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Objectives

e Provide a rigorous development of the basic New Keynesian
model without capital.

— Previous exposure to the model is helpful, but not absolutely
necessary.

e Present a version of the model that incorporates a simple
formulation of the ‘network’ nature of production.

— In standard model, all production is sold directly to final
purchasers.
— In fact (see, e.g., Basu AER1996) about 1/2 of gross
production by firms is sold to other firms.
e See Christiano, Trabandt and Walentin (Handbook of

Monetary Economics, 2011) for an extended discussion of the
approach to networks developed here.



Implications of thinking about networks

e Obtain a quantitatively important theory of the cost of inflation.

¢ Raise questions about the effectiveness of inflation targeting as
a device for stabilizing inflation and the macroeconomy.

e Flatten the slope of the Phillips curve because of strategic
complementarities in price setting.



Background Readings on Networks

Basu, Susanto, 1995, ‘Intermediate goods and business cycles:
Implications for productivity and welfare,” American Economic
Review, 85 (3), 512-531.

Rotemberg, J., and M. Woodford, 1995, ‘Dynamic General
Equilibrium Models with Imperfectly Competitive Product
Markets,” in, T. Cooley, ed., Frontiers of Business Cycle
Research, Princeton University Press (also, NBER wp 4502).
Nakamura, Emi and Jon Steinsson, 2010, ‘Monetary
Non-Neutrality in a Multisector Menu Cost Model,” The
Quarterly Journal of Economics, August.

Jones, Chad, 2013, ‘Misallocation, Economic Growth, and
Input-Output Economics,” in D. Acemoglu, M. Arellano, and E.
Dekel, Advances in Economics and Econometrics, Tenth World
Congress, Volume I, Cambridge University Press.

Daron Acemoglu, Ufuk Akcigit, William Kerr, ‘Networks and
the Macroeconomy: An Empirical Exploration,” NBER
Macroeconomics Annual 2015



Households

e Problem:
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e First order conditions:
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Goods Production

A homogeneous final good is produced using the following
(Dixit-Stiglitz) production function:

1 e s%l
Yy = [ Y} di] .
0 7
Each intermediate good, Y, is produced as follows:

Yi;: = exp(a) N?tlilfy, a; ~exogenous shock to technology,
0 < <1

I;+ ~'materials’ these are purchases of the homogeneous output
good (Basu's simplified way of capturing that firms buy goods
from other firms).
Before discussing the firms that operate these production
functions, we briefly investigate the socially efficient (‘First
Best') allocation of resources across i.

— simplify the discussion with ¥ =1 (no materials).



Efficient Sectoral Allocation of Resources
Across Sectors

e With Dixit-Stiglitz final good production function, there is a
socially optimal allocation of resources to all the intermediate
activities, Y;;

— It is optimal to run them all at the same rate, ie., Y;; = Y,
for all i,j € [0,1].

o For given Ny, it is optimal to set N;; = Ny, for all i,j € [0,1]
¢ In this case, final output is given by

Yt = e”tNt.

e Best way to see this is to suppose that labor is not allocated
equally to all activities.

— Explore one simple deviation from N;; = N;; for all i,j € [0, 1].



Suppose Labor Not Allocated Equally

* Example:

- 2aN, i€ [0,%]

Ni - s
' {2(1—a)N, ie[4,1]

* Note that this is a particular distribution of
labor across activities:

<a<l.

1
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Labor Not Allocated Equally, cnt’d
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Homogeneous Goods Production

e Competitive firms:

— maximize profits:

1
Pth—/O P;;Y;dj,

subject to:
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— Foncs:

""cross price restrictions"
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Intermediate Goods Production

Demand curve for it" monopolist:

Production function:

Yii = exp(a) N?tlilt_v, a; ~exogenous shock to technology,
0 < <1

I;+ ~'materials’ these are purchases of the homogeneous output
good (Basu's simplified way of capturing that firms buy goods
from other firms).

