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Outline

• State space-observer form.
— convenient for model estimation and many other things.

• Bayesian inference
— Bayes’rule.
— Monte Carlo integation.
— MCMC algorithm.
— Laplace approximation



State Space/Observer Form
• Compact summary of the model, and of the mapping between
the model and data used in the analysis.

• Typically, data are available in log form. So, the following is
useful:
— If x is steady state of xt :

x̂t ≡ xt − x
x

,

=⇒ xt

x
= 1+ x̂t

=⇒ log
(xt

x

)
= log (1+ x̂t) ≈ x̂t

• Suppose we have a model solution in hand:1

zt = Azt−1 + Bst

st = Pst−1 + εt, Eεtε
′
t = D.

1Notation taken from solution lecture notes,
http://faculty.wcas.northwestern.edu/~lchrist/course/
Korea_2012/lecture_on_solving_rev.pdf



State Space/Observer Form
• Suppose we have a model in which the date t endogenous
variables are capital, Kt+1, and labor, Nt:

zt =

(
K̂t+1
N̂t

)
, st = ε̂t, εt = et.

• Data may include variables in zt and/or other variables.
— for example, suppose available data are Nt and GDP, yt and
production function in model is:

yt = εtKα
t N1−α

t ,

so that

ŷt = ε̂t + αK̂t + (1− α)N̂t

= ( 0 1− α ) zt + ( α 0 ) zt−1 + st

• From the properties of ŷt and N̂t :

Ydata
t =

(
log yt
log Nt

)
=

(
log y
log N

)
+

(
ŷt
N̂t

)



State Space/Observer Form
• Model prediction for data:

Ydata
t =

(
log y
log N

)
+

(
ŷt
N̂t

)
=

(
log y
log N

)
+
[ 0 1− α

0 1

]
zt +

[
α 0
0 0

]
zt−1 +

[ 1
0

]
st

= a+Hξt

ξt =

(
zt

zt−1
ε̂t

)
, a =

[
log y
log N

]
, H =

[ 0 1− α α 0 1
0 1 0 0 0

]
• The Observer Equation may include measurement error, wt :

Ydata
t = a+Hξt +wt, Ewtw′t = R.

• Semantics: ξt is the state of the system (do not confuse with
the economic state (Kt, εt)!).



State Space/Observer Form

• Law of motion of the state, ξt (state-space equation):

ξt = Fξt−1 + ut, Eutu′t = Q

(
zt+1

zt
st+1

)
=

[
A 0 BP
I 0 0
0 0 P

](
zt

zt−1
st

)
+

(
B
0
I

)
εt+1,

ut =

(
B
0
I

)
εt, Q =

[
BDB′ 0 BD

0 0 0
DB′ D

]
, F =

[
A 0 BP
I 0 0
0 0 P

]
.



State Space/Observer Form

ξt = Fξt−1 + ut, Eutu′t = Q,

Ydata
t = a+Hξt +wt, Ewtw′t = R.

• Can be constructed from model parameters

θ = (β, δ, ...)

so

F = F (θ) , Q = Q (θ) , a = a (θ) , H = H (θ) , R = R (θ) .



Uses of State Space/Observer Form
• Estimation of θ and forecasting ξt and Ydata

t
• Can take into account situations in which data represent a
mixture of quarterly, monthly, daily observations.

• ‘Data Rich’estimation. Could include several data measures
(e.g., employment based on surveys of establishments and
surveys of households) on a single model concept.

• Useful for solving the following forecasting problems:
— Filtering (mainly of technical interest in computing likelihood
function):

P
[
ξt|Ydata

t−1 , Ydata
t−2 , ..., Ydata

1

]
, t = 1, 2, ..., T.

— Smoothing:

P
[
ξt|Ydata

T , ..., Ydata
1

]
, t = 1, 2, ..., T.

— Example: ‘real rate of interest’and ‘output gap’can be
recovered from ξt using simple New Keynesian model.

• Useful for deriving a model’s implications vector autoregressions
(VARs).



Quick Review of Probability Theory

• Two random variables, x ∈ (x1, x2) and y ∈ (y1, y2) .
• Joint distribution: p (x, y)

x1 x2
y1 p11 p12
y2 p21 p22

=
x1 x2

y1 0.05 0.40
y2 0.35 0.20

where
pij = probability

(
x = xi, y = yj

)
.

