Simple New Keynesian Model without Capital: Implications of Networks

Lawrence J. Christiano

Gerzensee, August 2016

Objectives

- Provide a rigorous development of the basic New Keynesian model without capital.
 - Previous exposure to the model is helpful, but not absolutely necessary.
- Present a version of the model that incorporates a simple formulation of the 'network' nature of production.
 - In standard model, all production is sold directly to final purchasers.
 - In fact (see, e.g., Basu AER1996) about 1/2 of gross production by firms is sold to other firms.
 - See Christiano, Trabandt and Walentin (Handbook of Monetary Economics, 2011) for an extended discussion of the approach to networks developed here.

Implications of thinking about networks

- Obtain a quantitatively important theory of the cost of inflation.
- Raise questions about the effectiveness of inflation targeting as a device for stabilizing inflation and the macroeconomy.
- Flatten the slope of the Phillips curve because of strategic complementarities in price setting.

Background Readings on Networks

- Basu, Susanto, 1995, 'Intermediate goods and business cycles: Implications for productivity and welfare,' *American Economic Review*, 85 (3), 512–531.
- Rotemberg, J., and M. Woodford, 1995, 'Dynamic General Equilibrium Models with Imperfectly Competitive Product Markets,' in, T. Cooley, ed., *Frontiers of Business Cycle Research*, Princeton University Press (also, NBER wp 4502).
- Nakamura, Emi and Jon Steinsson, 2010, 'Monetary Non-Neutrality in a Multisector Menu Cost Model,' *The Quarterly Journal of Economics*, August.
- Jones, Chad, 2013, 'Misallocation, Economic Growth, and Input-Output Economics,' in D. Acemoglu, M. Arellano, and E. Dekel, Advances in Economics and Econometrics, Tenth World Congress, Volume II, Cambridge University Press.
- Daron Acemoglu, Ufuk Akcigit, William Kerr, 'Networks and the Macroeconomy: An Empirical Exploration,' NBER Macroeconomics Annual 2015.

Households

• Problem:

$$\max E_0 \sum_{t=0}^{\infty} \beta^t \left(\log C_t - \exp(\tau_t) \frac{N_t^{1+\varphi}}{1+\varphi} \right), \ \tau_t = \lambda \tau_{t-1} + \varepsilon_t^{\tau}$$

s.t. $P_t C_t + B_{t+1} \le W_t N_t + R_{t-1} B_t + \text{Profits net of taxes}_t$

• First order conditions:

$$\frac{1}{C_t} = \beta E_t \frac{1}{C_{t+1}} \frac{R_t}{\bar{\pi}_{t+1}}$$
(5)
$$\exp(\tau_t) C_t N_t^{\varphi} = \frac{W_t}{P_t}.$$

Goods Production

• A homogeneous final good is produced using the following (Dixit-Stiglitz) production function:

$$Y_t = \left[\int_0^1 Y_{i,t}^{\frac{\varepsilon-1}{\varepsilon}} di\right]^{\frac{\varepsilon}{\varepsilon-1}}$$

• Each intermediate good, $Y_{i,t}$, is produced as follows:

- $I_{i,t}$ ~'materials' these are purchases of the homogeneous output good (Basu's simplified way of capturing that firms buy goods from other firms).
- Before discussing the firms that operate these production functions, we briefly investigate the socially efficient ('First Best') allocation of resources across *i*.
 - simplify the discussion with $\gamma=1$ (no materials).

Efficient Sectoral Allocation of Resources Across Sectors

- With Dixit-Stiglitz final good production function, there is a socially optimal allocation of resources to all the intermediate activities, $Y_{i,t}$
 - It is optimal to run them all at the same rate, *i.e.*, $Y_{i,t} = Y_{j,t}$ for all $i, j \in [0, 1]$.
- For given N_t , it is optimal to set $N_{i,t} = N_{j,t}$, for all $i, j \in [0, 1]$
- In this case, final output is given by

$$Y_t = e^{a_t} N_t.$$

- Best way to see this is to suppose that labor is *not* allocated equally to all activities.
 - Explore one simple deviation from $N_{i,t} = N_{i,t}$ for all $i, j \in [0, 1]$.

Suppose Labor Not Allocated Equally

• Example:

$$N_{it} = \begin{cases} 2\alpha N_t & i \in \left[0, \frac{1}{2}\right] \\ 2(1-\alpha)N_t & i \in \left[\frac{1}{2}, 1\right] \end{cases}, \ 0 \le \alpha \le 1.$$

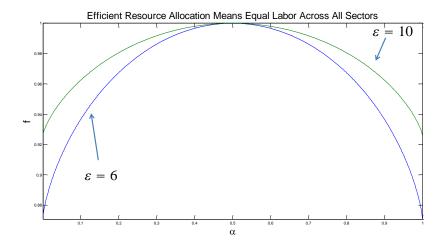
 Note that this is a particular distribution of labor across activities:

$$\int_{0}^{1} N_{it} di = \frac{1}{2} 2\alpha N_{t} + \frac{1}{2} 2(1-\alpha) N_{t} = N_{t}$$

