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Abstract

We describe and compare several algorithms for approximating the solution to
a model in which inequality constraints occasionally bind. Their performance is evalu-
ated and compared using various parameterizations of the one sector growth model with
irreversible investment. We develop parameterized expectation algorithms which, on the
basis of speed, accuracy and convenience of implementation, appear to dominate the
other algorithms. ( 2000 Elsevier Science B.V. All rights reserved.
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Keywords: Occasionally binding constraints; Parameterized expectations; Collocation;
Chebyshev interpolation

1. Introduction

There is considerable interest in studying the quantitative properties of
dynamic general equilibrium models. For the most part, exact solutions to these
models are unobtainable and so in practice researchers must work with approxi-
mations. An increasing number of the models being studied have inequality
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constraints that occasionally bind. Important examples of this are heterogen-
eous agent models in which there are various kinds of constraints on the
"nancial assets available to agents.1 Other examples include multisector models
with limitations on the intersectoral mobility of factors of production, and
models of inventory investment.2 For researchers selecting an algorithm to
approximate the solution to models like these, important criteria include numer-
ical accuracy and programmer and computer time requirements. That the last of
these should remain a signi"cant consideration is perhaps surprising, in view of
the dramatic, ongoing pace of improvements in computer technology. Still, the
economic models being analyzed are growing in size and complexity at an
even faster pace, and this means that e$ciency in the use of computer time
remains an important concern in the selection of a solution algorithm. Our
purpose in this paper is to provide information useful to researchers in making
this selection.

We describe several algorithms, and evaluate their performance in solving the
one-sector in"nite horizon optimal growth model with a random disturbance to
productivity. In this model the nonnegativity constraint on gross investment is
occasionally binding. We chose this model for two reasons. First, its simplicity
makes it feasible for us to solve the model by doing dynamic programming on
a very "ne capital grid. Because we take the dynamic programming solution to
be virtually exact, this constitutes an important benchmark for evaluating the
algorithms considered. Second, the one sector growth model is of independent
interest, since it is a basic building block of the type of general equilibrium
models analyzed in the literature.3

All the methods we consider work directly or indirectly with the Euler
equation associated with the recursive representation of the model, in which the
nonnegativity constraint is accommodated by the method of Lagrange multi-
pliers. Suitably modi"ed versions of the algorithms emphasized by Bizer and

1See, for example, Aiyagari (1993), Aiyagari and Gertler (1991), Coleman and Liu (1997), den
Haan (1996a), Heaton and Lucas (1992, 1996), Huggett (1993), Kiyotaki and Moore (1997), Marcet
and Ketterer (1989), Marcet and Marimon (1992), Marcet and Singleton (1990), Telmer (1993), and
McCurdy and Ricketts (1995).

2For an example of the former, see Atkeson and Kehoe (1993), Boldrin et al. (1995) and Coleman
(1997). Examples of the latter include Gustafson (1958), Aiyagari et al. (1980), Wright and Williams
(1982a, b, 1984), Miranda and Helmberger (1988), Christiano and Fitzgerald (1991) and Kahn (1992).

3For example, solving the heterogeneous agent models of Aiyagari (1993), Aiyagari and Gertler
(1991) and Huggett (1993) requires repeatedly solving a partial equilibrium asset accumulation
problem for an individual agent, for di!erent values of a particular market price. A solution to the
general equilibrium problem is obtained once a value for the market price is found which implies
a solution to the partial equilibrium problem that satis"es a certain market clearing condition. The
partial equilibrium model solved in these examples is similar to the growth model we work with in
this paper.
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Judd (1989), Coleman (1988), Danthine and Donaldson (1981) and Judd (1992)
work directly with this formulation, and are evaluated here. We also consider
the algorithm advocated by McGrattan (1996), in which the multiplier and
policy function are approximated using an approach based on penalty func-
tions. Finally, we consider an algorithm in which policy and multiplier functions
are approximated indirectly by solving for the conditional expectation of next
period's marginal value of capital. We refer to algorithms which solve for
a conditional expectation function in this way as parameterized expectations
algorithms (PEAs). The "rst use of a PEA appears to be due to Wright and
Williams (1982a, b, 1984), and was further developed by Miranda (1985), and
Miranda and Helmberger (1988). Later, a variant on the idea was implemented
in Marcet (1988).4 We describe PEAs which are at least as accurate as all the
other algorithms considered and which dominate these other algorithms in
terms of programmer and computer time.5

In our example, an important advantage of PEAs is that they make it possible
to avoid a cumbersome direct search for the policy and multiplier functions that
solve the Euler equation. Methods which focus directly on the policy function
must jointly parameterize these two functions, and doing this in a way that the
Kuhn}Tucker conditions are satis"ed is tricky and adds to programmer time.
An alternative to working with Lagrange multipliers is to work with a penalty
function formulation. However, this approach requires searching for the value of
a penalty function parameter, and this can add substantially to programmer and
computer time. PEAs exploit the fact that, in our example, Euler equations and
Kuhn}Tucker conditions imply a convenient mapping from a parameterized
expectation function into policy and multiplier functions, eliminating the need
to separately parameterize the latter. In addition, the search for a conditional
expectation function that solves the model can be carried out without worrying
about imposing additional side conditions analogous to the Kuhn}Tucker
conditions. In e!ect, by working with a PEA one reduces the number of
unknowns to be found, and eliminates a set of awkward constraints. We
emphasize that these observations have been veri"ed to be true only in our
example. It would be of interest to investigate to what extent they apply more
generally.

4For other implementations of this varient of the PEA, see the references cited in Marcet and
Marshall (1994).

5There are several algorithms that we were not able to include in our anlaysis. One is an
interesting one due to Paul Gomme (1997), based on ideas from adaptive learning. Others include
the algorithms due to Greenwood et al. (1996), Hartley (1996), and Deborah Lucas (1994). For an
analysis of many of the algorithms discussed here as applied to the growth model with reversible
investment, see the collection of papers summarized in Taylor and Uhlig (1990). For other useful
discussions of solution methods, see Rust (1996) and Santos (1997).
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Alternative PEAs di!er on at least two dimensions: the particular conditional
expectation function being approximated and the method used to compute the
approximation. Marcet's approach approximates the expectation conditional
on the beginning of period state variables, while Wright and Williams propose
approximating the expectation conditional on a current period decision vari-
able. A potential shortcoming of Marcet's approach is that functions of begin-
ning of period state variables tend to have kinks when there are occasionally
binding constraints. The conditional expectation function that is the focus of
Wright and Williams' analysis, by contrast, appears to be smoother in the
growth model. Being smoother, the Wright and Williams conditional expecta-
tion is likely to be easier to approximate numerically. This deserves further
study in other applications.

We also describe improvements on the Marcet's method for approximating
the conditional expectation. A key component of his approach is a cumbersome
nonlinear regression step, potentially involving tens of thousands of synthetic
data points. We show that such a large number of observations is required
because the approach ine$ciently concentrates the explanatory variables of the
regression in a narrow range about the high probability points of the invariant
distribution of a model. This feature of the method is sometimes cited as a virtue
in the analysis of business cycle models, where one is interested in characteristics
of the invariant distribution such as "rst and second moments. But, it is well
known in numerical analysis that the region where one is interested in a good
quality "t and the region one chooses to emphasize in constructing the approxi-
mation need not coincide.

This point plays an important role in our analysis and so it deserves emphasis.
A classic illustration of it is based on the problem of approximating the function,
1/(1#k2), de"ned over k3[!5, 5], by a polynomial.6 If one cared uniformly
over the domain about the quality of "t, then it might seem natural to select an
equally spaced grid in the domain and choose the parameters of the polynomial
so that the two functions coincide on the grid points. But, it is well known that
this strategy leads to disaster in this example. The upper panel in Fig. 1 shows
that the 10th order polynomial approximating function exhibits noticeable
oscillations in the tails when this method is applied with the 11 grid points
indicated by #'s in the "gure. Moreover, when more grid points are added,
keeping the distance between grid points constant, the oscillations in the tail
areas become increasingly violent without bound. Not surprisingly, one way to
"x this problem is to redistribute grid points a little toward the tail areas. This is
what happens when the grid points are chosen based on the zeros of
a Chebyshev polynomial, as in the lower panel in Fig. 1. Note how much better
the approximation is in this case. In addition, it is known that as the number of

6See Judd (1992, 1994, 1998) for recent discussions of this example.
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grid points is increased, the approximating function converges to the function to
be approximated in the sup norm. Thus, even if one cares uniformly over the
interval about the quality of "t, it nevertheless makes sense to &oversample' the
tail areas, using the zeros of a Chebyshev polynomial.

According to the Chebyshev interpolation theorem, this is a very general
result and holds for a large class of functions, not just the one depicted in Fig. 1.
We take our cue from this in modifying Marcet's computational strategy so that
tail areas receive relatively more weight in approximating the model's solution.7
As a result, we are able to get superior accuracy with many fewer synthetic data
points (no more than 10). Moreover, the changes we make convert the non-
linear regression in Marcet's approach into a linear regression with orthogonal
explanatory variables. The appendix to Christiano and Fisher (1994), which
shows how to implement our procedure in a version of the growth model with
an arbitrary number of capital stocks and exogenous shocks, establishes that the
linearity and orthogonality property generalizes to arbitrary dimensions. In this
paper, we show that when applied to the standard growth model, our perturba-
tion on Marcet's computational strategy produces results at least as accurate as
the best other method considered, and is orders of magnitude faster.8

The paper is organized as follows. In the following section the model to be
solved is described, and various ways of characterizing its solution are present-
ed. The algorithms discussed later make use of these alternative characteriza-
tions. In Section 3 we describe a general framework which contains the
algorithms considered here as special cases. Having a single framework is
convenient both for presenting and comparing the various solution methods
considered. Section 4 presents a discussion of a subset of the algorithms
considered. The details of other algorithms appear in an appendix to this paper.
Section 5 presents the results of our numerical analysis of case studies. The "nal
section o!ers some concluding remarks.

2. The model and alternative characterizations of its solution

In this section we present the model that we study, and we provide three
alternative characterizations of its solution. The "rst exploits the Lagrangian

7 In many models, we expect that nonlinearities in the functions being approximated are greatest
in the tail areas. This suggests that oversampling these areas may require increasing the degree of
nonlinearity in the approximating functions beyond what is customary in conventional practice.

8For other applications in which our recommended adjustment to Marcet's strategy has been
applied successfully, see den Haan (1996b, 1997), den Haan et al. (1997), Monge (1999) and Stockman
(1997). In our evaluation of computational times, we did not include the Wright-Williams approach
in the list of algorithms considered. It might be that approach is even faster than the one based on
our modi"cation of Marcet's approach.
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Fig. 1. Alternative methods of function approximation.

formulation of our problem, and characterizes a solution by a policy and
a multiplier function. The second and third characterize the solution as two
di!erent conditional expectation functions. Although the "rst of these character-
izations is well known, we discuss it nevertheless in order to set up notation and
concepts useful for discussing the second and third characterizations. A fourth
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characterization, based on penalty functions, is described in the appendix. The
four characterizations form the basis for the computational algorithms studied
in this paper.

After discussing the model and alternative characterizations of its solution, we
present the formulas that we use to compute asset prices and rates of return for
our model economy.

2.1. The model

We study a simple version of the stochastic growth model. At date 0 the
representative agent values alternative consumption streams according to
E
0
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t/0
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t
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denotes time t consumption, b3(0, 1) is the agent's

discount factor, and ; denotes the utility function. The aggregate resource
constraint is given by
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of capital, and d, a3(0,1).9 Here, !R(k(kM (R, d is the rate of deprecia-
tion of capital, and a is capital's share in production. We assume h
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). In the irreversible investment version of the model, we require that

gross investment be non-negative, i.e.:

exp(k
t`1

)!(1!d)exp(k
t
)50. (2)

In the reversible investment version, (2) is ignored.

2.2. The solution as policy and Lagrange multiplier functions

Let h(k, h) denote the Lagrange multiplier on Eq. (2) in the planning problem
associated with this model economy. According to one characterization, the
solution to the planning problem is a set of time invariant functions
g: [ k, kM ]]HP[ k, kM ], and h: [ k, kM ]]HPR

`
satisfying an Euler equation,

R(k, h; g, h)"0, for all (k, h)3[ k, kM ]]H, (3)

and a set of Kuhn}Tucker conditions

exp(g(k,h))!(1!d)exp(k)50, h(k, h)50,

h(k, h)[exp(g(k,h))!(1!d)exp(k)]"0, (4)

9Because we represent the capital stock in terms of the logarithm, our representation of the
resource constraint is unconventional. We do this nevertheless in order to save on notation. Our
computational approach approximates the policy rule for the logarithm of the capital stock. So, we
need notation for this. We did not also want a separate notation for the level of the capital stock.
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for all (k, h)3[ k, kM ]]H. Here,

R(k, h; g, h)";
#
(k, g(k, h), h)!h(k, h)!bPm(g(k, h), h@; g, h)ph{(h@ D h) dh@,

(5)

and

m(k@, h@; g, h)";
#
(k@, g(k@, h@), h@)[ f

k
(k@, h@)#1!d]!h(k@, h@)(1!d)50.

(6)

In Eq. (6), f
k
"a exp(h@#(a!1)k@) is next period's marginal product of capital,

given that the beginning-of-next-period's capital stock is k@ and next period's
technology shock is h@. Similarly, ;

#
(k@, g(k@, h@), h@) is next period's marginal

utility of consumption, given that next period's investment decision is deter-
mined by g, and that consumption has been substituted out using Eq. (1)
evaluated at equality. In Eq. (5), the beginning-of-next-period's capital stock, k@,
is evaluated under the assumption that this period's investment decision is
determined by g.