Calvo Price-Setting Friction:

P, — by with probability 1 — 6
W Piy—q  with probability 6



Cost Minimization Problem

e Price setting by intermediate good firms is discussed later.
— The intermediate good firm must produce the quantity
demanded, Y;;, at the price that it sets.
— Right now we take Y;; as given and we investigate the cost
minimization problem that determines the firm’s choice of
inputs.

Cost minimization problem:

marginal cost (money terms)

R - =~ P
min WiN;; + P + Ai [Yi,t — AN I

e Lot
ittt

with resource costs:

subsidy, if v>0  cost, including finance, of a unit of labor
—_—

Wi = (I-v) x T_vi9R)W,

cost, including finance, of a unit of materials
7\
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Py = (1-v)x (1— ¢+ YR, P;




Cost Minimization Problem

e Problem:

min WiN;; + Piljy + Ay [Yi,t — AN ;Ytlllt_ !

it
e First order conditions:

Pliy = (1= 9)AisYir, WiNiy = vA1 Yoy,

so that,
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Cost Minimization Problem

e Firm first order conditions imply

b (i) ('k
' I—v v ) At
¢ Divide marginal cost by P :
: Ty
5= == A-prR) (12 )
X (l exp (T¢) Cth'))v 1 9),
Y Ay

after substituting out for P; and W; and using the household's
labor first order condition.

o Note from (9) that i firm’'s marginal cost, s, is independent
of iand Yy .



Share of Materials in Intermediate Good
Output

e Firm i materials proportional to Y;; :

(1 =) AirY;,
Liy = D T = 1Yit,
t

where
-~ (1—7)st
B= A=) 1=y + ¢R

; (10)

e "Share of materials in firm-level gross output", p,.



Decision By Firm that Can Change Its Price

e it" intermediate good firm's objective:
period t+4j profits sent to household

N

revenues total cost
7\ 7\

Zﬁ’ Vs | i Yisj — ProiseriYiess

UtJr]' - Lagrange multiplier on household budget constraint

e Firm that gets to reoptimize its price is concerned only with
future states in which it does not change its price:

(]

Ei Z ﬁiUH—j [Pi,t+jYi,t+j - Pt+j5t+jYi,t+j}
j=0
= ErY (BO) vryj [PrYisj — PepjserYissj] + X,
j=0

where P; denotes a firm's price-setting choice at time t and X;
not a function of P..



Decision By Firm that Can Change Its Price

e Substitute out demand curve:

Er Y (BOY vej [PrYipij— PrajsesYigs]
j=0
= Et Z (IBQ)] Ut—‘r]Yt—i-]P?J,-] [P}is - Pt+j5t+jp;€:| .
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e Differentiate with respect to P; :

[e0]
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=0
o,
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e When 6 = 0, get standard result - price is fixed markup over
marginal cost.



Decision By Firm that Can Change Its Price
e Substitute out the multiplier:

= Uty
fﬂ) +1 P, € _
E; Z o)y ———=Y, P} o [m — 8_—154 =0.

e Using assumed log-form of utility,
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Decision By Firm that Can Change Its Price

e Want p; in:
t—|— - 3
EfZ poy & ( L (X0 (P = g | =0

e Solving for p, we conclude that prices are set as follows:

_ EYEo(BO) ot (X)) = _Ki
= Y 1- T F
E Yo (BOY o (X)) H

Crsj

e Need convenient expressions for K;, F;.



where

Simplifying Numerator
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Simplifying Numerator, cnt’d
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Decision By Firm that Can Change Its Price

e Recall,

© i Yy -
E Y20 (BO) ot (Xej) " e5q5es _ K
Y - T F
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Cij

Pt =

e \We have shown that the numerator has the following simple
representation:
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e Similarly,




Interpretation of Price Formula
¢ Note,

1 1 /\t+] At—&-] P t
_— —X i, S . i R

Multiply both sides of the expression for p; by Py :
00 j 1-¢e Y
E; Zj:O (130)] (Xt]) ‘ cif I3 81/\t+] €
= ]. e Vi, == ZEtwt+])\t+]
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Crij

T

B =

where

(BOY (Xi)) " 0
0 j 1—¢ Yt+j ! Z Eth‘j =1
Eryo (BO) (X) "ot i=0

Evidently, price is set as a markup over a weighted average of
future marginal cost, where the weights are shifted into the
future depending on how big 6 is.

