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Objectives

• Provide a rigorous development of the basic New Keynesian
model without capital.

— Previous exposure to the model is helpful, but not absolutely
necessary.

• Present a version of the model that incorporates a simple
formulation of the ‘network’nature of production.

— In standard model, all production is sold directly to final
purchasers.

— In fact (see, e.g., Basu AER1996) about 1/2 of gross
production by firms is sold to other firms.

• See Christiano, Trabandt and Walentin (Handbook of
Monetary Economics, 2011) for an extended discussion of the
approach to networks developed here.



Implications of thinking about networks

• Obtain a quantitatively important theory of the cost of inflation.

• Raise questions about the effectiveness of inflation targeting as
a device for stabilizing inflation and the macroeconomy.

• Flatten the slope of the Phillips curve because of strategic
complementarities in price setting.
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Households

• Problem:

max E0

∞

∑
t=0

βt

(
log Ct − exp (τt)

N1+ϕ
t

1+ ϕ

)
, τt = λτt−1 + ετ

t

s.t. PtCt + Bt+1 ≤ WtNt + Rt−1Bt + Profits net of taxest

• First order conditions:

1
Ct

= βEt
1

Ct+1

Rt

π̄t+1
(5)

exp (τt)CtN
ϕ
t =

Wt

Pt
.



Goods Production
• A homogeneous final good is produced using the following
(Dixit-Stiglitz) production function:

Yt =

[∫ 1

0
Y

ε−1
ε

i,t di
] ε

ε−1

.

• Each intermediate good, Yi,t, is produced as follows:

Yi,t = exp (at)Nγ
i,tI

1−γ
i,t , at ~exogenous shock to technology,

0 < γ ≤ 1.

• Ii,t ~‘materials’these are purchases of the homogeneous output
good (Basu’s simplified way of capturing that firms buy goods
from other firms).

• Before discussing the firms that operate these production
functions, we briefly investigate the socially effi cient (‘First
Best’) allocation of resources across i.
— simplify the discussion with γ = 1 (no materials).



Effi cient Sectoral Allocation of Resources
Across Sectors

• With Dixit-Stiglitz final good production function, there is a
socially optimal allocation of resources to all the intermediate
activities, Yi,t

— It is optimal to run them all at the same rate, i.e., Yi,t = Yj,t
for all i, j ∈ [0, 1] .

• For given Nt, it is optimal to set Ni,t = Nj,t, for all i, j ∈ [0, 1]
• In this case, final output is given by

Yt = eatNt.

• Best way to see this is to suppose that labor is not allocated
equally to all activities.

— Explore one simple deviation from Ni,t = Nj,t for all i, j ∈ [0, 1] .



Suppose�Labor�Not Allocated�Equally

• Example:

• Note�that�this�is�a�particular�distribution�of�
labor�across�activities:
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Homogeneous Goods Production

• Competitive firms:
— maximize profits:

PtYt −
∫ 1

0
Pi,tYi,tdj,

subject to:

Yt =

[∫ 1

0
Y

ε−1
ε

i,t dj
] ε

ε−1

.

— Foncs:

Yi,t = Yt

(
Pt

Pi,t

)ε

→

"cross price restrictions"︷ ︸︸ ︷
Pt =

(∫ 1

0
P(1−ε)

i,t di
) 1

1−ε



Intermediate Goods Production
• Demand curve for ith monopolist:

Yi,t = Yt

(
Pt

Pi,t

)ε

.

• Production function:

Yi,t = exp (at)Nγ
i,tI

1−γ
i,t , at ~exogenous shock to technology,

0 < γ ≤ 1.

• Ii,t ~‘materials’these are purchases of the homogeneous output
good (Basu’s simplified way of capturing that firms buy goods
from other firms).

• Calvo Price-Setting Friction:

Pi,t =

{
P̃t with probability 1− θ
Pi,t−1 with probability θ

.



Cost Minimization Problem
• Price setting by intermediate good firms is discussed later.

— The intermediate good firm must produce the quantity
demanded, Yi,t, at the price that it sets.

— Right now we take Yi,t as given and we investigate the cost
minimization problem that determines the firm’s choice of
inputs.