The inequality in (6) re#ects: (i) m is the derivative of the value func-
tion associated with the dynamic programming formulation of the plann-
ing problem, and (ii) a suitably modi"ed version of the proof to Theorem 4.7
in Stokey et al. (1989) can be used to show that the value function is
increasing in the capital stock.10 Thus, one way to characterize a solution to
the model is that it is a pair of functions, g and h, that are consistent with
the Kuhn}Tucker conditions and that also satisfy the functional equation,
R(k, h; g, h)"0.11

2.3. The solution as a conditional expectation function

Solutions to the growth model can also be characterized in terms of various
conditional expectation functions. We "rst discuss the conditional expectation
that is the focus of Marcet (1988)'s analysis and we then consider the conditional
expectation used by Wright and Williams (1982a, b, 1984).

10The modi"cation must take into account that under (2) the constraint set for capital does not
satisfy monotonicity.

11Su$cient conditions for a solution include not just the Kuhn}Tucker and Euler equations, but
also a transversality condition. A su$cient condition for the latter is that a given candidate solution
imply a bounded ergodic set for capital. This result is what we use in practice to verify that our
candidate approximate solutions satisfy the transversality condition.
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2.3.1. A characterization due to Marcet
According to the approach used by Marcet (1988), a solution is a function,

e: [ k, kM ]]HPR satisfying

RM 1%!(k, h; e)"0, for all (k, h)3[ k, kM ]]H, (7)

where

RM 1%!(k, h; e)"exp[e(k, h)]!Pm(g(k, h), h@; g, h)ph{(h@ D h) dh@, (8)

and m is de"ned in Eq. (6). Evidently, exp[e(k, h)] is a conditional expectation
function. The functions g and h on the right of the equality in (8), are
derived from e. To see how, "rst let the function g6 : [ k, kM ]]HPR be de"ned
implicitly by

;
#
(k, g6 (k, h), h)"b exp[(k, h)].

Then,

g(k, h)"G
g6 (k, h) if g6 (k, h)'log(1!d)#k,

log(1!d)#k otherwise,
(9)

h(k, h)";
#
(k, g(k, h), h)!b exp[e(k, h)]. (10)

This mapping guarantees that g and h satisfy the Kuhn}Tucker conditions,
regardless of the choice of function, e: [ k, kM ]]HPR. To see this, note "rst that,
trivially, g6 (k, h)5log(1!d)#k implies h(k, h)"0. Also, if g6 (k, h)(
log(1!d)#k, then h(k, h)'0 because of the strict concavity of the utility
function.

For computational purposes, it is useful to note that the e function which
solves the model can equivalently be characterized as satisfying:

R1%!(k, h; e)"0, for all (k, h)3[ k, kM ]]H, (11)

where

R1%!(k, h; e)"e(k, h)!logCPm(g(k, h), h@; g, h)ph{(h@ D h) dh@D , (12)

and m, g, and h are de"ned according to Eqs. (6), (9) and (10), respectively.

2.3.2. A characterization due to Wright and Williams
Wright and Williams (1982a, b, 1984) work with a slightly di!erent condi-

tional expectation function. Instead of expressing it as a function of the current
period state variables, k, h, they express it as a function of the current period
decision, k@, and the current period technology shock, h. In particular, they
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characterize a solution as a function v: [ k, kM ]]HPR, satisfying

RI 1%!(k@, h; v)"0, for all (k@, h)3[ k, kM ]]H, (13)

where

RI 1%!(k@, h; v)"v(k@, h)!logCPm(k@, h@; g, h)ph{(h@ D h) dh@D , (14)

and m is de"ned in Eq. (6). To construct m, we need next period's policy and
multiplier functions, g and h. These are derived from v as follows. First, let the
function g6 : [ k, kM ]]HPR be de"ned implicitly by:

;
#
(k@, g6 (k@, h@), h@)"b exp[v(g6 (k@, h@),h@)].

Then, g is de"ned by Eq. (9) with k, h replaced by k@, h@ and h is de"ned by

h(k@, h@)";
#
(k@, g(k@, h@), h@)!b exp[v(g(k@,h@), h@)]. (15)

With the above operator from v to g and h, the Kuhn}Tucker conditions are
not satis"ed for arbitrary v: [ k, kM ]]HPR. In particular, for a v function that is
su$ciently increasing in its "rst argument, g6 (k, h)(log(1!d)#k implies
h(k, h)(0. Moreover, a su$ciently non-monotone v function could imply
a g that is a correspondence rather than a function. These may not be problems
in practice. First, it is easily veri"ed that for v functions which are decreasing in
their "rst argument, the above operator does guarantee that the Kuhn}Tucker
conditions are satis"ed and that g is a function. Second, concavity of the value
function and the fact that m is the derivative of the value function with respect to
capital, implies that the exact v function is decreasing in its "rst argument.
Third, an operator useful in computing v, which maps the space of functions
v: [ k, kM ]]HPR into itself, has the property of mapping the subspace of
v functions decreasing in k@ into itself. For an arbitrary v this operator, P(v), is
de"ned as follows:

P(v)(k@,h)"logCPm(k@, h@; g, h)ph{(h@ D h) dh@D , (16)

where g and h are obtained from v in the way described above.12 Thus, as long as
it begins with a v function decreasing in k@, an algorithm that approximates v as

12To establish that P(v) is decreasing in its "rst argument if v is, (16) indicates it is su$cient to
verify that m is decreasing in its "rst argument whenever v is. Accordingly, consider a given v(k, h)
that is decreasing in k for (k, h)3[ k, kM ]]H. Fix h3H and consider "rst values of k interior to the set
of points where the irreversibility constraint fails to bind. From the relation,
;

#
(k, g(k, h), h)"b exp[v(g(k,h), h)], it is easily veri"ed that ;

#
(k, g(k, h), h) is increasing in k. But,

m(k, h; g, h)";
#
(k, g(k, h), h)[ f

k
(k, h)#1!d]. The result that m is decreasing in its "rst argument

follows from the fact that ;
#

and f
k

are. Now suppose k lies in the interior of the set where the
irreversibility constraint binds, so that g(k, h)"log(1!d)#k. Then, substituting Eq. (15) into Eq.
(16), we get m(k, h; g, h)";

#
(k, g(k, h), h) f

k
(k, h)#(1!d)b exp[v(k,h)]. That m is decreasing in k fol-

lows from the readily veri"ed facts that ;
#
, v and f

k
are.
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the limit of a sequence of functions generated by the P operator may never
encounter v functions which imply g and h that are not functions or are
inconsistent with the Kuhn}Tucker conditions. Still, with other model econo-
mies and other types of computational algorithms one clearly has to be on the
alert for these possibilities. We investigate them in the numerical analysis below.

2.4. Discussion

It is easily con"rmed that the solutions to the four functional equations,
R, R1%!, RM 1%!, and RI 1%!, correspond to four equivalent characterizations of the
solution to the model. From a computational perspective, however, they are
quite di!erent when (2) binds occasionally. A computational strategy based on
solving the functional equation, R"0, requires "nding two functions, g and h,
subject to the constraint that they satisfy the Kuhn}Tucker conditions. In
contrast, "nding e to solve R1%!"0, RM 1%!"0, or v to solve RI 1%!"0 involves
having to "nd only one function. Moreover, strategies based on "nding e need
not impose any extra side conditions. Finally, an argument presented above as
well as numerical results reported below suggest that in practice this may be true
for v as well.

There are some additional di!erences between the characterizations based on
e and v. First, in our model economy the operator from e to g and h has a closed
form expression and so is trivial to implement computationally. In contrast, the
analogous operator from v to g and h requires solving a nonlinear equation, and
so is computationally more burdensome. This distinction per se is not parti-
cularly signi"cant, however, since it re#ects a special feature of our model
economy. In general the mapping from e to g and h also requires solving
a nonlinear equation.

A potentially more important di!erence is that v is likely to be smoother than
e. This makes v an easier object to approximate numerically. By v being
smoother than e we mean that v is more likely to be di!erentiable in its two
arguments than is e. To understand this, it is useful to recall that these functions
must satisfy

v(k@, h)"logCPm(k@, h@; g, h)ph{(h@ D h) dh@D ,

e(k, h)"logCPm(g(k,h), h@; g, h)ph{(h@ D h) dh@D,v(g(k, h), h) , (17)

where m is de"ned in Eq. (6). These relations indicate that the smoothness
properties of e and v depend on the smoothness properties of g and h. We "rst
consider smoothness in k and we then consider smoothness in h.

When viewed as functions of k, for "xed h, g and h are expected to have
a kink (i.e., non-di!erentiability) at the value of the capital stock where the
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irreversibility constraint begins to bind. We expect this kink to have a greater
impact on e than on v. To see why, "x h and consider the case where H contains
a "nite number of l elements, Mh

1
,2, h

l
N, each having positive probability. Then,

Eq. (17) reduces to

e(k, h)"logC
l
+
i/1

m(g(k,h), h
i
; g, h)ph{(hi

D h)D.
From this expression, we can see that there are two types of kink in e. The "rst
type occurs at the value of k where the irreversibility constraint binds in the
current period. This operates through the kink in g, and has a relatively large
impact on e because it is present in each term in the summand. The second type
of kink occurs for values of k which cause the irreversibility constraint to bind in
the next period for some h@3H. This type of kink is likely to have a relatively
small impact on e because it a!ects only one of the terms in the summand.13
Similarly, when the distribution of h@ has continuous support, then, as long as
the distribution does not have mass points, we expect the second type of kink in
e to vanish altogether. To summarize, whether the distribution of h@ is continu-
ous or discrete, we expect the impact on e of the "rst type of kink to be relatively
large and of the second type of kink to be small or non-existent.

By contrast, the function v does not have the "rst type of kink because the
current period policy rule simply does not enter v. We expect v to be a relatively
smooth function in k@ for "xed h because this function has only the second type
of kink. In the case where h@ has a continuous distribution, we expect v to have
no kinks in k@ at all.14

We now consider the smoothness of v and e in h for each "xed k. We consider
this issue in the only case where it is interesting, namely, where h has continuous
support. First, the only way that h enters v is via the conditional density, ph{(h@Dh).
The conditional densities typically used in practice are di!erentiable in h, and so
for these densities, v is too.15 Second, when g is viewed as a function of h for "xed

13We implicitly assume that the value(s) of k where g(k, h) has a kink varies nontrivially with h.
For an illustration of the proposition that the second type of kink has a relatively small impact on e,
see Fig. 2 in den Haan (1997). The solid line in that "gure graphs the analog of our e function for
a wealth accumulation problem in which the exogenous shock (the analog of our h@) can take on two
values. The curve in den Haan's "gure has two kinks. The more pronounced one is an example of our
"rst type of kink, whereas the smaller one is an example of our second type.

14The following example illustrates some of the points in the preceding two paragraphs. Suppose

m(k@, h@)"max(k@,h@), for k@, h@3[ k, k ]. Let f (k@),:k
k
m(k@, h@) dh@"k@(k@!k)#0.5(k!k@)2. The func-

tion f, which is the analog of v, is clearly di!erentiable in k@ even though m(k@, h@) is not. Now, suppose
g(k) is some non-di!erentiable function. Then the composite function, fI (g)"f (g(k)), which is the
analog of e, is not di!erentiable either. Thus, f is smoother than fI .

15When the technology shock is i.i.d., then v is not even a function of h. This is a great
simpli"cation from a computational perspective.
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k, it is likely to have a kink in it. The argument in the previous paragraphs
indicates that this kink will be inherited by the e function too. We conclude that
v is also likely to be smoother than e in h.

2.5. Asset prices

We are interested in the properties of the quantity allocations that solve the
planning problem, and also in the rates of return and prices in the underlying
competitive decentralization. In particular, we are interested in the consumption
cost of end-of-period capital (i.e., Tobin's q) and the annualized rate of return on
equity and risk free debt, R% and R&. We think of the time unit of the model
as being one quarter, so that obtaining annualized returns requires raising
quarterly returns to a fourth power. The rates of return and prices that interest
us are:

q(k, h)"1!
h(k, h)

;
#
(k, g(k, h), h)

,

R& (k, h)"100GC
;

#
(k, g(k, h), h)

b:;
#
(g(k, h), g(g(k, h), h@), h@)ph{(h@ D h) dh@D

4
!1H ,

R%(k, h, h@)"100GC
f @(g(k, h), h@)#(1!d)q(g(k, h), h@)

q(k, h) D
4
!1H . (18)

It is easy to establish that 04q(k, h)41. The result, q41, follows from the
non-negativity of the Lagrange multiplier, h. The result, q50, follows from
Eqs. (3), (5), ;

#
50, and the non-negativity of m in Eq. (6). The event in which

the constraint binds corresponds to the event q(k, h)(1. It is easily veri"ed that
in a competitive decentralization of this economy where households own the
capital stock and undertake investment, q is the price of end-of-period capital in
consumption units, R% is the rate of return on capital, and R& is the rate of return
on risk free debt.16

3. Weighted residual solution methods

The computational algorithms we consider in this paper are special cases of
the framework in Reddy (1993)'s numerical analysis text, which corresponds
closely to the framework presented in Judd (1992, 1998). This framework is
designed for problems in which one seeks a function, say f: DPQ, which solves

16See Sargent (1980) and Christiano and Fisher (1998) for a more detailed analysis of Tobin's q in
a general equilibrium environment like ours.
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the functional equation, F(s; f )"0 for all s3D, where D is a compact set. This
can be a di$cult problem when, as in our case, there is a continuum of elements
in D. Then, "nding a solution corresponds to a problem of solving a continuum
of equations (one for each s) in a continuum of unknowns (one f value for each s).
Apart from a few special cases, in which F has a convenient structure, an exact
solution to this problem is computationally intractable.

