 0

...

v (zT∗−3, zT∗−2, zT∗−1, yT∗−2, yT∗−1) = 0
v (zT∗−2, zT∗−1, z, yT∗−1, y) = 0.

• Note: if T∗ is too small, then it won’t be possible to drive all
these equations to zero. In that case, increase T∗. But, don’t
make T∗ unecessarily large!



Extended Path: Deterministic Case, cnt’d

• To solve the problem, consider

V (γ) =

 v (z0, z1, z2, y1, y2)
...

v (zT∗−2, zT∗−1, z, yT∗−1, y)

 ,

where

γ =

 z1
...

zT∗−1

 ,

and z0, z, and the y’s are taken as given. We seek γ∗ such that
V (γ∗) = 0.



Extended Path: Deterministic Case, cnt’d
• Gradient method for finding γ∗:

— Compute a sequence, γ1, γ2, ... that (hopefully!) converges to
γ∗ starting from an initial guess, γ0.

— Suppose γ0, ..., γr−1 are given and we wish to approximate γr.
Let

V (γ) ' V̂r (γ) = V (γr−1) +V′ (γr−1) (γ− γr−1) ,

where

V′ (γr−1) =
dV (γr−1)

dγ′r−1
,

so that V′ is a square, T∗ − 1× T∗ − 1, matrix with a
block-Toeplitz pattern, mostly zeros.

— The value of γr is the value of γ such that V̂ = 0.,That is

γ = γr−1 −
[
V′ (γr−1)

]−1 V (γr−1)

to zero.



Extended Path: Stochastic Case

• Compute a stochastic realization, y1, ..., yT, from a time series
representation for {yt} .

• This time series representation can be virtually anything.
— A linear time series model:

yt = P0 + P1yt−1 + εt,

— A mixture of stochastic and deterministic terms.
— A model with regime switching in response to exogenous
shocks or to the values of endogenous variables.

— Need only to know how to compute E
[
yt+j|Ωt

]
, j ≥ 1, where

Ωt = {z0, z1, ..., zt−1, y1, ..., yt} .



Extended Path: Stochastic Case, cnt’d

• Objective:
— Given realization, y1, ..., yT, compute a sequence, z1, ..., zT, that
satisfies equilibrium conditions.

— For each t, want zt to be a function of Ωt only.

• At each date, t, agents observe Ωt and they compute forecasts

yt
t+j ≡ E

[
yt+j|Ωt

]
, limj→∞yt

t+j = y, yt
T∗ ' y.

• Agents proceed as though they have certainty equivalence,
acting as though they believe forecasts are certain to occur.

• In this respect, extended path resembles first order
perturbation, but extended path otherwise works with the exact
non-linear equations.



Stochastic Extended Path: Date 1
• Need to find z1 as a function of Ω1
• Equilibrium Conditions

E1v (z0, z1, z2, y1, y2)

certainty equivalence︷︸︸︷
≈ v

(
z0, z1, z1

2, y1, y1
2

)
,

where
zt

t+j ≡ Etzt+j

• To compute z1, require z1
2 which satisfies

E1v (z1, z2, z3, y2, y3)

certainty equivalence, again︷︸︸︷
≈ v

(
z1, z1

2, z1
3, y1

2, y1
3

)
.

• Similarly, z1 requires solving for zt
1+j for j > 1 :

E1v
(
z1+j−1, z1+j, z1+j+1, y1+j, y1+j+1

)
≈ v

(
z1

1+j−1, z1
1+j, z1

1+j+1, y1
1+j, y1

1+j+1

)
.



Stochastic Extended Path: Date 1
• We have,

lim
t→∞

z1
t = z.

— Select the smallest T∗ > T such that z1
T∗ ' z.

• Solve for z1 by solving for z1, z1
2, z1

3, ..., z1
T∗−1 in

v
(

z0, z1, z1
2, y1, y1

2

)
= 0

v
(

z1, z1
2, z1

3, y1
2, y1

3

)
= 0

...

v
(

z1
T∗−3, z1

T∗−2, z1
T∗−1, y1

T∗−2, y1
T∗−1

)
= 0

v
(

z1
T∗−2, z1

T∗−1, z, y1
T∗−1, y

)
= 0.

• Same as deterministic problem!



Stochastic Extended Path: Date > 1

• Given Ωt = {z0, z1, ..., zt−1, y1, ..., yt} , find the value of zt that
solves the following T∗ − 1 equations for

zt, zt
t+1, ..., zt

T∗ ,

imposing zt
T∗ = z :

v
(
zt−1, zt, zt

t+1, yt, yt
t+1
)
= 0

...

v
(
zt

T∗−2, zt
T∗−1, z, yt

T∗−1, y
)
= 0.

• Do this for z1, z2, ..., zT.



Application to Zero Lower Bound Situation
• NK model with competitive labor markets and without capital.

— Monetary policy:

Rt = max
{

1,
1
β
(π̄t)

1.5
}

.