C()t]':



Moving On to Aggregates

o Aggregate price level.
e Aggregate measures of production.

— Value added.
— Gross output.



Aggregate Price Index

e Rewrite the aggregate price index.

— let p € (0,00) the set of logically possible prices for
intermediate good producers.

— let gt (p) > 0 denote the measure (e.g., ‘number’) of producers
that have price, p, in t

— let g4—1,+ (p) > 0, denote the measure of producers that had
price, p, in t —1 and could not reoptimize in ¢

e Then,



Aggregate Price Index
e Calvo randomization assumption:

measure of firms that had price, p, in t—1 and could not change

——
gt-11t (p)

measure of firms that had price p in t—1

—
= X gt-1(p)

e Then,

A

= [(1-0)P "+ 9/0 g1 (p) p'dp




Restriction Between Aggregate and
Intermediate Good Prices

e ‘Calvo result’:



Aggregate inputs and outputs

e Gross output of firm i :

1_
Y = exp (ar) Nztli,t 7.

— Net output or value-added would subtract out the materials
that were bought from other firms.
e Economy-wide gross output: sum of value of Y;; across all

firms:
1
1 1 Y.\ ¢
/PitYitdi - /pt (—f> Y, di
o 7 0 Yis ’

e—1
_yv €
_Yt
M.\

l/_l e=1
= DY} /O Y,f di = PYy.

e Gross output production function: relation between Y; and
non-produced inputs, N;.



Aggregate inputs and outputs, cnt’'d

e Gross output, Y}, is not a good measure of economic output,
because it double counts.

— Some of the output that firm i ‘produced’ is materials produced
by another firm, which is counted in that firm’'s output.
— If wheat is used to make bread, wrong to measure production

by adding all wheat and all bread. That double counts the
wheat.

e Want aggregate value-added: sum of firm-level gross output,
minus purchases of materials from other firms.

e Value-added production function: expression relating aggregate
value-added in period t to inputs not produced in period t.
— capital and labor.



Gross Output vs Agg Materials and Labor

e Approach developed by Tack Yun (JME, 1996).
e Define Y}:

1
y: = / Y, di
0

demand curve

1 Pi,t ot . e 1 —& g
Y, / SE)di =i / (P;)“ di
0 t 0

= YiP; (Pf)°

where, using ‘Calvo result’:

1 3 i -1
Pr = M P;fdz} - [(1—9) P;£+6(P§‘_1)_S] S

e Then .
p*
vi—pivi v = () -



Gross Output vs Agg Materials and Labor

e Relationship between aggregate inputs and outputs:
1
Yo = piYi=pi [ Yidi
1 /N \7
= P / NJLL i = pia | (—f) lisdti,
o \ lis '
N,
= P*At< t> It,
I

= pi AT (6).

or,

e Note that p; is a function of the ratio of two averages (with
different weights) of P;;, i € (0,1)

— So, when P;; = Pj; for all i,j € (0,1), then pj = 1.
— But, what is p; when P;; # P;; for some i,j € (0,1)?



Tack Yun Distortion

e Consider the object,

where

= ([ )= ([ 0a)”

e In following slide, use Jensen's inequality to show:

pi < 1.



