Class exercise

Solving nonlinear models by the perturbation method in Dynare.

Consider the Dynare file, rbc.mod, which is on the class website. This file
can be used to solve the neoclassical model studied in the class handout on the
perturbation method.

1. Dynare obtains policy rules for consumption and output as well as capital
because it does not substitute out for output and consumption using the
production function and resource constraint, as is done in the handout.

(a)

The program, rbc.mod, is set to compute the steady state but you
have to give it a good initial guess. The program is set to provide
Dynare with the actual steady state as a ‘guess’. Change that guess
a little. Does Dynare manage to get the steady state with an OK but
not-too-bad guess? What if you make the initial guess really bad?

You should verify that, despite the difference in substitution strategy,
the policy rule computed for capital by Dynare coincides with the
one reported in the handout. This will not be immediately obvious,
because there is another difference between what Dynare did and
what I did. Dynare has a habit of defining the state as
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rather than k;, a;. (Obviously, the minimal state only contains k; and
at, because given a; alone, there is no additional information in a;_1
and ¢;. In particular, to know the position of the time ¢ production
function you only need a; and to make a forecast about future a;’s
you don’t need to know anything beyond a; itself.) Thus, before
comparing the policy rules in the handout and the one produced by
Dynare you need to see if you can write the solution that Dynare
produced in terms of a; only, not in terms of a;—1 and &; separately.
(Hint: for this to be true requires that wherever a;_; and ¢; appears,
the coefficients must have the property that the coefficient on a;_4
equals the coefficient on ¢; times p.)

You can directly do the calculations I did in the handout by substi-
tuting out for consumption and output. Doing so directly is a pain
and results in complicated, hard-to-read, code. Fortunately, Dynare
gives you a nice way to deal with this kind of a situation without
creating too much of a mess. You should delete lc and ly from the
VAR list. Then, inside the model command you can insert lines that
begin with # and then define lc and ly. Dynare then interprets Ilc
and [y wherever they appear in the model definition as a short hand
for what appears after [c = and [y = in the respective # statements.
Careful, you can’t refer to lc (+1) if lc has been defined in a # state-
ment. So, you will have to have to write a separate lc command to



substitute out for lc(+1). You could call this le, lep. Redo the cal-
culations substituting out lc and ly in this way and verify that your
results continue to coincide with what appears in the handout.

2. Now let’s do some simulations. This involves drawing a sequence of shocks,
et, t = 1,...,T, from Normal random number generator with mean zero
and standard deviation equal to the value you assigned. You then input
these shocks into the model solution to get a sequence of random variables.
This is uncomplicated if you are working with the first order linearization
of the policy rule:

kip1r = K 4+ gr (ke — k") + gaay,

at = pPat—1 + €.

Let the initial date be denoted t = 0 and suppose kg and ag are given num-
bers. The linearized policy rule is the first order Taylor series expansion
of the mapping from ag and kg to ki :

ky =k + gr (ko — k™) + gaao.
The simulated value of ks is

ky = K"+ gk (k1 — k") + ga (pao +€1)
k* + g3 (ko — k*) + gkgaao + ga (pao + 1),

which is a linear map from ag, e1, kg to ko. Similarly, the mapping from
ag, Koy €0y -y E¢ 10 ki1 is linear for all ¢. So, direct simulation of the lin-
earized policy rule preserves linearity of the map from shocks to the en-
dogenous variables, k;.

The same is not true when simulating the second (or higher) order ap-
proximation to the policy rule. If apply the procedure in the previous
paragraph to simulating the quadratic approximation to the policy rule,
the mapping from shocks to endogenous variables becomes highly non-
quadratic. To see this, consider the following simplified representation of
the second order approximation to the policy rule (I assume p = 0, leave
out some terms and set y; = ky — k*):

1
Yer1 = GrYe + 59%1/? + Gatt-
Then,
1
Y1 = giYo + = GkkYs + Jaco,
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for given yy. Going one more period:

1
Yo = gry1+ igkkyf + 9a€1
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We haven’t left the quadratic world yet. So, go one more period:

1
ys = giy2+ §gkky§ + guga

1
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Notice that y3 is a function of 3. Consider the next period:

Ys = grys + %gkkyi + gacs.
Given that y3 is a function of €7 we see that y4 is a function of €]. The
mapping from shocks to the y;’s is clearly not quadratic for ¢ > 4. Indeed
the powers on the shocks grows as t gets larger. In particular, the mapping
from shocks to endogenous variables is not the second order approximation
of the true map those shocks, evaluated around the mean value of the
shocks.

Another tip off that there is something wrong with a direct simulation of
the second order approximation is to note that that approximation has two
steady states because gr < 1 and gpr > 0. The steady state is identified
by deleting the time index and setting the shock to zero:
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There are two values of y that satisfy this equation:
1 — gk
9kk

y=0,y=2

Note that the second state is a k greater than k*. Thus, the policy rule
cuts the 45 degree line at y; = 0 and then cuts it again from below. But,



it is highly unstable there and could, with the right shock, drive off to
plus infinity.

Clearly, direct simulation of the second order approximation of the policy
rule is bound to give us junk. So, a correction has been made, which
ensures that the mapping from the shocks to the endogenous variables in
a simulation are the second order approximation of the true map. In this
approach, explosions such as those that are possible in the naive simulation
described above cannot occur. The adjustment is called pruning.

(a)

Leave the shock standard deviation at 0.01 in rbc.mod. First do a
stochastic simulation of length 7" = 100 without pruning. Then do
it again, with pruning and graph gdp in both cases to compare. To
ensure a good comparison, set the Dynare seed to unity in the first
simulation (the one without pruning in the stoch simul command),
by including the line, set  dynare_seed (1); .Then, before the second
simulation (the one with pruning), reset the Dynare seed to its initial
value, by including set_dynare_seed (’reset’); .

Now make the shocks larger, until you find a difference. The message
should be that with normal sized shocks it doesn’t matter if you prune
or not.

Now compare the stochastic simulations when you do first and second
order approximations with or without pruning. Again, you should
find that it only makes a difference if you go to high values of the
shock standard deviations.