• Restriction: ∫
x,y

p (x, y) dxdy = 1.



Quick Review of Probability Theory

• Joint distribution: p (x, y)

x1 x2
y1 p11 p12
y2 p21 p22

=
x1 x2

y1 0.05 0.40
y2 0.35 0.20

• Marginal distribution of x : p (x)

Probabilities of various values of x without reference to the value of
y:

p (x) =
{ p11 + p21 = 0.40 x = x1

p12 + p22 = 0.60 x = x2
.

or,

p (x) =
∫

y
p (x, y) dy



Quick Review of Probability Theory

• Joint distribution: p (x, y)

x1 x2
y1 p11 p12
y2 p21 p22

=
x1 x2

y1 0.05 0.40
y2 0.35 0.20

• Conditional distribution of x given y : p (x|y)
— Probability of x given that the value of y is known

p (x|y1) =

{
p (x1|y1)

p11
p11+p12

= p11
p(y1)

= 0.05
0.45 = 0.11

p (x2|y1)
p12

p11+p12
= p12

p(y1)
= 0.40

0.45 = 0.89

or,

p (x|y) = p (x, y)
p (y)

.



Quick Review of Probability Theory
• Joint distribution: p (x, y)

x1 x2
y1 0.05 0.40 p (y1) = 0.45
y2 0.35 0.20 p (y2) = 0.55

p (x1) = 0.40 p (x2) = 0.60

• Mode
— Mode of joint distribution (in the example):

argmaxx,yp (x, y) = (x2, y1)

— Mode of the marginal distribution:

argmaxxp (x) = x2, argmaxyp (y) = y2

— Note: mode of the marginal and of joint distribution
conceptually different.



Maximum Likelihood Estimation
• State space-observer system:

ξt+1 = Fξt + ut+1, Eutu′t = Q,

Ydata
t = a0 +Hξt +wt, Ewtw′t = R

• Reduced form parameters, (F, Q, a0, H, R), functions of θ.
• Choose θ to maximize likelihood, p

(
Ydata|θ

)
:

p
(

Ydata|θ
)
= p

(
Ydata

1 , ..., Ydata
T |θ

)
= p

(
Ydata

1 |θ
)
× p

(
Ydata

2 |Ydata
1 , θ

)

× · · · ×

computed using Kalman Filter︷ ︸︸ ︷
p
(

Ydata
t |Ydata

t−1 · · · Ydata
1 , θ

)
× · · · ×p

(
Ydata

T |Ydata
T−1, · · ·, Ydata

1 , θ
)

• Kalman filter straightforward (see, e.g., Hamilton’s textbook).



Bayesian Inference
• Bayesian inference is about describing the mapping from prior
beliefs about θ, summarized in p (θ) , to new posterior beliefs in
the light of observing the data, Ydata.

• General property of probabilities:

p
(

Ydata, θ
)
=

{
p
(
Ydata|θ

)
× p (θ)

p
(
θ|Ydata)× p

(
Ydata) ,

which implies Bayes’rule:

p
(

θ|Ydata
)
=

p
(
Ydata|θ

)
p (θ)

p
(
Ydata

) ,

mapping from prior to posterior induced by Ydata.



Bayesian Inference

• Report features of the posterior distribution, p
(
θ|Ydata) .

— The value of θ that maximizes p
(
θ|Ydata), ‘mode’of posterior

distribution.
— Compare marginal prior, p (θi) , with marginal posterior of
individual elements of θ, g

(
θi|Ydata) :

g
(

θi|Ydata
)
=
∫

θj 6=i

p
(

θ|Ydata
)

dθj 6=i (multiple integration!!)

— Probability intervals about the mode of θ (‘Bayesian
confidence intervals’), need g

(
θi|Ydata) .

• Marginal likelihood for assessing model ‘fit’:

p
(

Ydata
)
=
∫

θ
p
(

Ydata|θ
)

p (θ) dθ (multiple integration)



Monte Carlo Integration: Simple Example
• Much of Bayesian inference is about multiple integration.
• Numerical methods for multiple integration:

— Quadrature integration (example: approximating the integral as
the sum of the areas of triangles beneath the integrand).

— Monte Carlo Integration: uses random number generator.

• Example of Monte Carlo Integration:
— suppose you want to evaluate∫ b

a
f (x) dx, -∞ ≤ a < b ≤ ∞.