Instead, we select a function, fK
a
, parameterized by a "nite set of coe$cients, a,

and choose values for a, aH, to make F(s; fK
a
) &small'. Weighted-residual methods

compute aH as the solution to what Reddy (1993, p. 580) refers to as the
weighted-residual form:

PF(s; fK
a
)wi(s) ds"0, (19)

where i ranges from unity to a number which equals the dimension of a.
Expression (19) corresponds to a number of equations equal to the number of
unknowns in a. The choice of weighting functions in Eq. (19) operationalizes the
notion of &small'. For example, if for some i, wi"1 for all s, then F(s; fK

a
) small

means, among other things, that the average of F(s; fK
a
), over all possible s, is zero.

If for some i, wi is a Dirac delta function isolating some particular point s, then
F(s; fK

a
) small means it is precisely zero at that point, and so on.

To apply the weighted-residual method, one has to select a family of approxi-
mating functions, fK

a
, a set of weighting functions, wi(s), and strategies for

evaluating the integral (19) and any integrals that may go into de"ning F. The
procedures we consider make di!erent choices on these three dimensions. Two
general types of fK

a
functions include spectral and xnite element functions. In the

former, each component of a in#uences fK
a
, over the whole range of s while in the

latter, each component of a has in#uence over only a limited range of s's.
We consider three types of weighting functions. In one, the wi(s)'s are related to
the basis functions generating fK

a
, in which case the algorithm is an example of

the Galerkin method. In another, a is chosen so that F is zero at a number of
values of s equal to the number of unknown elements in a. In this case, the wi(s)'s
are Dirac delta functions, and the algorithm is an example of the collocation
method. Finally, two numerical procedures are used to evaluate the integrals in
Eq. (19) and F: quadrature methods and Monte Carlo integration. We now turn
to a detailed discussion of several of the algorithms considered.

4. Algorithms for solving the model

Some of the algorithms considered are either original to this paper, or are
signi"cant modi"cations to algorithms proposed in the literature. These are
reviewed in this section. They are all spectral methods. One approximates the
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policy function and multiplier function with Chebyshev polynomials. This is an
adaptation of the methods advocated in Judd (1992, 1994, 1998). Judd does not
consider problems with occasionally binding constraints, which is the focus of
our analysis. The other set of spectral methods studied are derived from
Marcet's (1988) and Wright and Williams (1982a, b, 1984) strategy for approxi-
mating conditional expectation functions. In our numerical analysis several
"nite element methods are considered too. However, we follow closely the
published versions of these algorithms, and so we leave the details to the
appendix.

In the "rst subsection we consider a solution strategy based on parameteriz-
ing the policy and multiplier functions. In the second subsection we consider
strategies based on approximating conditional expectation functions. To sim-
plify the presentation, we focus on the two-state Markov case, h

t
3H,M!p,pN.

Later, we do verify robustness of our numerical results by considering the
continuous h

t
case for one model parameterization.

4.1. Parameterizing the policy and multiplier functions

In this subsection, we work with the policy function and Lagrange multiplier
characterization of the solution to the model. Consider "rst the reversible
investment version of our model, so that the approximation to h, hK

a
, is identi-

cally 0. In this case, we approximate the policy rule as follows:

g(k, h)+g(
a
(k, h),a@h¹(u(k)), for h"!p,p, (20)

where ah is an N]1 vector of parameters to be solved for, h"!p,p, and
¹(x)"[¹

0
(x),¹

1
(x),2, ¹

N~1
(x)]@. The basis functions for g(

a
, ¹

i
(x): [!1, 1]P

[!1, 1], i"0,2,N!1, are Chebyshev polynomials.17 Also,

u: [ k, k ]P[!1, 1], u(k)"2
k!k

k!k
!1. (21)

Let a"[a@p a@
~p]@ denote the 2N]1 dimensional vector of parameters for g(

a
.

The 2N weighting functions, wi(k, h), are constructed from the basis functions
as follows:

wi(k, h)"
1

(1!u(k)2)1@2

dg(
a
(k, h)

da
i

, (22)

for i"1,2, 2N. It is readily veri"ed from Eq. (20) that one of dg(
a
(k,p)/da

i
and

dg(
a
(k,!p)/da

i
is zero and the other is a Chebyshev polynomial, for each i.

17The Chebyshev polynomials are de"ned as follows: ¹
0
(x),1, ¹

1
(x)"x, and

¹
i
(x)"2x¹

i~1
(x)!¹

i~2
(x), for i52.
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In the irreversible investment version of the model, we must parameterize the
policy and Lagrange multiplier functions so that they respect the Kuhn}Tucker
conditions, (4). We impose (and subsequently verify) that the irreversible invest-
ment constraint never binds for h"p. Thus, we restrict the space of approxi-
mating functions for g(k, h) as follows:

g(k,p)+g(
a
(k, p), (23)

g(k,!p)+g(
a
(k,!p),maxMg8

a
(k), log(1!d)#kN, for all k3[ k, k ].

(24)

Also,

h(k,!p)+hK
a
(k,!p),G

0, g(
a
(k,!p)'log(1!d)#k,

maxMhI
a
(k), 0N, g(

a
(k,!p)4log(1!d)#k.

(25)

We choose functional forms for g(
a
(k, p), g8

a
(k), and hI

a
(k) as follows:

g(
a
(k, p)"a@p¹(u(k)), g8

a
(k,!p)"a@

~p¹(u(k)), hI
a
(k)"b@¹(u(k)).

Here, ¹ is the N]1 column vector of Chebyshev polynomials de"ned after Eq.
(20), and ap, a

~p, b are N]1 column vectors of parameters. All elements of
ap are permitted to be non-zero, while only the "rst N

~p and N
b

elements of
a
~p and b, respectively, can be non-zero. We adopt the restriction

N"N
~p#N

b
. Also, let the vector of parameters, a, be composed of the

nonzero elements of ap, a
~p, b, so that a has length 2N. The 2N weighting

functions are chosen analogously to Eq. (22).
The analog of Eq. (19) is evaluated using M-point Gauss}Chebyshev quadra-

ture. To do this, we need the M5N grid points, k
j
, where

k
j
"u~1(r

j
), r

j
"cosA

n ( j!0.5)

M B, j"1,2,M. (26)

Here, the r
j
's are the M roots of the Mth order Chebyshev polynomial,

¹
M

(x). For arbitrary a, the M-point Gauss}Chebyshev quadrature approxima-
tion to the weighted residual form of the problem (i.e., the analogue of
Eq. (19)) is:

PPR(k, h; g(
a
, hK

a
)wi(k, h) dkdh

+

n
M

M
+
j/1

R(k
j
, p; g(

a
, hK

a
)wi(k

j
, p)#

n
M

M
+
j/1

R(k
j
,!p; g(

a
, hK

a
)wi(k

j
,!p),
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for i"1,2, 2N. To express this system of equations in matrix terms, we form
the M]N matrix X of rank N:

X"[¹(r
1
)¹(r

2
)2¹(r

M
)]@. (27)

By an orthogonality property of Chebyshev polynomials, the columns of X are
orthogonal. Using this notation, the Gauss}Chebyshev quadrature approxima-
tion of the weighted residual form is written compactly as follows:

X@R(a, h)"0, h"!p,p, (28)

where

R(a, h),[R(k
1
, h; g(

a
, hK

a
), R(k

2
, h; g(

a
, hK

a
),2, R(k

M
, h; g(

a
, hK

a
)]@. (29)

Expression (28) represents a nonlinear system of 2N equations in the 2N
unknowns, a, which can be solved using widely available software. Below, we
refer to this method as Spectral-Galerkin.

For later purposes it is convenient to note that if M"N, then X is square and
invertible, so the method reduces to setting R(k

j
, h; g(

a
, hK

a
)"0 for j"1,2, M

and for h"!p,p. In this case, Spectral-Galerkin reduces to a collocation
method.

4.2. Parameterizing the conditional expectation

We now discuss methods based on approximating conditional expectations.
We distinguish between the type of conditional expectation being approximated
and the method used to compute the approximation. We consider two types of
conditional expectations, the one that is the focus of Marcet's (1988) analysis (see
e in Eq. (8) or (12)) and the one that is the focus in Wright and Williams (1982a,
b, 1984) (see v in Eq. (14)). We consider two ways of approximating the
conditional expectation, one based on the nonlinear regression methods ad-
vocated by Marcet (1988) and another that is closely related to the methods
advocated by Judd (1992) for approximating equilibrium functions. To simplify
the discussion, we focus on methods that approximate the e function and we
indicate brie#y how the methods must be adjusted to obtain an approximation
to v.

For PEAs which approximate e,

Pm(g(k, h), h@; g, h)ph{(h@ D h) dh@+exp[e(
a
(k, h)].

Here, e(
a
(k, h) is a function with a "nite set of parameters, a. In the reversible

investment version of our model economy, hK
a
,0 and the relation linking the

policy function, g(
a
, to e(

a
can be expressed analytically:

g(
a
(k, h)"logMexp(h#ak)#(1!d)exp(k)!;~1

#
[b exp(e(

a
(k, h))]N, (30)
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where;~1
#

[ ) ] is the level of consumption implied by a given value for;
c
. In the

irreversible investment version of the model, Eqs. (9) and (10) reduce to

g(
a
(k, h)"log[maxM(1!d)exp(k), exp(h#ak)#(1!d)exp(k)

!;~1
#

[b exp(e(
a
(k, h))]N],

hK
a
(k, h)";

#
(k, g(

a
(k, h), h)!bexp[e(

a
(k, h)].

We begin by describing a PEA implemented by Marcet (1988), which we refer
to as conventional PEA. We then interpret that algorithm as a weighted residual
method and use this as a basis for discussing alternative PEAs.

4.2.1. Conventional PEA
In our implementation of conventional PEA, we parameterize the conditional

expectation function as follows:

e(
a
(k, h)"a@hP(u(k)), for h"!p,p, (31)

where ah is the N]1 vector of parameters to be solved for, and P(x)"
[P

0
(x),P

1
(x),2, P

N~1
(x)]@. The basis functions for e(

a
, P

i
(x): [!1, 1]P

[!1, 1], i"0,2,N!1, are the Legendre polynomials.18 The function u is
de"ned in Eq. (21), and a"[a@p a@

~p]@ denotes the 2N]1 dimensional vector of
parameters for e(

a
.

The conventional PEA applies the following successive approximation
method for "nding aH. Before initiating the calculations, simulate a series of
length M#1, Mh

0
, h

1
,2, h

M
N, using a random number generator. Suppose an

initial guess for the 2N-dimensional parameter vector a is available. A new
value, a8 , is computed in two steps:

1. compute Mk
1
, k

2
,2, k

M`1
N recursively from k

t`1
"g(

a
(k

t
, h

t
), t"0, 1,2M

using Eq. (30) and a given initial value, k
0
, and simulate

m
t`1

"m(g(
a
(k

t
, h

t
), h

t`1
; g(

a
, hK

a
), for t"1,2,M using (6),

2. "nd a8 , the solution to the following nonlinear least-squares regression
problem:

a8 "arg min
a6 |R2N

1

M

M~1
+
t/0

[m
t`1

!exp(e(
a6
(k

t
, h

t
))]2. (32)

Let the mapping from a to a8 de"ned by the above two steps be denoted by
a8 "S(a;N, M). The conventional PEA seeks aH, where aH!S(aH;N, M)"0, as

18The ith polynomial is P
i
(x)"1#ai

1
x#2#ai

i
xi, with the a's de"ned by the requirement

P
0
(x),1 and :1

~1
P

i
(x)P

j
(x) dx"0 for j"0,2, i!1 and i51. These polynomials were chosen to

help mitigate possible computational problems arising from multicollinearity in step 2 of the
conventional PEA, which is discussed below. We have not investigated whether computational
results are sensitive to the choice of polynomial. Mathematically, there is no sensitivity.
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the limit of the sequence a,S(a;N,M), S[S(a;N, M);N,M],2 . As noted by Judd
(1998, chapter 13) and Marcet (1988), this algorithm can yield explosive, oscilla-
tory sequences, a, a8 ,2, particularly for high values of N. One alternative is to
instead iterate on the operator SI , where SI (a; N,M)"(1!k)a#kS(a;N,M), for
a small "xed value of k. A problem with this approach is that it may require
time-consuming experimentation with alternative values of k. In our experience,
solving for aH by applying numerical methods to solve the system of equations,
a!S(a;N, M) "0, often yields superior results. See Marcet and Marshall
(1994) for a discussion of the existence of aH and of the properties of
exp[e(

a
H(k, h)], g(

a
H(k, h) as M, NPR.

Two features of conventional PEA are particularly notable. First, the simula-
tion step which produces the synthetic time series of m

t`1
's works with points

assigned high probability by ph{ and g(
a
. Second, conventional PEA involves

a nonlinear regression in step 2, which is computationally burdensome.19 This
re#ects: (i) the fundamental nonlinearity of the problem, (ii) the large value of
M that is required in practice to obtain acceptable accuracy, and (iii) the
problems of multicollinearity among regressors that arise in practice for even
moderate values of N (den Haan and Marcet (1990)).