Tack Yun Distortion

e Let f (x) = x*, a convex function. Then,
convexity: axt 4+ (1 —a)x3 > (ax; + (1 —a) xp)*

for x1 #x2,0<(x<1.
e Applying this idea to prices:




Law of Motion of Tack Yun Distortion

e We have )
<

Pi=[(1-0) P +6/(Piy) ]
e Then,

using the restriction between p; and aggregate inflation
developed earlier.



Gross Output Production Function

e Recall
Liy = uYiy,

SO,

I} = 11 di = 1Y d=uy =ty

= - .di . )
t /0 it P‘t/o it MLt pi t
e Then, the gross output production function is:

Yo = piANILTT

1_
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Value Added (GDP) Production Function
e We have

GDP; = Yt—It:( —“—j)yt
Pt

1
1-9v\ 7
< vi (p b > t

=Total Factor Productivity (TFP)

~
1
v

- (=) () )
pi Pt

e Note how an increase in technology at the firm level, by Ay,
gives rise to a bigger increase in TFP by A}M.
— In the literature on networks, 1/ is referred to as a ‘multiplier
effect’ (see Jones, 2011).
e The Tack Yun distortion, p;, is associated with the same

miiltinlier ohenomenon



Decomposition for TFP
e To maximize GDP for given aggregate N; and A; :

1=y
max ( *At 1—/\1} v At )
0<pr 21 0 <1 prA: ( )7 (Ar)
— M=1—-9, p?:l,
e So,
Component due to market distortions=y;

i F)

>
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Exogenous, technology component=A;
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Evaluating the Distortions
e The equations characterizing the TFP distortion, x; :

1-L4
Pt

X *
t Pt( ’Y

v o\ Y 7
Pt
1—o

_(e—1)

-1
=&
07ty
*
Pi-1

&1
)

e Potentially, NK model provides an ‘endogenous theory of TFP'.
e Standard practice in NK literature is to set x;, = 1 for all t.
— Set v =1 and linearize around 7; = pf = 1.
— With v =1, x; = p;, and first order expansion of p; around

ﬁtzpleiSZ

pi =p +0x 7 +0(pi_q—p*), withp* =1,

so p; — 1 and is invariant to shocks.



Empirical Assessment of the Distortions

e First, do ‘back of the envelope’ calculations in a steady state
when inflation is constant and p* is constant.

. 1 gD\ T pe
=100 (T) T

o l-ert/ 1-6 1
Pr="1"% 1 — @r(e-1)

e Approximate TFP distortion, x :

1
1— HeN 7 e =7\ 7 more on this later
N P pr ~=~ w1/
Xt Pt < ’y > (1 _’Y> ~ (")
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Three Inflation Rates:

e Average inflation in the 1970s, 8 percent APR.

e Several people have suggested that the US raise its inflation
target to 4 percent to raise the nominal rate of interest and
thereby reduce the likelihood of the zero lower bound on the
interest rate becoming binding again.

— http://www.voxeu.org/article/case-4-inflation

e Two percent inflation is the average in the recent (pre-2008)
low inflation environment.
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Cost of Three Alternative Permanent
Levels of Inflation

L 1—0r( 1-6 \TT .

Table 1: Percent of GDP Lost' Due to Inflation, 100(1 — x,)

Without networks (y = 1) | With networks (7 = 1/2)

a: Steady state inflation: 8 percent per year

2.41%2 (3.92) [10.85] | 4.76 (7.68) [20.53]

b: Steady state inflation: 4 percent per year

046 (0.64) [L.13] | 0.91 (1.27) [2.25]

c: Steady state inflation: 2 percent per year

0.10 (0.13) [0.21] | 0.20 (0.27) [0.427]

Note: number not in parentheses assumes a markup of 20 percent; number in parentheses: 15 percent; number in

square brackets: 10 percent




Next: Assess Costs of Inflation Using
Non-Steady State Formulas
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Inflation Distortions Displayed are Big

o With e = 6,
— mean(x;) = 0.98, a 2% loss of GDP.
— frequency, x; < 0.955, is 10% (i.e., 10% of the time, the
output loss is greater than 4.5 percent).

e With more competition (i.e., € higher), the losses are greater.
— with higher elasticity of demand, given movements in inflation
imply much greater substitution away from high priced items,
thus greater misallocation (caveat: this intuition is incomplete
since with greater ¢ the consequences of a given amount of
misallocation are smaller).
e Distortions with v = 1/2 are roughly twice the size of
distortions in standard case, ¢y = 1.
— To see this, note

Taylor series expansion about p*=1

= 1 «
~ —(1-p").