Cost minimization problem:

min
Ni,t,Ii,t

W̄tNi,t + P̄tIi,t +

marginal cost (money terms)︷︸︸︷
λi,t

[
Yi,t −AtN

γ
i,tI

1−γ
i,t

]
with resource costs:

W̄t =

subsidy, if ν>0︷ ︸︸ ︷
(1− ν) ×

cost, including finance, of a unit of labor︷ ︸︸ ︷
(1− ψ+ ψRt)Wt

P̄t = (1− ν)×
cost, including finance, of a unit of materials︷ ︸︸ ︷

(1− ψ+ ψRt)Pt .



Cost Minimization Problem

• Problem:

min
Ni,t,Ii,t

W̄tNi,t + P̄tIi,t + λi,t

[
Yi,t −AtN

γ
i,tI

1−γ
i,t

]
• First order conditions:

P̄tIi,t = (1− γ) λi,tYi,t, W̄tNi,t = γλi,tYi,t,

so that,

Iit
Nit

=
1− γ

γ

W̄t

P̄t
=

1− γ

γ
exp (τt)CtN

ϕ
t

→ Iit
Nit

=
It

Nt
, for all i.



Cost Minimization Problem
• Firm first order conditions imply

λi,t =

(
P̄t

1− γ

)1−γ (W̄t

γ

)γ 1
At

.

• Divide marginal cost by Pt :

st ≡
λi,t

Pt
= (1− ν) (1− ψ+ ψRt)

(
1

1− γ

)1−γ

×
(

1
γ

exp (τt)CtN
ϕ
t

)γ 1
At
(9),

after substituting out for P̄t and W̄t and using the household’s
labor first order condition.

• Note from (9) that ith firm’s marginal cost, st, is independent
of i and Yit,.



Share of Materials in Intermediate Good
Output

• Firm i materials proportional to Yi,t :

Ii,t =
(1− γ) λiitYi,t

P̄t
= µtYi,t,

where

µt =
(1− γ) st

(1− ν) (1− ψ+ ψRt)
(10).

• "Share of materials in firm-level gross output", µt.



Decision By Firm that Can Change Its Price
• ith intermediate good firm’s objective:

Ei
t

∞

∑
j=0

βj υt+j

period t+j profits sent to household︷ ︸︸ ︷ revenues︷ ︸︸ ︷
Pi,t+jYi,t+j −

total cost︷ ︸︸ ︷
Pt+jst+jYi,t+j


υt+j - Lagrange multiplier on household budget constraint

• Firm that gets to reoptimize its price is concerned only with
future states in which it does not change its price:

Ei
t

∞

∑
j=0

βjυt+j
[
Pi,t+jYi,t+j − Pt+jst+jYi,t+j

]
= Et

∞

∑
j=0
(βθ)j υt+j

[
P̃tYi,t+j − Pt+jst+jYi,t+j

]
+Xt, .

where P̃t denotes a firm’s price-setting choice at time t and Xt
not a function of P̃t.



Decision By Firm that Can Change Its Price
• Substitute out demand curve:

Et

∞

∑
j=0
(βθ)j υt+j

[
P̃tYi,t+j − Pt+jst+jYi,t+j

]
= Et

∞

∑
j=0
(βθ)j υt+jYt+jPε

t+j

[
P̃1−ε

t − Pt+jst+jP̃−ε
t

]
.

• Differentiate with respect to P̃t :

Et

∞

∑
j=0
(βθ)j υt+jYt+jPε

t+j

[
(1− ε)

(
P̃t
)−ε

+ εPt+jst+jP̃−ε−1
t

]
= 0,

or,

Et

∞

∑
j=0
(βθ)j υt+jYt+jPε+1

t+j

[
P̃t

Pt+j
− ε

ε− 1
st+j

]
= 0.

• When θ = 0, get standard result - price is fixed markup over
marginal cost.



Decision By Firm that Can Change Its Price
• Substitute out the multiplier:

Et

∞

∑
j=0
(βθ)j

= υt+j︷ ︸︸ ︷
u′
(
Ct+j

)
Pt+j

Yt+jPε+1
t+j

[
P̃t

Pt+j
− ε

ε− 1
st+j

]
= 0.