An approximation, v(
a
, to the v function in Eq. (14) can be obtained

using conventional PEA by implementing a simple adjustment to each of the
two steps in the above algorithm. In step 1, the policy and multiplier functions
are derived from the parameterized expectation, v(

a6
(k

t`1
, h

t
), using the

mapping de"ned after Eq. (14). In step 2, e(
a6
(k

t
, h

t
) is replaced by v(

a6
(k

t`1
, h

t
). As

noted previously, when the h
t
's are iid over time, h

t
can be dropped as an

argument in v(
a6
(k

t`1
, h

t
), reducing the number of parameters to be computed

from 2N to N.

4.2.2. Conventional PEA as a weighted residual method
To see that the conventional PEA is a particular weighted residual method,

note "rst that for M large and for given a, the "rst order necessary and su$cient
conditions associated with the value of a8 that solves Eq. (32) are:

PPP [m(g(
a
(k, h), h@; g(

a
, hK

a
)!exp(e(

a8
(k, h))]exp(e(

a8
(k, h))

]
de(

a8
(k, h)

da
i

p(k, h, h@; a) dkdh dh@"0,

for i"1,2, 2N. Here, p(k, h, h@; a) is the joint density of k, h, h@, induced by
g(
a
and ph{. It is readily veri"ed that, for large M, aH solves the version of (19) with

19See Marshall (1992) for a discussion of strategies for easing the burden of this step.
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F"RM 1%! (for RM 1%!, see Eq. (8)) and weighting functions

wi(k, h; aH)"
p(k, h, h@; aH)

ph{(h@ D h)
exp(e(

a
H(k, h))

de(
a
H(k, h)

da
i

, (33)

for i"1,2, 2N.
In sum, conventional PEA is a weighted residual method that works with the

family of approximation functions, g(
a
, de"ned by Eqs. (30) and (31); that uses the

set of weighting functions given by Eq. (33); and that evaluates all integrals by
Monte Carlo simulation. The weighting functions emphasize (k, h, h@) that are
assigned high probability by the model. As noted above, this is re#ected in step
1 of the conventional PEA, the simulation step.

4.2.3. Alternative weighted residual PEAs
Once the conventional PEA is expressed as a weighted residual method, it is

clear that there are many other PEAs. Alternative "nite parameter functions can
be used to parameterize expectations, and there exists a variety of alternative
weighting schemes and strategies for evaluating integrals. Here, we discuss one
particularly promising class of approaches, which includes the Galerkin and
collocation weighted residual methods. We refer to this class as Chebyshev PEA,
because of its reliance on Chebyshev polynomials as basis functions. Again, the
focus of the analysis is on approximating the e function, de"ned in Eq. (12), and
we indicate brie#y how things must be adjusted when v is the function to be
approximated.

The Chebyshev PEAs adopt two modi"cations on the weighted residual
formulation of conventional PEA. First, they work with a slightly modi"ed
representation of the residual function, R1%!, de"ned in Eq. (12). Substantively,
there is no di!erence between the e function that solves R1%!"0 or RM 1%!"0.
However, we shall see that working with the former allows Chebyshev PEAs to
avoid the cumbersome nonlinear regression in step 2 of the conventional PEA.
Second, e(

a
is constructed using Chebyshev polynomials as basis functions. Thus,

e(
a
(k, h)"a@h¹(u(k)), for h"!p,p, (34)

where ah is an N]1 vector of parameters and a"[a@
~p a@p]@, as before. Also, u is

de"ned in Eq. (21), and ¹( ) ) is de"ned after (20). Advantages of using
Chebyshev polynomials as basis functions for e(

a
are discussed below.

The weighted residual form of the problem is (19) with F replaced by R1%! and

wi(k, h)"
1

(1!u(k)2)1@2
de(

a
(k, h)

da
i

,

where e(
a

is de"ned in Eq. (34). As in Eq. (28), for arbitrary a, the M-point
Gauss}Chebyshev quadrature approximation to Eq. (19) is, in matrix form,

X@R1%!(a, h)"0, for h"!p,p, (35)
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where X is an M]N matrix de"ned as in Eq. (27). Also, the M]1 vector
R1%!(a, h) is de"ned analogously to R(a, h) in Eq. (29).

It is convenient to write Eq. (35) in a way that re#ects its special structure.
Let

e(
a
(h)"A

e(
a
(k

1
, h)

e(
a
(k

2
, h)

F

e(
a
(k

M
, h)B ,

>
a
(h)"C

log(:m(g(
a
(k

1
, h), h@; g(

a
, hK

a
)ph{(h@Dh) dh@)

log(:m(g(
a
(k

2
, h), h@; g(

a
, hK

a
)ph{(h@Dh) dh@)

F

log(:m(g(
a
(k

M
, h), h@; g(

a
, hK

a
)ph{(h@Dh) dh@)D , for h"!p,p,

(36)

where g(
a
is derived from e(

a
using Eq. (30). Also,

D"(X@X)~1, D"

1

M C
1 0 2 0

0 2 2 0

F F } F

0 0 2 2D .

Premultiplying Eq. (35) by D and taking into account e(
a
(h)"Xah, Eq. (35) may

be written

DX@R1%!(a,h)"DX@[>
a
(h)!Xah]"DX@>

a
(h)!a(h)"0, for h"!p,p.

Or, stacking this for h"!p and p:

S1%!(a;N,M)!a"0, S1%!(a; N,M)"C
DX@>

a
(!p)

DX@>
a
(p) D . (37)

Since Eq. (37) is just the individual equations in Eq. (35) scaled by non-zero
constants, the two systems are equivalent. Thus, "nding aH that solves Eq. (35) is
equivalent to "nding aH such that S1%!(aH; N,M)!aH"0.

Consider the following successive approximation method for "nding aH.
Before initiating the calculations, compute a "xed set of grid points,
k
j
, j"1,2,M, using Eq. (26). Suppose a given initial guess for the 2N-

dimensional parameter vector a is available. A new value, a8 , is computed in two
steps:

1. compute the M]1 vectors, >
a
(h), h"!p,p,
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2. "nd a8 "(a8 @
~p, a8 @p)@, the coe$cients in the linear regressions of >

a
(h) on the

columns of X:

a8 h"(X@X)~1X@>
a
(h)"DX@>

a
(h), h"!p,p. (38)

If the sequence, a, S1%!(a; N,M),S1%![S1%!(a;N,M);N,M],2 converges, then the
limit point, aH, solves Eq. (35). We implement an alternative strategy to solve for
aH, by applying numerical methods to solve the system of equations,
a!S1%!(a;N, M)"0. When M"N, then X is square and Eq. (35) reduces to
R1%!(k

j
, h; e(

a
)"0, j"1,2, N, h"!p,p. In this case the algorithm is a collo-

cation method, and we refer to it as PEA collocation. When M'N, we refer to
this as PEA Galerkin. Each is a special case of Chebyshev PEA.

We can now highlight some of the di!erences between conventional and
Chebyshev PEA. In each case, the heart of the algorithm lies in two steps,
a simulation step (step 1) and a regression step (step 2). A distinctive feature of
the simulation step under Chebyshev PEA is that a "xed distribution of capital
stocks is considered.20 Later we show that those capital stocks are more widely
dispersed relative to the ones considered under conventional PEA. We argue
that this feature of Chebyshev PEA permits it to achieve a given amount of
accuracy with a smaller value of M than is required for conventional PEA. As
for the regression step, it is computationally burdensome under conventional
PEA and even breaks down for N large due to multicollinearity reasons. In
contrast, under Chebyshev PEA, the regression step is trivial.

To obtain an approximation, v(
a
, to the v function in Eq. (14) using Chebyshev

PEA simply requires an adjustment to the "rst step in the above algorithm.
Namely, compute >

a
(h) as in (36) with g(

a
(k

i
, h) replaced by k

i
, i"1,2,M. In

addition, the functions g(
a

and hK
a

used in constructing >
a
(h) are derived from

v(
a
using the mapping de"ned after Eq. (14), with k@ evaluated at k

i
, i"1,2, M.

As noted above, when h is iid over time, this modi"ed version of >
a
(h) is not

a function of h and so v(
a

is not either.

4.2.4. The role of Chebyshev polynomials in Chebyshev PEA
We see two advantages of using Chebyshev polynomials in Chebyshev PEA.

First, the orthogonality property of the columns of X de"ned after Eq. (35)
re#ects that we construct the grid of k

j
's based on the zeros of a Chebyshev

polynomial. This is why the linear regression step in Eq. (38) is trivial. For
example, we have applied the algorithm without di$culty with N as high as 100.
In contrast, we had di$culty executing the regression step in conventional PEA
(see Eq. (32)) for N larger than 5 because of multicollinearity problems.21

20This feature is also present in Gaspar and Judd (1997).

21We did not do the experiments necessary to determine whether the multicollinearity problems
we encountered would have been less or greater if we had used ordinary polynomials instead of
Legendre polynomials.

1200 L.J. Christiano, J.D.M. Fisher / Journal of Economic Dynamics & Control 24 (2000) 1179}1232



Second, the Chebyshev interpolation theorem (see Judd 1992, 1998) provides
some motivation for selecting the grid of capital stocks based on the roots of
a Chebyshev polynomial, at least for PEA collocation. There is some hope that
one can establish rigorously that

sup
(k{, h)|* k}, k +CH

DDv(
a
!vDDP0, as NPR,

when M"N. For further discussion, see Christiano and Fisher (1997).

5. Evaluating the algorithms

This section evaluates the performance of several algorithms in solving each
of seven parameterizations of our model. We consider a broad range of algo-
rithms. This includes the ones described in the previous section. In addition, we
consider two "nite element methods (FEM) which are described in detail in the
appendix. The "rst of these FEMs, FEM collocation, is a varient of the method
implemented by Bizer and Judd (1989), Coleman (1997), Coleman et al. (1992),
Coleman and Liu (1997), and Danthine and Donaldson (1981). It works with the
Lagrangian formulation of the planning problem and approximates the policy
rule and multiplier function with a piecewise polynomial. As its name suggests,
this is a collocation method, in which the weighting functions are Dirac delta
functions. The second FEM, FEM Galerkin, is a varient of the method
implemented in McGrattan (1996). It also approximates the policy function
with a piecewise polynomial. However, instead of taking the irreversibility
constraint into account using a multiplier function, this method makes use of
penalty functions. Also, the weighting function used in this method is the set of
basis functions for piecewise polynomials. For convenience, Table 1 contains
names and summary descriptions of the various algorithms discussed in this
paper.

Implementation of each method requires an initial guess of the solution. For
the Lagrange multiplier we use the zero function, and for the policy function we
use a standard log-linear approximation, truncated so that gross investment is
non-negative.22 We also obtain a solution to each parameterization using
standard dynamic programming methods, and treat this as the &true' solution for
the purpose of evaluating the other algorithms. Details about the dynamic
programming method used are reported in the appendix.

22Details of the log-linear approximation procedure we used are described in Christiano (1991,
Appendix). We initiate the PEA calculations by using the multiplier and policy functions just
described the "rst time the simulation step (step 1) is executed.
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Table 1
Summary of the computational strategies considered

Computational
strategy!

Object Residual Evaluation
approximated weighting scheme of integrals

Spectral methods"

Conventional PEA Marcet conditional Model-implied density Monte Carlo
expectation for capital and technology

Modi"ed Marcet conditional Exogenous density Monte Carlo
conventional PEA expectation for capital and technology
Chebyshev PEA Marcet and Dirac delta functions Quadrature

Wright-Williams
conditional expectation

(if collocation)
Galerkin (if Galerkin)

PEA collocation Marcet and Dirac delta functions Quadrature
Wright-Williams
conditional expectation

PEA Galerkin Marcet conditional Galerkin Quadrature
expectation

Spectral-Galerkin Policy and multiplier Galerkin Quadrature
functions

Finite element methods#

FEM collocation Policy and multiplier Dirac delta functions Quadrature
functions

FEM Galerkin Policy function Galerkin Quadrature

!These names are intended as a convenient shorthand only. For example, technically PEA
Galerkin is a Spectral Galerkin method too.
"We used polynomials.
#We used piecewise linear functions.

In analyzing the properties of various model solutions, we do not examine the
computed values of aH, since these are hard to interpret. Instead, we analyze the
implications of aH for various "rst and second moment properties of several
model variables. We obtain these implications for any particular model solution
by simulating a data set of length 100,500, discarding the "rst 500 observations,
and using the rest to compute the "rst and second moments of interest. In
addition to analyzing the second moment implications of the solutions, we also
directly examine computed policy functions and the implied Euler equation
residuals.

The "rst subsection that follows discusses the seven model parameterizations
that we consider. We then analyze the properties of the PEAs. The "nal
subsection presents a direct comparison of all the algorithms.
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5.1. Model parameterizations considered in the analysis

The utility function,;, and Markov transition matrix, ph{, used in the analysis
have the following form:

;(c)"
c1~c!1

1!c
, ph{"C

1`o
2

1~o
2

1~o
2

1`o
2
D.