— select a density function, g (x) for x ∈ [a, b] and note:∫ b

a
f (x) dx =

∫ b

a

f (x)
g (x)

g (x) dx = E
f (x)
g (x)

,

where E is the expectation operator, given g (x) .



Monte Carlo Integration: Simple Example
• Previous result: can express an integral as an expectation
relative to a (arbitrary, subject to obvious regularity conditions)
density function.

• Use the law of large numbers (LLN) to approximate the
expectation.

— step 1: draw xi independently from density, g, for i = 1, ..., M.
— step 2: evaluate f (xi) /g (xi) and compute:

µM ≡
1
M

M

∑
i=1

f (xi)

g (xi)
→M→∞ E

f (x)
g (x)

.

• Exercise.
— Consider an integral where you have an analytic solution
available, e.g.,

∫ 1
0 x2dx.

— Evaluate the accuracy of the Monte Carlo method using
various distributions on [0, 1] like uniform or Beta.



Monte Carlo Integration: Simple Example
• Standard classical sampling theory applies.
• Independence of f (xi) /g (xi) over i implies:

var

(
1
M

M

∑
i=1

f (xi)

g (xi)

)
=

vM

M
,

vM ≡ var
(

f (xi)

g (xi)

)
' 1

M

M

∑
i=1

[
f (xi)

g (xi)
− µM

]2

.

• Central Limit Theorem
— Estimate of

∫ b
a f (x) dx is a realization from a Nomal

distribution with mean estimated by µM and variance, vM/M.
— With 95% probability,

µM − 1.96×
√

vM

M
≤

∫ b

a
f (x) dx ≤ µM + 1.96×

√
vM

M

— Pick g to minimize variance in f (xi) /g (xi) and M to
minimize (subject to computing cost) vM/M.



Markov Chain, Monte Carlo (MCMC)
Algorithms

• Among the top 10 algorithms "with the greatest influence on
the development and practice of science and engineering in the
20th century".

— Reference: January/February 2000 issue of Computing in
Science & Engineering, a joint publication of the American
Institute of Physics and the IEEE Computer Society.’

• Developed in 1946 by John von Neumann, Stan Ulam, and Nick
Metropolis (see http://www.siam.org/pdf/news/637.pdf)



MCMC Algorithm: Overview

• compute a sequence, θ(1), θ(2), ..., θ(M), of values of the N× 1
vector of model parameters in such a way that

lim
M→∞

Frequency
[
θ(i) close to θ

]
= p

(
θ|Ydata

)
.

• Use θ(1), θ(2), ..., θ(M) to obtain an approximation for

— Eθ, Var (θ) under posterior distribution, p
(
θ|Ydata)

— g
(

θi|Ydata
)
=
∫

θi 6=j
p
(
θ|Ydata) dθdθ

— p
(
Ydata) = ∫θ p

(
Ydata|θ

)
p (θ) dθ

— posterior distribution of any function of θ, f (θ) (e.g., impulse
responses functions, second moments).

• MCMC also useful for computing posterior mode,
arg maxθ p

(
θ|Ydata) .



MCMC Algorithm: setting up
• Let G (θ) denote the log of the posterior distribution (excluding
an additive constant):

G (θ) = log p
(

Ydata|θ
)
+ log p (θ) ;

• Compute posterior mode:

θ∗ = arg max
θ

G (θ) .

• Compute the positive definite matrix, V :

V ≡
[
−∂2G (θ)

∂θ∂θ′

]−1

θ=θ∗

• Later, we will see that V is a rough estimate of the
variance-covariance matrix of θ under the posterior distribution.



MCMC Algorithm: Metropolis-Hastings

• θ(1) = θ∗

• to compute θ(r), for r > 1
— step 1: select candidate θ(r), x,

draw x︸︷︷︸
N×1

from θ(r−1) +

‘jump’distribution’︷ ︸︸ ︷
k×N

 0︸︷︷︸
N×1

, V

, k is a scalar

— step 2: compute scalar, λ :

λ =
p
(
Ydata|x

)
p (x)

p
(

Ydata|θ(r−1)
)

p
(

θ(r−1)
)

— step 3: compute θ(r) :

θ(r) =

{
θ(r−1) if u > λ

x if u < λ
, u is a realization from uniform [0, 1]



Practical issues
• What is a sensible value for k?