• Using assumed log-form of utility,

Et

∞

∑
j=0
(βθ)j

Yt+j

Ct+j

(
Xt,j
)−ε

[
p̃tXt,j −

ε

ε− 1
st+j

]
= 0,

p̃t ≡
P̃t

Pt
, π̄t ≡

Pt

Pt−1
, Xt,j =

{ 1
π̄t+jπ̄t+j−1···π̄t+1

, j ≥ 1
1, j = 0.

,

‘recursive property’: Xt,j = Xt+1,j−1
1

π̄t+1
, j > 0



Decision By Firm that Can Change Its Price

• Want p̃t in:

Et

∞

∑
j=0
(βθ)j

Yt+j

Ct+j

(
Xt,j
)−ε

[
p̃tXt,j −

ε

ε− 1
st+j

]
= 0

• Solving for p̃t, we conclude that prices are set as follows:

p̃t =
Et ∑∞

j=0 (βθ)j
Yt+j
Ct+1

(
Xt,j
)−ε ε

ε−1st+j

Et ∑∞
j=0 (βθ)j

Yt+j
Ct+j

(
Xt,j
)1−ε

=
Kt

Ft
.

• Need convenient expressions for Kt, Ft.



Simplifying Numerator

Kt = Et

∞

∑
j=0
(βθ)j

Yt+j

Ct+j

(
Xt,j
)−ε ε

ε− 1
st+j

=
ε

ε− 1
Yt

Ct
st

+βθEt

∞

∑
j=1
(βθ)j−1 Yt+j

Ct+j


=Xt,j, recursive property︷ ︸︸ ︷

1
π̄t+1

Xt+1,j−1


−ε

ε

ε− 1
st+j

=
ε

ε− 1
Yt

Ct
st +Zt,

where

Zt = βθEt

∞

∑
j=1
(βθ)j−1 Yt+j

Ct+j

(
1

π̄t+1
Xt+1,j−1

)−ε ε

ε− 1
st+j



Simplifying Numerator, cnt’d

Kt = Et

∞

∑
j=0
(βθ)j

Yt+j

Ct+j

(
Xt,j
)−ε ε

ε− 1
st+j =

ε

ε− 1
Yt

Ct
st +Zt

Zt = βθEt

∞

∑
j=1
(βθ)j−1 Yt+j

Ct+j

(
1

π̄t+1
Xt+1,j−1

)−ε ε

ε− 1
st+j

= βθEt

(
1

π̄t+1

)−ε ∞

∑
j=0
(βθ)j

Yt+j+1

Ct+j+1
X−ε

t+1,j
ε

ε− 1
st+1+j

= βθ

=Et by LIME︷ ︸︸ ︷
EtEt+1

(
1

π̄t+1

)−ε ∞

∑
j=0
(βθ)j

Yt+j+1

Ct+j+1
X−ε

t+1,j
ε

ε− 1
st+1+j

= βθEt

(
1

π̄t+1

)−ε

exactly Kt+1!

Et+1

︷ ︸︸ ︷
∞

∑
j=0
(βθ)j

Yt+j+1

Ct+j+1
X−ε

t+1,j
ε

ε− 1
st+1+j



Decision By Firm that Can Change Its Price
• Recall,

p̃t =
Et ∑∞

j=0 (βθ)j
Yt+j
Ct+1

(
Xt,j
)−ε ε

ε−1st+j

Et ∑∞
j=0 (βθ)j

Yt+j
Ct+j

(
Xt,j
)1−ε

=
Kt

Ft

• We have shown that the numerator has the following simple
representation:

Kt = Et

∞

∑
j=0
(βθ)j

Yt+j

Ct+j

(
Xt,j
)−ε ε

ε− 1
st+j

=
ε

ε− 1
Yt

Ct
st + βθEt

(
1

π̄t+1

)−ε

Kt+1 (1)

• Similarly,

Ft =
Yt

Ct
+ βθEt

(
1

π̄t+1

)1−ε

Ft+1 (2)



Interpretation of Price Formula
• Note,

1
Pt+j

=
1
Pt

Xt,j, st+j =
λt+j

Pt+j
=

λt+j

Pt
Xt,j, p̃t =

P̃t

Pt
.