2=

T=x;=1-(p")



Comparison of Steady State and Dynamic
Costs of Inflation in 1970s

e Results

Table 1: Fraction of GDP Lost, 100(1 — x), During High Inflation

No networks, v = 1 | Networks, 7 =2
Steady state lost output 2.41 (3.92)* 4.76 (7.68)
Mean, 1972Q1-1982Q4 3.13 (5.22) 6.26 (10.44)

Note * number not in parentheses - markup of 20 percent (i.e., € = 6)

number in parentheses - markup of 15 percent. (i.e., € = 7.7)

e Evidently, distortions increase rapidly in inflation,

E [distortion (inflation)] > distortion (Einflation)




Next

e Collect the equilibrium conditions.

— For careful comparison of NK model with RBC model, see
http://faculty.wcas.northwestern.edu/~Ichrist/course/
China_ Chengdu_2016/NewKeynesian _model _handout.pdf

— In RBC model, markets obtain socially efficient allocations
independent of monetary policy.

— In NK model, markets don’t necessarily work well and good
monetary policy essential.

e Solve the model.



Summarizing the Equilibrium Conditions

e Break up the equilibrium conditions into three sets:

® Conditions (1)-(4) for prices: K¢, Ft, 7tt, pf, st
@® Conditions (6)-(10) for: Cy, Y¢, Ny, Iy, 1,
© Conditions (5) and (11) for R; and ;.

e We have 11 equilibrium conditions for 12 variables: system is
underdetermined.

— Not surprising: have said nothing about monetary policy.



Equilibrium Conditions Associated with
Price Setting

e Y
K= — Ctst+ﬁ6Et7rt K (1)

Y
F = Et + BOE A 1Fi (2)
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Equilibrium Conditions Associated With
Gross Output

e Equations:

. _ Y
Y, = pfANILTT(6), Ci+ 1 =Y, (7),1t:ytp—j (8)
t

s = (1-v)(1-p+yR) (%)H

used household Euler equation to substitute out W; /P i

—TN—
X exp (1) CiNY —

1
v

= (1—=7)st
Y (=) (A -y +yRy

(10),



Other Equilibrium Conditions

e Allocative distortion:

1 M\ W 1=\ 7
| i Pe

e Intertemporal equation




e On way to close the system: specify a monetary policy rule:

Ri/R = (Ri-1/R) exp [(1—p) . (7t: — 7T) + ] (12)

e Smoothing parameter: p.

— Bigger is p the more persistent are policy-induced changes in
the interest rate.

e Monetary policy shock: u;.



Conclusion About Networks

o Networks alter the New Keynesian model’s implications for
inflation.

— Doubles the cost of inflation.

— Phillips curve is flatter because of strategic complementarities
(when there are price frictions, this makes materials prices
inertial which makes marginal costs inertial, which reduces
firms’ interest in changing prices).

e For the result on the Taylor principle, see my 2011 handbook
chapter and Christiano (2015).

— When the smoothing parameter in Taylor rule is set to zero
and 1 = 1, then the model has indeterminacy, even when the
coefficient on inflation is 1.5.

— So, the likelihood of the Taylor principle breaking down goes
up when 7 is reduced, consistent with intuition.

— When the smoothing parameter is at its empirically plausible
value of 0.8, then the solution of the model does not display
indeterminacy.