— set k so that you accept (i.e., θ(r) = x) in step 3 of MCMC
algorithm are roughly 23 percent of time

• What value of M should you set?
— want ‘convergence’, in the sense that if M is increased further,
the econometric results do not change substantially

— in practice, M = 10, 000 (a small value) up to M = 1, 000, 000.
— large M is time-consuming.

• could use Laplace approximation (after checking its accuracy)
in initial phases of research project.

• more on Laplace below.
• Burn-in: in practice, some initial θ(i)’s are discarded to
minimize the impact of initial conditions on the results.

• Multiple chains: may promote effi ciency.
— increase independence among θ(i)’s.
— can do MCMC utilizing parallel computing (Dynare can do
this).



MCMC Algorithm: Why Does it Work?
• Proposition that MCMC works may be surprising.

— Whether or not it works does not depend on the details, i.e.,
precisely how you choose the jump distribution (of course, you
had better use k > 0 and V positive definite).
• Proof: see, e.g., Robert, C. P. (2001), The Bayesian Choice,
Second Edition, New York: Springer-Verlag.

— The details may matter by improving the effi ciency of the
MCMC algorithm, i.e., by influencing what value of M you
need.

• Some Intuition
— the sequence, θ(1), θ(2), ..., θ(M), is relatively heavily populated
by θ’s that have high probability and relatively lightly
populated by low probability θ’s.

— Additional intuition can be obtained by positing a simple scalar
distribution and using MATLAB to verify that MCMC
approximates it well (see, e.g., question 2 in assignment 9).



MCMC Algorithm: using the Results

• To approximate marginal posterior distribution, g
(
θi|Ydata) , of

θi,

— compute and display the histogram of θ
(1)
i , θ

(2)
i , ..., θ

(M)
i ,

i = 1, ..., M.

• Other objects of interest:
— mean and variance of posterior distribution θ :

Eθ ' θ̄ ≡ 1
M

M

∑
j=1

θ(j), Var (θ) ' 1
M

M

∑
j=1

[
θ(j) − θ̄

] [
θ(j) − θ̄

]′
.



MCMC Algorithm: using the Results
• More complicated objects of interest:

— impulse response functions,
— model second moments,
— forecasts,
— Kalman smoothed estimates of real rate, natural rate, etc.

• All these things can be represented as non-linear functions of
the model parameters, i.e., f (θ) .
— can approximate the distribution of f (θ) using

f
(

θ(1)
)

, ..., f
(

θ(M)
)

→ Ef (θ) ' f̄ ≡ 1
M

M

∑
i=1

f
(

θ(i)
)

,

Var (f (θ)) ' 1
M

M

∑
i=1

[
f
(

θ(i)
)
− f̄
] [

f
(

θ(i)
)
− f̄
]′



MCMC: Remaining Issues

• In addition to the first and second moments already discused,
would also like to have the marginal likelihood of the data.

• Marginal likelihood is a Bayesian measure of model fit.



MCMC Algorithm: the Marginal Likelihood

• Consider the following sample average:

1
M

M

∑
j=1

h
(

θ(j)
)

p
(

Ydata|θ(j)
)

p
(

θ(j)
) ,

where h (θ) is an arbitrary density function over the N−
dimensional variable, θ.

By the law of large numbers,

1
M

M

∑
j=1

h
(

θ(j)
)

p
(

Ydata|θ(j)
)

p
(

θ(j)
) →

M→∞
E

(
h (θ)

p
(
Ydata|θ

)
p (θ)

)



MCMC Algorithm: the Marginal Likelihood

1
M

M

∑
j=1

h
(

θ(j)
)

p
(

Ydata|θ(j)
)

p
(

θ(j)
) →M→∞ E

(
h (θ)

p
(
Ydata|θ

)
p (θ)

)

=
∫

θ

(
h (θ)

p
(
Ydata|θ

)
p (θ)

)
p
(
Ydata|θ

)
p (θ)

p
(
Ydata

) dθ =
1

p
(
Ydata

) .

• When h (θ) = p (θ) , harmonic mean estimator of the marginal
likelihood .

• Ideally, want an h such that the variance of

h
(

θ(j)
)

p
(

Ydata|θ(j)
)

p
(

θ(j)
)

is small (recall the earlier discussion of Monte Carlo
integration). More on this below.



Laplace Approximation to Posterior
Distribution

• In practice, MCMC algorithm very time intensive.