Multiply both sides of the expression for p̃t by Pt :

P̃t =
Et ∑∞

j=0 (βθ)j
(
Xt,j
)1−ε Yt+j

Ct+j
ε

ε−1 λt+j

Et ∑∞
j=0 (βθ)j

(
Xt,j
)1−ε Yt+j

Ct+j

=
ε

ε− 1

∞

∑
j=0

Etωt+jλt+j

where

ωt+j =
(βθ)j

(
Xt,j
)1−ε Yt+j

Ct+j

Et ∑∞
j=0 (βθ)j

(
Xt,j
)1−ε Yt+j

Ct+j

,
∞

∑
j=0

Etωt+j = 1.

Evidently, price is set as a markup over a weighted average of
future marginal cost, where the weights are shifted into the
future depending on how big θ is.



Moving On to Aggregates

• Aggregate price level.
• Aggregate measures of production.

— Value added.
— Gross output.



Aggregate Price Index
• Rewrite the aggregate price index.

— let p ∈ (0, ∞) the set of logically possible prices for
intermediate good producers.

— let gt (p) ≥ 0 denote the measure (e.g., ‘number’) of producers
that have price, p, in t

— let gt−1,t (p) ≥ 0, denote the measure of producers that had
price, p, in t− 1 and could not reoptimize in t

• Then,

Pt =

(∫ 1

0
P(1−ε)

i,t di
) 1

1−ε

=

(∫ ∞

0
gt (p) p(1−ε)dp

) 1
1−ε

.

• Note:

Pt =

(
(1− θ) P̃1−ε

t +
∫ ∞

0
gt−1,t (p) p(1−ε)dp

) 1
1−ε

.



Aggregate Price Index
• Calvo randomization assumption:

measure of firms that had price, p, in t−1 and could not change︷ ︸︸ ︷
gt−1,t (p)

= θ ×
measure of firms that had price p in t−1︷ ︸︸ ︷

gt−1 (p)

• Then,

Pt =

(
(1− θ) P̃1−ε

t +
∫ ∞

0
gt−1,t (p) p(1−ε)dp

) 1
1−ε

=

(1− θ) P̃1−ε
t + θ

=P1−ε
t−1︷ ︸︸ ︷∫ ∞

0
gt−1 (p) p(1−ε)dp


1

1−ε



Restriction Between Aggregate and
Intermediate Good Prices

• ‘Calvo result’:

Pt =

(∫ 1

0
P(1−ε)

i,t di
) 1

1−ε

=
[
(1− θ) P̃(1−ε)

t + θP(1−ε)
t−1

] 1
1−ε .

• Divide by Pt :

1 =

[
(1− θ) p̃(1−ε)

t + θ

(
1
π̄t

)(1−ε)
] 1

1−ε

.

• Rearrange:

p̃t =

[
1− θ

1− θπ̄
(ε−1)
t

] 1
ε−1



Aggregate inputs and outputs
• Gross output of firm i :

Yi,t = exp (at)Nγ
i,tI

1−γ
i,t .

— Net output or value-added would subtract out the materials
that were bought from other firms.

• Economy-wide gross output: sum of value of Yi,t across all
firms: ∫ 1

0
Pi,tYi,tdi =

∫ 1

0
Pt

(
Yt

Yi,t

) 1
ε

Yi,tdi

= PtY
1
ε
t

=Y
ε−1

ε
t︷ ︸︸ ︷∫ 1

0
Y

ε−1
ε

i,t di = PtYt.

• Gross output production function: relation between Yt and
non-produced inputs, Nt.



Aggregate inputs and outputs, cnt’d

• Gross output, Yt, is not a good measure of economic output,
because it double counts.

— Some of the output that firm i ‘produced’is materials produced
by another firm, which is counted in that firm’s output.

— If wheat is used to make bread, wrong to measure production
by adding all wheat and all bread. That double counts the
wheat.

• Want aggregate value-added : sum of firm-level gross output,
minus purchases of materials from other firms.

• Value-added production function: expression relating aggregate
value-added in period t to inputs not produced in period t.
— capital and labor.