The parameter o is the "rst order autocorrelation of h and p is the associated
standard deviation. In the benchmark parameterization, labelled model (1) in
Table 2, b"1.03~0.25, c"1.0, a"0.3, d"0.02, p"0.23, o"0. The relative-
ly large value of p was chosen to guarantee that the investment constraint would
bind a substantial fraction of times. For the other model parameterizations, we
perturb the benchmark values in the manner indicated in rows (2)}(7) of Table 2.
The perturbations were chosen to provide information about the robustness of
our results. They include parameterizations with increased curvature in utility
(see row (2)) and production (rows (3) and (4)), and with more persistence and
variance (rows (5) and (6), respectively) in the technology shock. When we
increased the curvature in production, we found that p had to be adjusted
simultaneously so that the constraint on investment would continue to bind
occasionally. In these cases we adjusted p so that the constraint binds roughly
20% of the time. Row (7) reports a parameterization in which curvature in
preferences and technology, and persistence in the technology shock, were
increased simultaneously. We also considered a perturbation in which the
technology shock is a continuous random variable, and that is discussed
below.

Figs. 2 and 3 present information about the model solutions for the seven
parameterizations. The solid curves graph I(k, h),g(k, h)!log(1!d)!k, and
the price of capital, q(k, h), against k for h"p and !p. In the top two rows of

Table 2
Parameterizations considered

Parameter values

Model b c a d p o

(1) 1.031@4 1 0.3 0.02 0.23 0
(2) 1.031@4 10 0.3 0.02 0.23 0
(3) 1.031@4 1 0.05 0.02 0.0382 0
(4) 1.031@4 1 0.3 0.5 0.675 0
(5) 1.031@4 1 0.3 0.02 0.23 0.95
(6) 1.031@4 1 0.3 0.02 0.40 0
(7) 1.031@4 10 0.1 0.02 0.23 0.95
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Fig. 2. Policy functions for models (1)}(4). Notes: i. In each plot the middle vertical line indicates
the non-stochastic steady state value of k; the other two vertical lines de"ne a symmetric 95%
con"dence interval for k. ii. The solid lines in each plot are exact solutions for the indicated policy
function; in the top two rows the dashed line is a log-linear approximation to the indicated policy
function.
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Fig. 3. Policy functions for models (5)}(7). Note: See the notes to Fig 2.

these "gures the dashed curves graph I(k, h) with the exact g(k, h) replaced by its
log-linear approximation. Finally, each graph has three vertical lines. The
middle one is the nonstochastic steady state value of k and the other two de"ne
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a symmetric 95% con"dence interval for k. Several things are worth noting in
these "gures. First, when h"p, the non-negativity constraint on investment is
never binding. Second, the interval over which it binds when h"!p is in most
cases in the region of large capital stocks. However, in model (2) it binds for
small values of the capital stock.23 Third, the functions are quite sensitive to
model parameterization. In six of the seven parameterizations, investment is
decreasing in k when h"!p and in the other one it is increasing. Also, the
general degree of nonlinearity in the functions varies considerably across para-
meterizations, although there is always a pronounced kink in the neighborhood
where the constraint starts to bind.

5.2. The PEAs

5.2.1. Conventional PEA
Table 3 provides information on the performance of conventional PEA in

approximating the conditional expectation, exp[e(k, h)], that is the focus of
Marcet's (1988) analysis. The question that interests us is how well the algorithm
works for the values of M and N used in practice. For the results in Table 3, we
set M"10,000. By way of comparison, to solve the growth model, den den
Haan and Marcet (1990) use M"2500, den den Haan and Marcet (1994) use
M"29,000, and den Haan (1995) uses M"25,000. Also, we set N"3. As we
shall see, with this value for N and given M"10,000, the benchmark model's
implications for the second moment properties of quantities are acceptable.

Recall that aH obtained by conventional PEA is a function of a random draw
of M#1 random variables, Mh

0
, h

1
,2, h

M
N. As a result, aH is itself a random

variable. To assess the usefulness of conventional PEA as a solution method,
therefore, it is important to consider both bias and Monte Carlo sampling
uncertainty in the "rst and second moment properties implied by approximate
solutions obtained with it. To investigate this, we solved each model para-
meterization I"500 times, each time with an independent random draw,
Mh

0
,h

1
,2, h

M
N. When implementing conventional PEA, we always started by

using numerical methods to solve the system of equations, aH!S(aH; N,M)"
0.24 When this method is successful at "nding a solution, we found it does so
more quickly than does the successive approximation method.

The "rst three terms in each cluster of four numbers in Table 3 provide
information about bias. The unbracketed term is the value of the statistic, s,
indicated in the "rst column implied by the dynamic programming solution. We

23 It is not apparent in Fig. 2, but the region in which the constraint binds in model (2) is strictly
interior to the ergodic set for capital.

24Here and throughout the rest of the paper, we apply the version of the quasi-Newton algorithm
with Broyden's secant update method implemented in the GAUSS procedure NLSYS.
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Table 3
Bias and Monte Carlo variation in conventional PEA

Parameterizations

Statistic (1) (2) (3) (4) (5) (6) (7)

Panel A } Quantities

p
y

66.0 67.9 3.95 68.8 84.8 125.0 34.2
[!0.2] [!0.6] [!0.04] [!0.3] [0.1] [!0.3] [!0.2]
(0.004) (0.02) (0.001) (0.01) (0.02) (0.003) (0.04)
S0.1T S0.5T S0.01T S0.1T S0.5T S0.1T S0.9T

p
c

10.2 7.50 1.01 34.3 49.7 45.4 12.4
[!1.1] [1.1] [!0.2] [!0.9] [!0.2] [!1.0] [6.3]
(0.03) (0.1) (0.04) (0.01) (0.02) (0.01) (0.5)
S0.7T S1.6T S0.9T S0.3T S0.0T S0.3T S10.6T

p
i

61.9 65.9 3.42 36.1 43.8 80.8 23.1
[0.04] [!0.8] [0.3] [!0.1] [0.3] [0.2] [!3.8]
(0.01) (0.03) (0.01) (0.02) (0.1) (0.01) (0.3)
S0.2T S0.6T S0.2T S0.4T S1.4T S0.3T S7.3T

o(y, c) 0.47 0.32 0.61 0.98 0.92 0.98 0.94
[!3.0] [3.5] [!0.3] [!0.3] [!0.1] [0.2] [!0.2]
(0.05) (0.2) (0.02) (0.001) (0.01) (0.002) (0.1)
S1.1T S4.4T S0.5T S0.03T S0.3T S0.1T S1.1T

o(y, i) 0.99 0.99 0.97 0.98 0.90 0.99 0.98
[!0.1] [0.40] [0.3] [0.01] [!0.5] [0.5] [!0.2]
(0.001) (0.001) (0.002) (0.002) (0.02) (0.001) (0.03)
S0.01T S0.02T S0.1T S0.04T S0.4T S0.02T S0.7T

Panel B } Asset prices and returns

ERe 3.20 3.08 3.01 309.5 2.94 59.8 1.44
[!0.1] [25.1] [0.4] [2.0] [!0.2] [!1.7] [1.6e 8]
(0.05) (1.9) (0.02) (0.1) (0.1) (0.04) (1.6e 8)
S1.04T S33.6T S0.5T S1.1T S2.7T S0.9T S2124T

ERf 3.00 2.47 3.00 8.6 2.88 19.7 !5.42
[1.8] [9.0] [0.6] [30.3] [!0.1] [2.6] [36.8]
(0.01) (0.3) (0.001) (0.1) (0.01) (0.03) (2.7)
S0.13T S6.3T S0.01T S1.4T S0.2T S0.6T S42.3T

E(Re!Rf) 0.20 0.60 0.02 300.9 0.06 40.1 6.86
[!25.8] [93.5] [!77.6] [1.2] [!3.5] [!3.8] [3.3e 7]
(0.7) (8.5) (4.6) (0.1) (6.1) (0.04) (3.3e 7)
S20.4T S97.9T S460.7T S1.1T S141.3T S1.0T S2124T

p
q

1.07 2.01 0.31 6.41 0.59 14.2 13.7
[!5.4] [26.8] [!2.6] [!1.9] [1.4] [!0.7] [7.9]
(0.1) (3.0) (0.1) (0.1) (0.8) (0.01) (1.1)
S3.5T S52.9T S1.5T S1.4T S17.3T S0.3T S22.0T
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Table 3 (Continued)

Parameterizations

Statistic (1) (2) (3) (4) (5) (6) (7)

o(y, q) 0.40 0.31 0.38 0.33 0.09 0.99 0.47
[!8.2] [7.3] [!7.6] [1.5] [3.2] [!0.2] [!0.3]
(0.1) (1.5) (0.04) (0.02) (0.35) (0.002) (0.7)
S2.4T S31.2T S1.0T S0.4T S7.6T S0.1T S14.5T

Freq(q(1) 24.6 9.2 19.9 20.3 3.8 49.7 31.0
[!12.5] [25.5] [!12.6] [6.7] [!2.0] [!3.8] [!7.2]
(0.1) (3.0) (0.1) (0.04) (0.4) (0.004) (0.6)
S2.9T S52.6T S1.5T S0.8T S12.6T S0.1T S13.3T

Panel C } Computation times in seconds

Time 26.5 28.8 25.6 38.7 19.3 26.5 406

Notes: i. Unbracketed numbers: statistic, s$1, based on a single simulation of length 100,000
generated using dynamic programming solution.

ii. Square bracketed numbers: 100 ) (s6!s$1)/s$1, where s6 is the mean of the statistic across I"500
simulated data sets of length 100,000 observations each. Each of the I datasets was generated by
a di!erent conventional PEA solution. For model (7), 48 of the arti"cial datasets had to be discarded
because the capital stock converged to zero.

iii. Round bracketed numbers: Monte Carlo standard error, 100 ) p
s
/(I ) s$1), for the object in

square brackets. Here p
s

is the standard deviation of the statistic across I conventional PEA-
generated datasets.

iv. Angular bracketed numbers: coe$cient of variation, 100 )p
s
/s6 .

denote this term by s$1. The term in square brackets, 100(s6!s$1)/s$1, measures
the bias in conventional PEA. Here, s6 is the mean of s across the I conventional
PEA solutions. The term in parentheses is the Monte Carlo standard error in the
bias statistic in square brackets. The fourth term in each cluster, in angular
brackets, measures how much Monte Carlo sampling uncertainty there is in aH.
It reports the coe$cient of variation, 100p

s
/s6 , where p

s
is the standard deviation

of s across I conventional PEA solutions.
The results in Panel A of Table 3 pertain to various second moment proper-

ties of consumption, investment, and output. Here, p
j
, j"y, c, i denote the

standard deviation of gross output, consumption and gross investment, respec-
tively, and o(y, j), j"c, i denote the correlation of gross output with consump-
tion and gross investment, respectively. The results in Panel B of Table 3 pertain
to "rst and second moment properties of Tobin's q and asset returns.

The results in Panel A indicate that, at least for models (1)}(6), the conven-
tional PEA performs reasonably well. For the most part, bias is not much more
than 1 percent. For o(y, c), the bias is a little higher in the case of models (1) and
(2), where it is about 3.5%. The coe$cient of variation for these models is also
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reasonably small, although it is 4.4% for o(y, c) in model (2). The distortions are
somewhat higher for model (7), where the bias in p

c
is 6.3% and the associated

coe$cient of variation is 10.6%. Although arguably these last distortions are
getting close, none appears to exceed the bounds for acceptability.

According to the information in Panel B, there is greater evidence of distor-
tions in asset prices and returns than in the quantity allocations. For example,
even in the benchmark model, the equity premium is understated by roughly
26%, and the standard deviation of the equity premium is roughly 20% of its
average value. Also, the frequency of times that the investment irreversibility
constraint is binding (i.e., the frequency of the event, q(1) is understated by
12.5%. Still, these distortions do not seem large in an economic sense. The
distortions are greater for models (2)}(7). For example, with high risk aversion
(model (2)), the standard deviation of the price of capital, q, is overstated by
26.8% on average, and its standard deviation across di!erent model solutions is
53% of its mean. But, the distortions tend to be largest for statistics involving
the rate of return on equity. For example, with model (2) the equity premium is
overstated by close to 100%. The performance of conventional PEA deterior-
ates dramatically for model (7), where quantifying the bias in statistics involving
Re requires scienti"c notation. To con"rm the robustness of this "nding, we
raised M and N to 50,000 and 5, respectively, and got very similar results (these
results are based on I"50). These are reported in column 2 of Table 4 (column
1 simply reproduces the results from Table 3 for convenience).

To diagnose the reasons for the poor performance of conventional PEA for
model (7), consider the "rst four rows of "gures in Fig. 4. They display the "rst 20
investment policy rules associated with the I"50 policy rules underlying the
calculations in the N"5, M"50,000 column of Table 4. The solid line reports
our estimate of the exact investment policy function, g(k, h)!log(1!d)!k,
while the dashed line reports g(

a
(k, h)!log(1!d)!k, where g(

a
is de"ned in Eq.

(30), and e(
a
(k, h) was obtained using conventional PEA. Note that in several

cases, the approximate investment function obtained using conventional PEA
goes to zero for low values of the (log of the) capital stock. When this happens,
the estimated price of capital, q, falls below unity, sometimes dropping close to
zero.25 Since q appears in the denominator of the formula for the rate of return
on equity (see Eq. (18)), when it approaches zero the rate of return on equity rises
without bound. Although the zero investment region in Fig. 4 occurs with low
probability, even very infrequent visits have a dramatic impact on the estimated
mean return to equity.

The poor performance of the PEA for "nancial rates of return re#ects that it
oversamples the high probability region of the capital stock. One way to see
this is to examine the results for &Modi"ed Conventional PEA' reported in

25See Fig. 5 in Christiano and Fisher (1997), for graphs of q.
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Fig. 4. Conventional PEA and Modi"ed Conventional PEA approximations of
g(k,!p)!log(1!d)!k, model(7), Note: In each plot the solid line is the exact solution and the
dashed line is one solution computed using a PEA. The "rst four rows plot Conventional PEA
solutions and the last four rows plot Modi"ed Conventional PEA solutions.