• Laplace approximation is easy to compute and in many cases it
provides a ‘quick and dirty’approximation that is quite good.

Let θ ∈ RN denote the N−dimensional vector of parameters and, as
before,

G (θ) ≡ log p
(

Ydata|θ
)

p (θ)

p
(

Ydata|θ
)
~likelihood of data

p (θ) ~prior on parameters
θ∗ ~maximum of G (θ) (i.e., mode)



Laplace Approximation
Second order Taylor series expansion of
G (θ) ≡ log

[
p
(
Ydata|θ

)
p (θ)

]
about θ = θ∗ :

G (θ) ≈ G (θ∗) +Gθ (θ
∗) (θ − θ∗)− 1

2
(θ − θ∗)′ Gθθ (θ

∗) (θ − θ∗) ,

where

Gθθ (θ
∗) = −

∂2 log p
(
Ydata|θ

)
p (θ)

∂θ∂θ′
|θ=θ∗

Interior optimality of θ∗ implies:

Gθ (θ
∗) = 0, Gθθ (θ

∗) positive definite

Then:

p
(

Ydata|θ
)

p (θ)

' p
(

Ydata|θ∗
)

p (θ∗) exp
{
−1

2
(θ − θ∗)′ Gθθ (θ

∗) (θ − θ∗)

}
.



Laplace Approximation to Posterior
Distribution

Property of Normal distribution:∫
θ

1

(2π)
N
2
|Gθθ (θ

∗)|
1
2 exp

{
−1

2
(θ − θ∗)′ Gθθ (θ

∗) (θ − θ∗)

}
dθ = 1

Then,∫
p
(

Ydata|θ
)

p (θ) dθ '
∫

p
(

Ydata|θ∗
)

p (θ∗)

× exp
{
−1

2
(θ − θ∗)′ Gθθ (θ

∗) (θ − θ∗)

}
dθ

=
p
(
Ydata|θ∗

)
p (θ∗)

1

(2π)
N
2
|Gθθ (θ

∗)|
1
2

.



Laplace Approximation
• Conclude:

p
(

Ydata
)
'

p
(
Ydata|θ∗

)
p (θ∗)

1

(2π)
N
2
|Gθθ (θ

∗)|
1
2

.

• Laplace approximation to posterior distribution:

p
(
Ydata|θ

)
p (θ)

p
(
Ydata

) ' 1

(2π)
N
2
|Gθθ (θ

∗)|
1
2

× exp
{
−1

2
(θ − θ∗)′ Gθθ (θ

∗) (θ − θ∗)

}
• So, posterior of θi (i.e., g

(
θi|Ydata)) is approximately

θi ~N
(

θ∗i ,
[
Gθθ (θ

∗)−1
]

ii

)
.





Modified Harmonic Mean Estimator of
Marginal Likelihood

• Harmonic mean estimator of the marginal likelihood, p
(
Ydata): 1

M

M

∑
j=1

h
(

θ(j)
)

p
(

Ydata|θ(j)
)

p
(

θ(j)
)
−1

,

with h (θ) set to p (θ) .
— In this case, the marginal likelihood is the harmonic mean of
the likelihood, evaluated at the values of θ generated by the
MCMC algorithm.

— Problem: the variance of the object being averaged is likely to
be high, requiring high M for accuracy.

• When h (θ) is instead equated to Laplace approximation of
posterior distribution, then h (θ) is approximately proportional
to p

(
Ydata|θ(j)

)
p
(

θ(j)
)
so that the variance of the variable

being averaged in the last expression is low.
— In this case, the estimator of p

(
Ydata) is called Geweke’s

Modified Harmonic Mean estimator.
— This is a standard way to approximate the marginal likelihood
of the data.



The Marginal Likelihood and Model
Comparison

• Suppose we have two models, Model 1 and Model 2.
— compute p

(
Ydata|Model 1

)
and p

(
Ydata|Model 2

)
• Suppose p

(
Ydata|Model 1

)
> p

(
Ydata|Model 2

)
. Then,

posterior odds on Model 1 higher than Model 2.

— ‘Model 1 fits better than Model 2’

• Can use this to compare across two different models, or to
evaluate contribution to fit of various model features: habit
persistence, adjustment costs, etc.

— For an application of this and the other methods in these
notes, see Smets and Wouters, AER 2007.