Gross Output vs Agg Materials and Labor
• Approach developed by Tack Yun (JME, 1996).
• Define Y∗t :

Y∗t ≡
∫ 1

0
Yi,tdi

demand curve︷︸︸︷
= Yt

∫ 1

0

(
Pi,t

Pt

)−ε

di = YtPε
t

∫ 1

0
(Pi,t)

−ε di

= YtPε
t (P
∗
t )
−ε

where, using ‘Calvo result’:

P∗t ≡
[∫ 1

0
P−ε

i,t di
]−1

ε

=
[
(1− θ) P̃−ε

t + θ
(
P∗t−1

)−ε
]−1

ε

• Then
Yt = p∗t Y∗t , p∗t =

(
P∗t
Pt

)ε

.



Gross Output vs Agg Materials and Labor
• Relationship between aggregate inputs and outputs:

Yt = p∗t Y∗t = p∗t
∫ 1

0
Yi,tdi

= p∗t At

∫ 1

0
Nγ

i,tI
1−γ
i,t di = p∗t At

∫ 1

0

(
Ni,t

Ii,t

)γ

Ii,tdi,

= p∗t At

(
Nt

It

)γ

It,

or,
Yt = p∗t AtN

γ
t I1−γ

t (6).

• Note that p∗t is a function of the ratio of two averages (with
different weights) of Pi,t, i ∈ (0, 1)

— So, when Pi,t = Pj,t for all i, j ∈ (0, 1) , then p∗t = 1.
— But, what is p∗t when Pi,t 6= Pj,t for some i, j ∈ (0, 1)?



Tack Yun Distortion

• Consider the object,

p∗t =
(

P∗t
Pt

)ε

,

where

P∗t =
(∫ 1

0
P−ε

i,t di
)−1

ε

, Pt =

(∫ 1

0
P(1−ε)

i,t di
) 1

1−ε

• In following slide, use Jensen’s inequality to show:

p∗t ≤ 1.



Tack Yun Distortion
• Let f (x) = x4, a convex function. Then,

convexity: αx4
1 + (1− α) x4

2 > (αx1 + (1− α) x2)
4

for x1 6= x2, 0 < α < 1.
• Applying this idea to prices:

convexity:
∫ 1

0

(
P(1−ε)

i,t

) ε
ε−1 di ≥

(∫ 1

0
P(1−ε)

i,t di
) ε

ε−1

⇐⇒
(∫ 1

0
P−ε

i,t di
)
≥

(∫ 1

0
P(1−ε)

i,t di
) ε

ε−1

⇐⇒

P∗t︷ ︸︸ ︷(∫ 1

0
P−ε

i,t di
)−1

ε

≤

Pt︷ ︸︸ ︷(∫ 1

0
P(1−ε)

i,t di
) 1

1−ε



Law of Motion of Tack Yun Distortion

• We have

P∗t =
[
(1− θ) P̃−ε

t + θ
(
P∗t−1

)−ε
]−1

ε

• Then,

p∗t ≡
(

P∗t
Pt

)ε

=

[
(1− θ) p̃−ε

t + θ
π̄ε

t
p∗t−1

]−1

=

(1− θ)

(
1− θπ̄

(ε−1)
t

1− θ

) ε
ε−1

+
θπ̄ε

t
p∗t−1

−1

(4)

using the restriction between p̃t and aggregate inflation
developed earlier.



Gross Output Production Function

• Recall
Ii,t = µtYi,t,

so,

It ≡
∫ 1

0
Ii,tdi = µt

∫ 1

0
Yi,td = µtY

∗
t =

µt
p∗t

Yt.

• Then, the gross output production function is:

Yt = p∗t AtN
γ
t I1−γ

t

= p∗t AtN
γ
t

(
µt
p∗t

Yt

)1−γ

−→ Yt =

(
p∗t At

(
µt
p∗t

)1−γ
) 1

γ

Nt



Value Added (GDP) Production Function
• We have

GDPt = Yt − It =

(
1− µt

p∗t

)
Yt

=

(
1− µt

p∗t

)(
p∗t At

(
µt
p∗t

)1−γ
) 1

γ

Nt

=

=Total Factor Productivity (TFP)︷ ︸︸ ︷(
p∗t At

(
1− µt

p∗t

)γ (µt
p∗t

)1−γ
) 1

γ

Nt

• Note how an increase in technology at the firm level, by At,
gives rise to a bigger increase in TFP by A1/γ

t .
— In the literature on networks, 1/γ is referred to as a ‘multiplier
effect’(see Jones, 2011).