1210 L.J. Christiano, J.D.M. Fisher / Journal of Economic Dynamics & Control 24 (2000) 1179}1232



columns 3 and 4 in Table 4. Those are based on a modi"ed version of
conventional PEA which samples relatively more heavily from the tails of

[ k, k ].26 The modi"cation works by altering step 1 in conventional PEA as
follows. We selected "ve values of the capital stock, k

1
,2, k

5
, from the interval

[ k, k ] using the zeros of a "fth order Chebyshev polynomial. Then, correspond-
ing to each (k

i
, h) we drew 5,000 times from ph{(h@Dh) for i"1,2, 5 and

h"!p,p, respectively. This results in 50,000 (k, h, h@) pairs which were used to
compute 50,000 m@'s using m@"m(g(

a
(k, h), h@; g(

a
, hK

a
). The "ve capital stocks used

by conventional PEA are indicated by the circles in Fig. 5B. Note how they are

shifted towards the boundaries of the interval [ k, k ] relative to a "xed interval
grid. For convenience, Fig. 5B also displays the density of capital stocks that
would result if the &grid' were obtained using the zeros of a very high order
Chebyshev polynomial. The distribution of capital stocks associated with con-
ventional PEA is displayed in Figs. 5A, C and D. These exhibit the model's
implications for the unconditional distribution of k, and the distribution of
k conditional on h"p and h"!p. The "gures con"rm that, by comparison
with modi"ed conventional PEA, conventional PEA emphasizes capital stocks

that are relatively more concentrated in the interior of [ k, k ].27
The results in columns 3 and 4 of Table 4 are based on I"50 repetitions of

modi"ed conventional PEA. Interestingly, the problems with statistics asso-
ciated with the rate of return on equity have been dramatically reduced. This
re#ects that the problems with the investment policy function evident in the top
half of Fig. 4 have been essentially eliminated (see the bottom half of Fig. 4). Bias
and coe$cient of variation indicates that modi"ed conventional PEA with
N"5 and M"50,000 produces a tolerably accurate solution. When M is
reduced to 10,000, bias remains acceptable, but coe$cient of variation is now
fairly large for statistics related to the rate of return on equity. The improved
accuracy that results from increasing dispersion in (k, h) helps motivate the
perturbations in conventional PEA analyzed in the next subsection.

Panel C in Tables 3 and 4 report computation times on a 200 MHz Pentium
Pro machine using GAUSS to do the calculations.28 The times refer to the

26Our modi"ed conventional PEA is similar to what Marcet and Marimon (1992) refer to as PEA
with exogenous oversampling. They argue that by increasing the dispersion in capital relative to
conventional PEA, one gets a more accurate estimate of the far-from-steady-state properties of
a model. Our analysis suggests that this observation may even apply when the objects of interest are
properties of the steady state distribution implied by the model.

27Note that in general the distribution of capital stocks used with conventional PEA does not
have to correspond to the distribution implied by the true model solution. Figs. 5A, C and D have
been constructed using the true model solution.

28The simulation portion of conventional PEA was coded as a FORTRAN subroutine and
imported to GAUSS using the GAUSS foreign language interface. This was to combat the
well-known de"ciency of GAUSS with respect to long do-loops.
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Fig. 5. Endogenous and exogenous capital stock distributions.
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minimum time needed to solve the model by conventional PEA once. The times
for models (1)}(6) are relatively low because our numerical equation}solving
procedure was successful in these cases. The time for model (7) is higher because
the successive approximation method had to be used here. Computation times
rise substantially when N and M are increased from 3 to 5, going from roughly
six minutes to over one and one-half hours.

5.2.2. Chebyshev PEA
Approximating Marcet's conditional expectation function by PEA collocation.

We applied PEA collocation to approximate e in all seven models, and
obtained acceptable accuracy with N"M"3 for models (1)}(6). By &accept-
able', we mean that all statistics analyzed in Tables 3 and 4 are within 10% of
their exact values. We only study bias for this method, since Monte Carlo
uncertainty is not applicable. Although accuracy for models (1)}(6) was compa-
rable to that obtained by conventional PEA, computation times were drastically
lower, closer to one-half second instead of one-half minute or more. To save
space, we do not discuss these results and we instead focus on the analysis of
model (7).

The last two columns of Table 4 report results using PEA collocation to
approximate the function, e, for model (7). In these columns, we set N"M"3.
Fig. 6 exhibits the impact of increasing N and M on the Euler errors, R1%!(k, h; e(

a
)

(see Eq. (11)). Since the errors are di$cult to interpret directly, we convert them
into the percent change in consumption needed to make the Euler error zero,
holding Tobin's q and the level of investment unchanged.29

A notable feature of Fig. 6 is that the Euler errors are very small for
N"M"3. For example, according to Fig. 6, when h"!p the N"M"3
rule fails the "rst order condition by only one, one-hundredth of a percent of
consumption. When h"p the rule fails by only six, one-thousandths of a per-
cent of current consumption. These are tiny numbers and yet the N"M"3
rule does not produce acceptable accuracy (see Table 4). To get the desired
degree of accuracy, one has to go to N"M"5. We conclude that a researcher
interested in "nancial statistics really must work to make the Euler errors
extremely small.

Evidently, the performance of PEA collocation with N"M"5 is compara-
ble or better than that of conventional PEA with M"50,000, N"5, even
though the former uses 10,000 times fewer observations than the latter. This

29Let c denote the level of consumption in the approximate solution and let c8 denote the level of
consumption needed to set the Euler error to zero without changing either the level of investment or
Tobin's q. We have c~c!hK

a
(k, h)"qc~c"bexp(e(

a
(k, h)), and c8 is de"ned by the relation,

c8 ~cq"b[exp(e(
a
(k, h)!R1%!(k, h; e(

a
))]. Dividing and rearranging, we get our consumption-based

measure of the Euler error: 100(c8 /c!1)"100[exp(R1%!(k,h; e(
a
)/c)!1].
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Fig. 6. Euler errors for PEA collocation on model (7).
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Table 4
Overcoming bias and Monte Carlo variation in conventional PEA!

Conventional PEA Modi"ed conventional PEA" PEA collocation

N"3 N"5 N"5 N"5 N"3 N"5
Statistic M"10,000 M"50,000 M"50,000 M"10,000 M"3 M"5

Panel A } Quantities

p
y

[!0.2] [0.2] [0.3] [0.3] [0.4] [0.3]
(0.04) (0.03) (0.02) (0.07)
S0.9T S0.2T S0.003T S0.5T

p
c

[6.3] [1.0] [!0.5] [!0.4] [!1.1] [!0.3]
(0.5) (0.4) (0.3) (0.8)
S10.6T S2.7T S2.1T S5.9T

p
i

[!3.8] [!0.4] [0.4] [0.4] [0.7] [0.2]
(0.3) (0.2) (0.2) (0.6)
S7.3T S1.5T S1.5T S4.3T

o(y, c) [!0.2] [!0.6] [!0.6] [!0.8] [!0.6] [!0.5]
(0.1) (0.1) (0.1) (0.2)
S1.1T S0.4T S0.5T S1.5T

o(y, i) [!0.2] [0.1] [0.2] [0.2] [0.2] [0.2]
(0.03) (0.03) (0.01) (0.03)
S0.7T S0.2T S0.06T S0.2T

Panel B } Asset prices and returns

ERe [1.6e 8] [4.7e 7] [!13.0] [!7.5] [!29.8] [!8.6]
(1.6e 8) (4.6e 7) (8.1) (24.2)
S2124T S687T S65.8T S159T

ERf [36.8] [4.2] [!1.7] [!0.8] [!4.2] [!0.4]
(2.7) (1.7) (!1.6) (5.0)
S42.3T S11.5T S11.8T S35.4T

E(Re!Rf) [3.3e 7] [9.9e 6] [!4.1] [1.0] [!9.6] [!2.1]
(3.3e 7) (9.6 e 6) (2.9) (8.7)
S2124T S687T S21.1T S61.1T

p
q

[7.9] [!1.9] [!2.7] [!5.0] [!4.9] [!1.2]
(1.1) (0.9) (1.2) (3.3)
S22.0T S6.6T S8.8T S24.6T

o(y, q) [!0.3] [!1.0] [!1.9] [!3.5] [!0.8] [!1.2]
(0.7) (0.9) (1.0) (1.8)
S14.5T S6.4T S6.9T S13.3T

Freq(q(1) [!7.2] [!4.6] [!2.0] [!3.9] [0.1] [!1.1]
(0.6) (0.9) (1.0) (1.8)
S13.3T S6.8T S6.9T S12.9T
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Table 4 (Continued)

Conventional PEA Modi"ed conventional PEA" PEA collocation

N"3 N"5 N"5 N"5 N"3 N"5
Statistic M"10,000 M"50,000 M"50,000 M"10,000 M"3 M"5

Panel C } Computation times in seconds

Time 406 5870 1237 170 0.28 0.66

!The entries in the "rst column are reproduced from the last column in Table 3. There, I"500,
though 48 of these had to be discarded because capital converges to zero in simulation. For columns
2!4, I"50. We did not have to discard any solutions for these cases due to di$culties at the
post-solution simulation stage.
"A version of conventional PEA in which data simulation step (step d1) has been altered to

produce greater dispersion. This was done by "rst computing "ve values for the capital stock,
k
1
,2, k

5
, based on the zeros of a "fth order Chebyshev polynomial. For each (k

i
, h), we drew 5000

times from p(h@Dh), for i"1,2, 5 and h"!p,p, respectively. This results in 50,000 sets, (k, h,h@),
which were used (along with a value for a) to construct m

2
,2, m

50,001
in the manner described in

step d1. These data were then used in the nonlinear regression speci"ed in step d2.

di!erence is re#ected in the amount of computer time required to solve the
model. Whereas conventional PEA requires over one and one-half hours to
solve the model, PEA collocation requires a little over one-half of a second to get
the same degree of accuracy.

5.2.3. Two further experiments with Chebyshev PEA
1. Continuous exogenous shock. We considered two other sets of experiments

with Chebyshev PEA. In the "rst we consider a version of model (1) in which the
technology shock has a continuous, normal distribution. We did this out of
a concern that the experiments in Tables 3 and 4 might be conferring too great
an advantage to PEA collocation, over conventional PEA. PEA collocation is in
fact compatible with evaluating integrals like those in Eqs. (8), (12) and (14) by
any method whatever, including Monte Carlo methods. However, in most of the
experiments with PEA collocation reported in this paper, these integrals were
evaluated exactly by fully exploiting the particular two-state distribution as-
sumed for the technology shock. Conventional PEA was not given this advant-
age. The Monte Carlo method it applies to evaluate these integrals makes no use
whatever of the structure of the shock distribution. To verify that our results are
not unduly in#uenced by this asymmetry of treatment, we also did two experi-
ments with versions of model (1) in which the technology shock has a
continuous distribution. The results are reported in Table 5. The column
labelled &benchmark' corresponds to the case in which the shock is iid over
time, while the other column corresponds to the case in which the shock has
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Table 5
Computation times for continuous technology implementations of the PEAs

Algorithm Benchmark model Benchmark model
o"0.0 o"0.95

PEA Galerkin 0.22 0.99
(N,M, H) (6, 36, 4) (15, 25, 4)
Conventional PEA 5.9 136.9
(N,M) (6, 1000) (6,10 000)

Notes: 1. Results correspond to a version of the benchmark model in which h has a Normal
distribution. The unbracketed entries are minimum computation times needed to achieve a given
level of accuracy, as discussed in the next note. The bracketed numbers correspond to values for the
indicated approximation parameters.

2. Minimum computation time: for Chebyshev and conventional PEA we solved the model for
various values of N and M. For Chebyshev PEA we selected the values of N and M on this grid
which required the smallest computation time, subject to the accuracy constraint that the 11
statistics studied in Tables 3 and 4 are within 10% of the corresponding exact values. For
conventional PEA, we selected the values of N and M that minimize computation time, subject to
two constraints: bias in each of the 11 statistics studied in Tables 3 and 4 is less than 10% and the
coe$cient of variation on each statistic is also less than 10% (for these calculations, I"30). Exact
solution: approximated by increasing N and M until the 11 statistics implied by each solution
procedure are within 1% of each other, and the coe$cient of variation implied by conventional PEA
is less than 1%.

3. The N"6 implementations of the PEAs included a constant, linear and quadratic terms
for each of k and h and a linear cross term. For the N"15 implementation of Chebyshev PEA
we used +15

i/1
a
i
C

i
(k, h), where C

i
(k, h), i"1,2, 15 are the elements of the set

M¹
i1
(u(k))¹

i2
(t(h))D+2

j/1
i
j
44N. The linear function, t, maps [!hM , hM ] into the interval [!1, 1],

where hM "3p and p is the standard deviation of h.

autocorrelation, o, equal to 0.95. The integral in Eq. (12) was evaluated
using H-point Gauss}Hermite quadrature integration, with H"4 in each case.
The table shows the values of N and M used for conventional PEA and
Chebyshev PEA needed to achieve acceptable accuracy, as well as the time
needed to execute the computations. The results are consistent with our pre-
vious "ndings. Namely, to get a given degree of accuracy with Chebyshev PEA
requires at least an order of magnitude less computation time than does
conventional PEA.