• Eggertsson-Woodford (2003) scenario: economy is in
nonstochastic steady state up to and including date 0.
— In date 1 agents’discount rate unexpectedly falls to rl < r,
where r is normal value:

β =
1

1+ r
= 0.99,

r = 0.0101, rl = −0.01.

— With constant probability, p = 0.8, the discount rate remains
at rl and with probability 1− p it jumps back up to r, which is
its absorbing state.

— ZLB on interest rate remains binding while rt = rl.



Widespread View About Properties of E-W
Model in ZLB

• Expansionary Regress Hypothesis:
— "Technological regress produces economic expansion if it
occurs while ZLB binds."

— Interpretation: model implies that a natural (or, other) disaster
leads to expansion.

— It has been argued that this supposed implication of E-W
framework is so ridiculous that the whole framework and its
implications should be rejected.

• Stakes high:
— E-W analysis is basis for forward guidance monetary policy and
conventional aggregate demand view for current poor US
economic performance.



Expansionary Regress Hypothesis

• Basic idea:
— A bad technology shock raises marginal cost and, other things
the same, inflation.

— With ZLB suffi ciently binding, nominal rate will not rise, so
real rate must fall.

— Consumption and output are stimulated (‘substitution effect’).

• Problem
— Response of consumption to technology shock also depends on
wealth effect.

— If the technology shock is suffi ciently persistent, then wealth
effect dominates substitution effect.

— Does not have to be hugely persistent.



Model of Fall Into ZLB
• Standard Simple New Keynesian model.

— Equilibrium conditions correspond to six pse conditions, plus

Rt = max
{

1,
1
β
(π̄t)

1.5
}

,

where Rt is the gross nominal rate of interest and π̄t is the net
inflation rate.

• Adopt Eggertsson-Woodford scenario.
— Economy is in steady state and in date 1 agents’discount rate
unexpectedly is low, falling from r (its normal value) to rl < r.

— Here,

β =
1

1+ r
= 0.99,

r = 0.0101, rl = −0.02/4.

— With constant probability, p = 0.8, the discount rate remains
at rl and with probability 1− p it jumps back up to r, which is
an absorbing state.



Private Sector Equilibrium Conditions

Kt =
ε

ε− 1

[
(1− ν)

Nϕ
t Ct

eat

]
+

1
1+ rt

θEtπ̄
ε
t+1Kt+1,

Ft = 1+
1

1+ rt
θEtπ̄

ε−1
t+1Ft+1,

Kt

Ft
=

[
1− θπ̄ε−1

t
1− θ

] 1
1−ε

,

p∗t =

(1− θ)

(
1− θπ̄

(ε−1)
t

1− θ

) ε
ε−1

+ θ
π̄ε

t
p∗t−1

−1

,

1
Ct

=
1

1+ rt
Et

1
Ct+1

Rt

π̄t+1
, Ct = p∗t eatNt.

• r1 = rl, P
[
rt+1 = rl|rt = rl] = p, P

[
rt+1 = rh|rt = rh] = 1.



Parameter Values and Experiment

• Parameter values:

θ = 0.75, ε = 6, 1− ν =
ε− 1

ε
, ϕ = 1.

and

r =
1
β
− 1 = 0.01, rl = −0.01

• Technology shock

at = ρ1at−1 + ρ2at−2 + υt

• Experiment:
— rt = rl for t = 1, ..., 16, rt = r for t > 16, T∗ = 116
— Consider υ1 = −0.10, υt = 0 for t > 1. Compute the solution.
— Consider υt = 0 for t ≥ 0. Compute the solution.



Findings

• Figures:
— Figure 1: ρ1 = 0.95, ρ2 = 0 (‘baseline’),
— Figure 2: ρ1 = 0.5, ρ2 = 0 (‘transitory’),
— Figure 3: ρ1 = 0.95, ρ2 = 0.2 (‘persistent’).

• When technology shock is persistent, output and employment
drop in response to negative technology shock.

— Drop is proportionally smaller in the ZLB than out of ZLB.
— Required persistence in line with degree of persistence
commonly assumed in RBC literature, and with findings in
empirical literature more generally.

• When technology shock lacks persistence then ‘Expansionary
Regress’is true.
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Figure 1: ZLB Episode With and Without Negative Technology Shock, AR(1) coefficient on technology, 0.95
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Figure 2: ZLB Episode With and Without Negative Technology Shock, AR(1) coefficient on technology, 0.50

5 10 15 20 25 30 35 40
−10

−8

−6

−4

−2

pe
rc

en
t

technology shock



0 10 20 30 40
0.85

0.9

0.95

1

1.05
Consumption : C

 

with technology

without technology

5 10 15 20 25 30 35 40

0.96

0.97

0.98

0.99

1

Inflation : π

5 10 15 20 25 30 35 40

1

1.005

1.01

1.015

Interest rate : R

Figure 3: ZLB Episode With and Without Negative Technology Shock
AR(2) roots, 0.95 and 0.2
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