• The Tack Yun distortion, p∗t , is associated with the same
multiplier phenomenon.



Decomposition for TFP
• To maximize GDP for given aggregate Nt and At :

max
0<p∗t≤1, 0≤λt≤1

(
p∗t At (1− λt)

γ (λt)
1−γ
) 1

γ

→ λt = 1− γ, p∗t = 1.

• So,

TFPt =

Component due to market distortions≡χt︷ ︸︸ ︷p∗t

(
1− µt

p∗t
γ

)γ( µt
p∗t

1− γ

)1−γ


1
γ

×

Exogenous, technology component≡Ãt︷ ︸︸ ︷(
At (γ)

γ (1− γ)1−γ
) 1

γ



Evaluating the Distortions
• The equations characterizing the TFP distortion, χt :

χt =

p∗t

(
1− µt

p∗t
γ

)γ( µt
p∗t

1− γ

)1−γ


1
γ

p∗t =

(1− θ)

(
1− θπ̄

(ε−1)
t

1− θ

) ε
ε−1

+
θπ̄ε

t
p∗t−1

−1

.

• Potentially, NK model provides an ‘endogenous theory of TFP’.
• Standard practice in NK literature is to set χt = 1 for all t.

— Set γ = 1 and linearize around π̄t = p∗t = 1.
— With γ = 1, χt = p∗t , and first order expansion of p∗t around

π̄t = p∗t = 1 is:

p∗t = p∗ + 0× π̄t + θ (p∗t−1 − p∗) , with p∗ = 1,

so p∗t → 1 and is invariant to shocks.



Empirical Assessment of the Distortions
• First, do ‘back of the envelope’calculations in a steady state
when inflation is constant and p∗ is constant.

p∗ =

(1− θ)

(
1− θπ̄(ε−1)

1− θ

) ε
ε−1

+
θπ̄ε

p∗

−1

→ p∗ =
1− θπ̄ε

1− θ

(
1− θ

1− θπ̄(ε−1)

) ε
ε−1

• Approximate TFP distortion, χ :

χt =

p∗t

(
1− µt

p∗t
γ

)γ( µt
p∗t

1− γ

)1−γ


1
γ more on this later︷︸︸︷' (p∗)1/γ



Three Inflation Rates:

• Average inflation in the 1970s, 8 percent APR.
• Several people have suggested that the US raise its inflation
target to 4 percent to raise the nominal rate of interest and
thereby reduce the likelihood of the zero lower bound on the
interest rate becoming binding again.

— http://www.voxeu.org/article/case-4-inflation

• Two percent inflation is the average in the recent (pre-2008)
low inflation environment.
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Cost of Three Alternative Permanent
Levels of Inflation

p∗ =
1− θπ̄ε

1− θ

(
1− θ

1− θπ̄(ε−1)

) ε
ε−1

, χ = (p∗)1/γ

Table 1: Percent of GDP Lost1 Due to Inflation, 100(1− χt)
Without networks (γ = 1) With networks (γ = 1/2)

a: Steady state inflation: 8 percent per year
2.412 (3.92) [10.85] 4.76 (7.68) [20.53]

b: Steady state inflation: 4 percent per year
0.46 (0.64) [1.13] 0.91 (1.27) [2.25]

c: Steady state inflation: 2 percent per year
0.10 (0.13) [0.21] 0.20 (0.27) [0.42]

Note: number not in parentheses assumes a markup of 20 percent; number in parentheses: 15 percent; number in

square brackets: 10 percent



Next: Assess Costs of Inflation Using
Non-Steady State Formulas
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Figure 1a: Percent loss of GDP due to Inflation, assumed markup is 1.2
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Inflation Distortions Displayed are Big
• With ε = 6,

— mean(χt) = 0.98, a 2% loss of GDP.
— frequency, χt < 0.955, is 10% (i.e., 10% of the time, the
output loss is greater than 4.5 percent).

• With more competition (i.e., ε higher), the losses are greater.
— with higher elasticity of demand, given movements in inflation
imply much greater substitution away from high priced items,
thus greater misallocation (caveat: this intuition is incomplete
since with greater ε the consequences of a given amount of
misallocation are smaller).