2. Approximating the Wright}Williams conditional expectation. For our second
set of experiments, we applied PEA collocation to approximating the condi-
tional expectation function, exp[v(k@,h)], emphasized by Wright and Williams
(1982a, b, 1984). We address two issues raised in our discussion after Eqs.
(13)}(15): (i) we investigate whether the various potential pathologies discussed
there are likely to occur in practice, and (ii) we investigate the relative smooth-
ness of the e and v functions. We work with the benchmark model, model (1),
and set N"M"5. Since that model assumes an iid technology shock, h is
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not an argument of v. Consequently, application of PEA collocation requires
determining the values of only 5 parameters and not the 10 needed to approxim-
ate e when N"5. It bears repeating that the results we obtain apply only to the
example considered. The results are at best only suggestive of what would
happen in more general settings.

Our results are displayed in Fig. 7. To help assess the accuracy of the
calculations, Fig. 7A displays the Euler errors, measured in the same units as the
errors in Fig. 6. The continuous curve indicates the Euler errors over a very "ne
grid, and the stars indicate the location of the "ve grid capital grid points used in
the calculations.30 The PEA collocation method forces the Euler errors to be
zero at these points. The largest error occurs for k slightly above 4 and is nearly
six one hundreths of percent of consumption. The results in Fig. 7B allow us to
consider issue (i). It displays the initial and "nal v(

a
functions in the sequence of

functions produced in the calculations. As in all other calculations in the paper,
the initial function is the one associated with a zero multiplier function and the
log-linearized steady state investment function, truncated so that gross invest-
ment is non-negative. The approximate solution was found by initiating the
calculations with 10 successive approximation steps, followed by switching to
our numerical equation-solving procedure. All functions in the sequence gener-
ated by this approach are monotonically decreasing, and they rotate smoothly
from the initial relatively #at one to the steeper one where the calculations
terminated. The fact that these functions are monotonically decreasing is signi"-
cant, since it establishes that we avoided the various pathologies discussed after
(13)}(15).

Figs. 7C}F allow us to address issue (ii), concerning the relative smoothness of
v(k@, h) versus that of e(k, h),v(g(k, h), h). To assess the relative smoothness of
these two functions, we compare

E(k, h; a),logCPm(g(
a
(k, h), h@; g(

a
, hK

a
)ph{(h@ D h) dh@D,

<(k@; a),logCPm(k@, h@; g(
a
, hK

a
)ph{(h@ D h) dh@D,

where g(
a

and hK
a

are derived from our approximate solution, v(
a
. Two sets of

observations are relevant in assessing the relative smoothness of E and <. The
"rst can be seen in Fig. 7C and D, which display gross investment,
g(
a
(k, h)!log(1!d)!k, for the two lowest values of h used in the Gauss}

Hermite quadrature calculations. Evidently, the slope of g(
a
(k, h) undergoes an

abrupt jump at the value of the capital stock where the irreversibility constraint
becomes binding, a value that is increasing with h. The second observation is

30The interval width for the "ne grid used in Fig. 7 is 0.005.
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Fig. 7. PEA collocation with the Wright}Williams conditional expectation.
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that the function< appears to be quite smooth. This can be seen in Figs. 7E and
F, which plot d<(k@; a)/dk@ against k@.31 These properties of< and g(

a
suggest that

< is smoother than E. In particular, they indicate that E must have a kink at the
point were the irreversibility constraint becomes binding, since E(k, h; a)"
<(g(

a
(k, h); a).

The presumed lack of smoothness in E(k, h; a) is too slight to be visible in
a graph of E against k. However, it is evident in the graph of the slope of E. This
can be seen in Figs. 7E and F, which graph dE(k, h; a)/dk against k for the same
two values of h used in Figs. 7B and C. It is not surprising that the slopes of
E and < coincide in the region where the irreversibility constraint is binding,
since the derivative of g(

a
(k, h) with respect to k is unity there. Moreover, in light

of the negative sign in the slope of< and the fact that the slope of g(
a
jumps when

the irreversibility constraint begins to bind, it is also not surprising that the
slope of E(k, h; a) falls abruptly at this value of k. These observations are
consistent with the remarks after Eq. (17), suggesting that v is a smoother
function than e, and therefore easier to approximate numerically.

5.3. Comparing the algorithms

We now compare conventional PEA and PEA collocation with three other
algorithms. The other three include the Spectral-Galerkin method described
above, which approximates the policy and multiplier functions with Chebyshev
polynomials. In addition, we consider the FEM collocation and FEM Galerkin
methods mentioned in the introduction to this section and spelled out in detail
in the appendix. We evaluate the algorithms in terms of their ability to achieve
a given standard of accuracy and in terms of the seconds of computer time
required to do this.

To meet our accuracy standard, a solution must imply a set of values for the
11 statistics studied in Tables 3 and 4 that come within at least 10% of the
corresponding exact values obtained by dynamic programming. Our "ndings
are based principally on the results reported in Table 6. With the exception of
conventional PEA, results not in parentheses are the minimum, with respect to
the algorithm parameters indicated in the table, required for the associated
algorithm to achieve the accuracy standard. Entries for conventional PEA
simply reproduce the computer times taken from Table 3, which refer to the case
N"3 and M"10,000. Finding the minimal computation time for this method
was impractical since analysing it requires computing a large number, I"500,
solutions for each set of algorithm parameter values. In any case, conventional
PEA did not achieve the accuracy standard for models (2), (3), (4) and (7). Thus,
for these examples, the reported computer time may be viewed as a lower bound

31 In this and the next paragraph, df (x)/dx means [ f (x)!f (x!e)]/e for e"0.005.
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Table 6
Computation times and approximation parameters for various algorithms!

Model parameterizations

Algorithm (1) (2) (3) (4) (5) (6) (7)

PEA
collocation

0.22 0.22 0.27 0.55 0.44 0.27 0.66

(N) (3) (3) (3) (5) (5) (3) (5)

Conventional
PEA"

26.5 28.8 25.6 38.7 19.3 26.5 406

(N,M/1000) (3, 10) (3, 10) (3, 10) (3, 10) (3, 10) (3, 10) (3, 10)

Spectral-
Galerkin

1.81 Algorithm
failed$

1.27 1.32 4.23 4.01 Algorithm
failed$

(Np, N~p, M) (8, 4, 30) (8, 4, 30) (8, 4, 30) (10, 5, 100) (10, 5, 50)

FEM
collocation#

63.6 262 55.1 31.7 231 207 876

(N) (24) (108) (72) (72) (72) (36) (124)

FEM Galerkin# 63.7 2430 215 1536 58.0 22.2 144
(N) (36) (36) (36) (36) (36) (6) (36)

!With the exception of results for conventional PEA, numbers not in parentheses are minimal
computation times, in seconds, needed by various computational strategies to achieve a given degree
of accuracy. Minimal computation times and algorithm parameters were chosen in the same way as
described in Table 5, note 2. In particular, the required degree of accuracy is that a model solution
must imply a set of values for the 11 statistics studied in Tables 3 and 4 that come within at least 10%
of the corresponding exact values obtained by dynamic programming.
"The conventional PEA entries correspond to the fastest of the I"500 solutions generated for

each model parameterization.
#The parameter N refers to the number of parameters in the policy function. For further details, see

the appendix.
$The GAUSS equation solving routine, NLSYS, crashed for all algorithm parameters considered.

for the true minimal computer time needed to achieve the accuracy standard.
Numbers in parentheses in Table 6 report the algorithm parameter values
underlying the associated computer times. Although we do not report details on
this, the accuracy criterion was hardest to meet for the "nancial statistics. Most
other statistics were within 1% of their exact values.32

Several things are worth noting about the results. First, PEA collocation is
able to achieve the target degree of accuracy at least ten times faster than any

32With regard to conventional PEA, these results are consistent with den Haan's (1995) "ndings.
He reports that he needed very high values of M to get accurate solutions for rates of return with
conventional PEA.
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other algorithm. Second, one of the algorithms, Spectral-Galerkin, actually
failed to achieve a solution for two of the models. Since all the algorithms were
given the same initial values, this failure may re#ect a relative weakness of the
Spectral-Galerkin approach. A more de"nitive interpretation of the tendency of
this algorithm to crash would require pinpointing the precise reasons for the
crashes. We have not done this. Third, conventional PEA fails to meet the
targetted level of accuracy in models (2), (3), (4) and (7) (recall Table 3). Table 4
shows that conventional PEA still does not achieve the targetted level of
accuracy for model (7), even with N"5, M"50,000. For model (7), conven-
tional PEA uses a particularly large amount of computer time. This re#ects that
our numerical equation-solving procedure, which worked well for the other
models, crashed on this one. As a result, we had to use the slower, successive
approximation algorithm described above.

Fourth, neither FEM algorithm consistently dominated the other. FEM
collocation is faster than FEM Galerkin in models (2), (3) and (4) and slower in
the others. However, when programmer time is also taken into account, we "nd
that FEM Galerkin is considerably slower and more cumbersome to implement
than FEM collocation. To see this, recall that FEM Galerkin is a penalty
function approach, so that it requires solving a sequence of models, correspond-
ing to an increasing sequence of penalty function parameter values. The compu-
tation times reported in Table 6 are the total machine time used for the
computations from an initial penalty function parameter value of zero to its "nal
value. For models (1)}(7) the number of penalty function values considered were
20, 979, 23, 68, 23, 72 and 48, respectively. The large number of penalty function
values considered for model (2) re#ects a need to take relatively small steps in
incrementing the penalty function parameter to ensure the algorithm did not
crash. Determining the appropriate step size and frequent restarting of the
algorithm required considerable programmer intervention. As a result, the times
reported in Table 6 greatly understate the actual amount of time needed to
implement this algorithm.

In sum, in the examples considered, the PEA collocation algorithm outper-
forms the others in terms of computer and programmer time. Regarding accu-
racy, all algorithms except Spectral-Galerkin, outperform conventional PEA in
terms of "nancial statistics. In two examples, the Spectral-Galerkin algorithm
(the one that approximates policy and multiplier functions with polynomials)
crashed.

6. Concluding remarks

In this paper we investigate several algorithms for solving a dynamic model
with an occasionaly binding inequality constraint. In an e!ort to make our
results useful to researchers, we apply a variety of algorithms. They are based on
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a range of di!erent characterizations of the solution to the model. We consider
characterizations based on the Lagrangian representation of the solution, the
penalty function representation, and representations that characterize the solu-
tion in terms of a conditional expectation function. In each case, the algorithm
boils down to "nding a particular "nite parameter function which solves
a functional equation. In our analysis of the algorithms, the criteria we consider
include computational speed, programming convenience and numerical accu-
racy. In assessing accuracy, we focussed on model implications for the "rst and
second moment properties of real quantities and "nancial statistics, including
the rate of return on equity. The properties of the latter turned out to be the
hardest to approximate well.

One class of algorithms, the PEA, emerged as clearly best in our application.
The best known PEA in applied macroeconomics is the one due to Marcet
(1988), which we call conventional PEA. Conventional PEA is characterized by
the particular conditional expectation that it seeks to approximate, and by the
algorithm used to compute the approximation. We document de"ciencies in
that algorithm, and display an alternative class of approaches, which we call
Chebyshev PEA, which eliminates the de"ciencies.

We also consider a PEA proposed in Wright and Williams (1982a, b, 1984),
which approximates a di!erent conditional expectation. The conditional expec-
tation approximated by Wright and Williams' PEA is attractive from a com-
putational point of view because it is smooth compared to the function
approximated in conventional PEA. At the same time, we show that Wright and
Williams' PEA can in principle have other problems. We show that those
problems do not actually arise in the analysis of the one sector growth model.
Still, they may be of concern in other applications.

In our analysis we were able to evaluate the accuracy of alternative algorithms
because of the simplicity of the model economy studied. This allowed us to
develop, for comparison purposes, an accurate approximation to the model
solution using dynamic programming methods. Of course, in practice this way
of assessing accuracy is not available. In a typical application, the best one can
do is to attempt to study how successful an algorithm is in driving the relevant
functional equation close to zero. We tried to shed light on how close to zero one
needs to be to get acceptable accuracy. In our applications, the relevant func-
tional equation corresponds to the Euler error of a planner's "rst order condi-
tion, expressed as a function of the state.33 We found that to get acceptable

33Santos (1998) takes some steps in the direction of developing formal methods for using
Euler equation errors to assess the accuracy of an approximation. He does not consider the case
of occasionally binding constraints studied here. In addition, in assessing accuracy we focus
on implications for second moment properties, while Santos focuses on implications for policy
rules.
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accuracy for "nancial rates of return, especially the rate of return on equity,
requires extraordinarily small Euler errors. We measured the error by the
percent change in consumption needed to drive that error to zero. We studied
one approximate solution in which the maximum Euler error was only 0.012%
of consumption, and yet there was still an unacceptable 30% bias in the mean
return on equity.

Although we considered a wide range of parameter values for our model,
it bears emphasizing that we have not established that our "ndings regarding
the advantages of various PEAs apply generally.34 Con"dence that results like
these hold more generally requires building up experience over time with
a variety of applications. We think that further research along these lines would
be useful.
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Appendix A. The dynamic programming algorithm

Throughout our analysis, we approximate the exact solution to our model
using a dynamic programming algorithm on a "ne grid of capital stocks. We
describe the details of our implementation here. It involves "rst iterating to
convergence on a value function and then deriving a decision rule from the
converged value function. The mapping that we iterated on is:

v
j`1

(k, h)" max
k{|A(k, h)

Mu(k, k@, h)#b[ph{(p D h)v
j
(k@,p)

# ph{(!p D h)v
j
(k@,!p)]N,

34An exception, noted in the introduction, is that we do show that the linearity and orthogonality
properties of Chebyshev PEA apply in arbitrary dimensions.
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for h3H and k@3k"Mk
1
, k

2
,2, k

M
N. Also,

u(k, k@, h)"ln[exp(h#ak)#(1!d) exp(k)!exp(k@)],

A(k, h)"kWMk@: log(1!d)#k4k@4exp(h#ak)#(1!d)exp(k)N.