• Distortions with γ = 1/2 are roughly twice the size of
distortions in standard case, γ = 1.
— To see this, note

1− χt ' 1− (p∗)
1
γ

Taylor series expansion about p∗=1︷︸︸︷
' 1

γ
(1− p∗) .



Comparison of Steady State and Dynamic
Costs of Inflation in 1970s

• Results

Table 1: Fraction of GDP Lost, 100(1− χ), During High Inflation
No networks, γ = 1 Networks, γ = 2

Steady state lost output 2.41 (3.92)∗ 4.76 (7.68)
Mean, 1972Q1-1982Q4 3.13 (5.22) 6.26 (10.44)
Note * number not in parentheses - markup of 20 percent (i.e., ε = 6)

number in parentheses - markup of 15 percent. (i.e., ε = 7.7)

• Evidently, distortions increase rapidly in inflation,

E [distortion (inflation)] > distortion (Einflation)



Next

• Collect the equilibrium conditions.
— For careful comparison of NK model with RBC model, see
http://faculty.wcas.northwestern.edu/~lchrist/course/
China_Chengdu_2016/NewKeynesian_model_handout.pdf

— In RBC model, markets obtain socially effi cient allocations
independent of monetary policy.

— In NK model, markets don’t necessarily work well and good
monetary policy essential.

• Solve the model.



Summarizing the Equilibrium Conditions

• Break up the equilibrium conditions into three sets:
1 Conditions (1)-(4) for prices: Kt, Ft, π̄t, p∗t , st
2 Conditions (6)-(10) for: Ct, Yt, Nt, It, µt
3 Conditions (5) and (11) for Rt and χt.

• We have 11 equilibrium conditions for 12 variables: system is
underdetermined.

— Not surprising: have said nothing about monetary policy.



Equilibrium Conditions Associated with
Price Setting

Kt =
ε

ε− 1
Yt

Ct
st + βθEtπ̄

ε
t+1Kt+1 (1)

Ft =
Yt

Ct
+ βθEtπ̄

ε−1
t+1Ft+1 (2)

Kt

Ft
=

[
1− θπ̄

(ε−1)
t

1− θ

] 1
1−ε

(3)

p∗t =

(1− θ)

(
1− θπ̄

(ε−1)
t

1− θ

) ε
ε−1

+
θπ̄ε

t
p∗t−1

−1

(4)



Equilibrium Conditions Associated With
Gross Output

• Equations:

Yt = p∗t AtN
γ
t I1−γ

t (6), Ct + It = Yt (7), It = µt
Yt

p∗t
(8)

st = (1− ν) (1− ψ+ ψRt)

(
1

1− γ

)1−γ

×

 1
γ

used household Euler equation to substitute out Wt/Pt︷ ︸︸ ︷
exp (τt)CtN

ϕ
t


γ

1
At
(9)

µt =
(1− γ) st

(1− ν) (1− ψ+ ψRt)
(10),



Other Equilibrium Conditions

• Allocative distortion:

χt =

p∗t

(
1− µt

p∗t
γ

)γ( µt
p∗t

1− γ

)1−γ


1
γ

(11)

• Intertemporal equation

1
Ct
= βEt

1
Ct+1

Rt

π̄t+1
(5)



• On way to close the system: specify a monetary policy rule:

Rt/R = (Rt−1/R)ρ exp [(1− ρ) φπ(π̄t − π̄) + ut] (12)

• Smoothing parameter: ρ.

— Bigger is ρ the more persistent are policy-induced changes in
the interest rate.

• Monetary policy shock: ut.



Conclusion About Networks
• Networks alter the New Keynesian model’s implications for
inflation.
— Doubles the cost of inflation.
— Phillips curve is flatter because of strategic complementarities
(when there are price frictions, this makes materials prices
inertial which makes marginal costs inertial, which reduces
firms’interest in changing prices).

• For the result on the Taylor principle, see my 2011 handbook
chapter and Christiano (2015).
— When the smoothing parameter in Taylor rule is set to zero
and ψ = 1, then the model has indeterminacy, even when the
coeffi cient on inflation is 1.5.

— So, the likelihood of the Taylor principle breaking down goes
up when γ is reduced, consistent with intuition.

— When the smoothing parameter is at its empirically plausible
value of 0.8, then the solution of the model does not display
indeterminacy.