Here, v
j
( ) ,p) and v

j
( ) ,!p) are points in RM, j"1, 2,2 . Also v

0
(k, h)"0, for

h3H and k@3k. The points in k are equally spaced with
k
i
(k

i`1
, i"1, 2,2,M!1, M "40,000. We iterated on the above mapping

until reaching a "xed point which was assumed to be achieved when
D(v

j
!v

j~1
)./v

j~1
D41]10~7, here DxD is the largest element of x in absolute value

and x./y represents element by element division of the vectors x and y. Denote
the "xed point by v. We then computed the two decision rule vectors
G( ) , p), G( ) ,!p)3RM as follows:

G(k, h)"argmax
k{|A(k, h)

Mu(k, k@, h)#b[ph{(p D h)v(k@,p)#ph{(!p D h)v(k@,!p)]N,

where h3H and k@3k.
The DP second moment properties are based on G(k, h) and an imputed

multiplier function. The DP version of the multiplier is computed as follows:

j(k
i
, h)"

u
1
(k

i
,G(k

i
, h), h)!v

1
(k

i
, h)

1!d
, i"1, 2,2, M.

Here, u
1

is the derivative of u with respect to its "rst argument. Also v
1

is our
estimate of the derivative of v with respect to its "rst argument. We obtained this
estimate by "rst "tting, by least squares, a seventh order polynomial to
v(k

i
, h), i"1, 2,2, M for h3H:

v(k
i
, h)"b

0
(h)#b

1
(h)u(k

i
)#2#b

7
(h)[u(k

i
)]7, i"1, 2,2, M.

Here u : [k
1
, k

M
]P[0, 1]. Then,

v
1
(k

i
, h)"[b

1
(h)#2b

2
(h)u(k

i
)#2#7b

7
(h)[u(k

i
)]6]u@(k

i
),

i"1, 2,2, M.

Appendix B. Penalty functions

One of the Finite Element methods that we implement makes use of a penalty
function characterization of the model solution. We describe that here. Under
this characterization, the solution, g, is the limit of a sequence of solutions, Mg

n
N.

The nth element in this sequence solves a version of our model in which the
irreversible investment constraint, (2), is ignored, and in which the utility
function is replaced by ;(c

t
)!nn

2
[maxM0,(1!d) exp(k

t
)!exp(k

t`1
)N]2. Here,

Mn
n
N is an increasing sequence of positive constants tending toward in"nity. The

L.J. Christiano, J.D.M. Fisher / Journal of Economic Dynamics & Control 24 (2000) 1179}1232 1225



function g
n
: [ k, k ]]HP[ k, k ], satis"es the Euler equation,

Rp(k, h; g
n
, n

n
)"0, for all (k, h)3[ k, k ]]H, (39)

where

Rp(k, h; g
n
, n

n
)";

#
(k, g

n
(k, h), h)!n

n
maxM0, (1!d) exp(k)

! exp(g
n
(k, h))N!bPM;#

(g
n
(k, h), g

n
(g

n
(k, h), h@), h@)

][ f
k
(g

n
(k, h), h@)#(1!d)]

! (1!d)n
n
max[0, (1!d) exp(g

n
(k, h))

! exp(g
n
(g

n
(k, h), h@))]Nph{(h@ D h) dh@"0.

According to Luenberger (1969), Section 10.11:

g(k, h)" lim
n?=

g
n
(k, h),

and

h(k, h)" lim
n?=

n
n
maxM0, (1!d) exp(k)!exp(g

n
(k, h))N ,

for each (k, h)3[ k, k ]]H. From a computational perspective, an advantage of
this characterization is that, for given n, the solution involves only one function,
g
n
. Moreover, that function need not obey the irreversible investment constraint,

(2). A disadvantage of the characterization is that it requires considering many
values of n.

Appendix C. Finite element methods

In this paper we consider only the simplest class of "nite element functions,
those that are piecewise linear and continuous in k for each "xed h.35 We study
a collocation (FEM collocation) and Galerkin (FEM Galerkin) procedure for
computing the parameters of this function. For FEM collocation, a method
advocated by Bizer and Judd (1989), Coleman (1988), Coleman et al. (1992) and
Danthine and Donaldson (1981), we work with the characterization of the
solution in terms of policy and multiplier functions. For FEM Galerkin,
a method advocated by McGrattan (1996), we work with the penalty function

35Reddy (1993) describes systematic procedures for expanding the space of "nite element func-
tions to include more than one dimension, and piecewise polynomials of order higher than one.
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formulation of the planning problem. We describe the details of our implemen-
tation of these algorithms here.

We begin with a description of the policy and multiplier functions relevant to
the reversible investment version of the model, so that hK

a
,0. The 2N]1 vector

of parameters of g(
a
, a"(a@

~p, a@p)@, with ah"(a
1, h,2, a

N, h)@, specify the values of
k@"g(

a
(k, h) at each point on a grid of N capital stocks, k

j
, j"1,2, N, for

h"!p,p. Here, k
1
5k, k

N
4k and k

j
(k

j`1
, j"1,2, N!1. We specify

that the capital stock grid is composed of equispaced points. Thus, k@ corre-
sponding to (k

i
, h) is a

i, h"g(
a
(k

i
, h), for h"!p,p, i"1, 2,2,N. Policy deci-

sions between points (k
i
, h) are de"ned by linearly interpolating the decisions at

the two nearest such points. Formally,

g(
a
(k, h),a@h¸(k), for h"!p,p. (40)

Here, ¸(k)"[¸
1
(k),¸

2
(k),2,¸

N
(k)]@ is composed of the basis functions for g(

a
:

¸
i
(k)"G

k!k
i~1

k
i
!k

i~1

, k
i~1

4k4k
i
,

k
i`1

!k

k
i`1

!k
i

, k
i
4k4k

i`1
,

0, elsewhere,

for i"2, 3,2, N!1, and

¸
1
(k)"G

k
2
!k

k
2
!k

1

, k
1
4k4k

2
,

0, elsewhere,

¸
N
(k)"G

k!k
N~1

k
N
!k

N~1

, k
N~1

4k4k
N
,

0, elsewhere.

In the following two subsections, we describe a collocation and a Galerkin
procedure for devising a set of 2N weighting functions which can be used in
conjunction with Eq. (19) to "nd a.

C.1. Collocation

Consider "rst the reversible investment version of the model. FEM-collo-
cation selects values for a so that

R(k
i
, h; g(

a
, 0)"0, (41)
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for i"1, 2,2,N and h"!p,p. This is Eq. (19), with the weighting functions
constructed using suitably chosen Dirac-delta functions. Eq. (41) is a nonlinear
system of 2N equations in the 2N unknowns, a. In practice, a method of
successive approximation is used to solve Eq. (41). In particular, suppose a given
initial guess for the parameter vector a is available, and that this is used to de"ne
the function, g(

a
, according to Eq. (40). A new value, a8 , is computed as follows.

For each element of the capital grid k
i
and for h"!p,p, "nd the a8

i, h that
solves

;
#
(k

i
, a8

i, h, h)

"bMph{(p D h);
#
(a8

i, h, g( a(a8 i, h, h), p) [ f
k
(a8

i, h;p)#1!d]

#ph{(!p D h);
#
(a8

i, h, g( a(a8 i, h, h),!p)[ f
k
(a8

i, h;!p)#1!d]N, (42)

for i"1,2,N. Denote the mapping from a to a8 by a8 "SF(a;N). The method
seeks aH, where aH!SF(aH;N)"0, as the limit of the sequence
a,SF(a;N),S[SF(a;N); N],2 .

Now consider the irreversible investment version of the model. We work with
policy and multiplier functions parameterized according to Eqs. (23)}(25). Ac-
cordingly, we choose piecewise linear functions to form g(

a
(k,p), g8

a
(k), and hI

a
(k)

and select the N-point capital stock grid as in the reversible investment case.
The objective is to solve for the coe$cients associated with this grid:
a
i, p, i"1, 2,2, N, a

i, ~p, i"1, 2,2, N
~p , as before. In addition, we seek b

i
,

i"1, 2,2,N
b
, where b

i
corresponds to hI

a
(k

i
) and N

b
#N

~p"N. Stack the
undetermined coe$cients in the 2N dimensional vector a:

a"(a
1, p, a2, p,2, a

N, p, a1, ~p, a2, ~p,2, a
N~p, ~p, b1

, b
2
,2, b

Nb
)@.

We modify the successive approximation algorithm described above as follows.
The main step of that algorithm, Eq. (42) for h"p, is replaced by

;
#
(k

i
, a8

i, p, p)

"bMph{(p D h);
#
(a8

i, p, g( a(a8 i, p, p),p)[ f
k
(a8

i, p,p)#1!d]

#ph{(!p D h)(;
#
(a8

i, p, g( a(a8 i, p,!p),!p)[ f
k
(a8

i, p,!p)#1!d]

!hK
a
(a8

i, p,!p)(1!d))N. (43)

Eq. (42) for h"!p is replaced by:

;
#
(k

i
, a8

i, ~p,!p)!b
i

"bMph{(p D h);
#
(a8

i, ~p, g( a(a8 i, ~p,p), p)[ f
k
(a8

i, ~p,p)#1!d]

#ph{(!p D h)(;
#
(a8

i, ~p, g( a(a8 i, ~p,!p),!p)[ f
k
(a8

i, ~p,!p)#1!d]

!hK
a
(a8

i, ~p,!p)(1!d))N. (44)
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(Recall, we impose } and later verify } that the irreversibility constraint never
binds in the high shock state.) For each i, Eq. (43) is solved by choice of a8

i, p, as
before. Eq. (44) is "rst solved by choice of a8

i, ~p with b
i
"0. If

a8
i, ~p'[log(1!d)#k

i
] then we proceed to the next value of i in the sequence

i"1, 2,2,N. Otherwise, a8
i, ~p is set equal to [log(1!d)#k

i
] and (44) is

solved by choice of b
i
. In this way, (43) and (44) de"ne a mapping from a to a8 , as

before. The method iterates on this mapping until convergence.

C.2. Galerkin

Consider the reversible investment case "rst, so that hK
a
,0. In our example,

the method works to select the value of a that solves the analog of Eq. (19) with
wi(k, h)"dg(

a
(k, h)/da

i
, i"1,2, 2N. Taking into account the region over which

¸
i
is zero, Eq. (19) is:

P
ki`1

ki~1

R(k, h, g(
a
, 0)¸

i
(k) dk"0 for i"2,2, N!1 , (45)

P
ki`1

ki

R(k, h, g(
a
, 0)¸

i
(k) dk"0 for i"1,

P
ki

ki~1

R(k, h, g(
a
, 0)¸

i
(k) dk"0 for i"N,

for h"!p,p. Here, R is de"ned in Eq. (3). We approximated each integral
using M-point Gauss}Legendre quadrature integration (see Press et al. (1992,
pp. 140}153)). The approximations yield a 2N-equation system that can be used
to solve for the 2N unknowns, a, as in Eq. (28) or Eq. (35). We used a nonlinear
equation solver to actually do the calculations.36

Now consider the irreversible investment case. We work with the character-
ization of the solution based on penalty functions. The penalty function method
solves a sequence of systems of equations like (45), in which R(k, h, g(

a
, 0) is

replaced by Rp(k, h; g(
a
, n

n
), de"ned in Eq. (39). We considered an increasing

sequence of penalty function weights, n
1
, n

2
,2, and stopped when the

36To see exactly how we do this, write the typical integral in (45) as :b
a
R(k, h, g(

a
)M

i
(k) dk where, for

example, a"k
i~1

, b"k
i`1

when i"2,2,N!1. The Gauss}Legendre M-point quadrature ap-
proximation to this integral is written ( H) +M

j/1
R(k

j
, h, g(

a
)M

i
(k

j
)v

j
, where the algorithm for comput-

ing the v
j
's is provided in Press et al. (1992). To compute the k

j
's, we "rst solve for r

j
, j"1,2,M, the

M zeros of the Mth order Legendre polynomial, P
M

(x), discussed after (31). The r
j
's and v

j
's depend

only upon the parameter, M. Then, k
j
"[r

j
(b!a)#(a#b)]/2, j"1,2,M. In this way, we get

N equations like ( H). These can be represented in matrix form, as in (28) or (35), where the analog of
X is composed of the basis functions of g(

a
, the v

j
's and the k

j
's. In contrast with the case of

Spectral-Galerkin and Chebyshev-PEA, the columns of X are not orthogonal.
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maximum violation of the irreversible investment constraint, (2), over
(k

i
, h), i"1,2, N, and h"!p,p is smaller than some prespeci"ed tolerance.

Denote by nH the value of the penalty parameter when the algorithm stopped,
and let aH denote the associated value of the parameter vector, a. Then,
following Luenberger (1969, Theorem 2, p. 307), our approximation to h(k, h) is
given by

hK
a
* (k, h )"nHmaxM0, (1!d) exp(k)!exp(g(

a
H(k, h))N .
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