Labor Not Allocated Equally, cnt'd

$$\begin{split} Y_{t} &= \left[\int_{0}^{1} Y_{i,t}^{\frac{s-1}{\varepsilon}} di\right]^{\frac{s}{\varepsilon-1}} \\ &= \left[\int_{0}^{\frac{1}{2}} Y_{i,t}^{\frac{s-1}{\varepsilon}} di + \int_{\frac{1}{2}}^{1} Y_{i,t}^{\frac{s-1}{\varepsilon}} di\right]^{\frac{s}{\varepsilon-1}} \\ &= e^{a_{t}} \left[\int_{0}^{\frac{1}{2}} N_{i,t}^{\frac{s-1}{\varepsilon}} di + \int_{\frac{1}{2}}^{1} N_{i,t}^{\frac{s-1}{\varepsilon}} di\right]^{\frac{s}{\varepsilon-1}} \\ &= e^{a_{t}} \left[\int_{0}^{\frac{1}{2}} (2\alpha N_{t})^{\frac{s-1}{\varepsilon}} di + \int_{\frac{1}{2}}^{1} (2(1-\alpha)N_{t})^{\frac{s-1}{\varepsilon}} di\right]^{\frac{s}{\varepsilon-1}} \\ &= e^{a_{t}} N_{t} \left[\int_{0}^{\frac{1}{2}} (2\alpha)^{\frac{s-1}{\varepsilon}} di + \int_{\frac{1}{2}}^{1} (2(1-\alpha))^{\frac{s-1}{\varepsilon}} di\right]^{\frac{s}{\varepsilon-1}} \\ &= e^{a_{t}} N_{t} \left[\int_{0}^{\frac{1}{2}} (2\alpha)^{\frac{s-1}{\varepsilon}} + \frac{1}{2} (2(1-\alpha))^{\frac{s-1}{\varepsilon}} \right]^{\frac{s}{\varepsilon-1}} \\ &= e^{a_{t}} N_{t} \left[\frac{1}{2} (2\alpha)^{\frac{s-1}{\varepsilon}} + \frac{1}{2} (2(1-\alpha))^{\frac{s-1}{\varepsilon}} \right]^{\frac{s}{\varepsilon-1}} \end{split}$$

$$f(\alpha) = \left[\frac{1}{2}(2\alpha)^{\frac{\varepsilon-1}{\varepsilon}} + \frac{1}{2}(2(1-\alpha))^{\frac{\varepsilon-1}{\varepsilon}}\right]^{\frac{\varepsilon}{\varepsilon-1}}$$



Homogeneous Goods Production

- Competitive firms:
 - maximize profits:

$$P_t Y_t - \int_0^1 P_{i,t} Y_{i,t} dj,$$

subject to:

$$Y_t = \left[\int_0^1 Y_{i,t}^{\frac{\varepsilon-1}{\varepsilon}} dj\right]^{\frac{\varepsilon}{\varepsilon-1}}$$

•

– Foncs:

$$Y_{i,t} = Y_t \left(\frac{P_t}{P_{i,t}}\right)^{\varepsilon} \to P_t = \left(\int_0^1 P_{i,t}^{(1-\varepsilon)} di\right)^{\frac{1}{1-\varepsilon}}$$

Intermediate Goods Production

• Demand curve for *i*th monopolist:

$$Y_{i,t} = Y_t \left(\frac{P_t}{P_{i,t}}\right)^{\varepsilon}$$

• Production function:

- $I_{i,t}$ ~'materials' these are purchases of the homogeneous output good (Basu's simplified way of capturing that firms buy goods from other firms).
- Calvo Price-Setting Friction:

$$P_{i,t} = \left\{ egin{array}{cc} ilde{P}_t & ext{with probability } 1- heta \ P_{i,t-1} & ext{with probability } heta \end{array}
ight.$$

Cost Minimization Problem

- Price setting by intermediate good firms is discussed later.
 - The intermediate good firm must produce the quantity demanded, $Y_{i,t}$, at the price that it sets.
 - Right now we take $Y_{i,t}$ as given and we investigate the cost minimization problem that determines the firm's choice of inputs.

Cost minimization problem:

$$\min_{N_{i,t},I_{i,t}} \bar{W}_t N_{i,t} + \bar{P}_t I_{i,t} + \overbrace{\lambda_{i,t}}^{\text{marginal cost (money terms)}} \left[Y_{i,t} - A_t N_{i,t}^{\gamma} I_{i,t}^{1-\gamma} \right]$$

with resource costs:

$$\bar{W}_t = \underbrace{(1-\nu)}^{\text{subsidy, if } \nu > 0}_{\text{cost, including finance, of a unit of labor}} \times \underbrace{(1-\psi+\psi R_t) W_t}_{\text{cost, including finance, of a unit of materials}} \bar{P}_t = (1-\nu) \times \underbrace{(1-\psi+\psi R_t) P_t}_{(1-\psi+\psi R_t) P_t}.$$

Cost Minimization Problem

• Problem:

$$\min_{N_{i,t},I_{i,t}} \bar{W}_t N_{i,t} + \bar{P}_t I_{i,t} + \lambda_{i,t} \left[Y_{i,t} - A_t N_{i,t}^{\gamma} I_{i,t}^{1-\gamma} \right]$$

• First order conditions:

$$ar{P}_t I_{i,t} = (1-\gamma) \, \lambda_{i,t} Y_{i,t}, \ ar{W}_t N_{i,t} = \gamma \lambda_{i,t} Y_{i,t},$$

so that,

$$\frac{I_{it}}{N_{it}} = \frac{1-\gamma}{\gamma} \frac{\overline{W}_t}{\overline{P}_t} = \frac{1-\gamma}{\gamma} \exp(\tau_t) C_t N_t^{\varphi}$$
$$\rightarrow \frac{I_{it}}{N_{it}} = \frac{I_t}{N_t}, \text{ for all } i.$$

Cost Minimization Problem

• Firm first order conditions imply

$$\lambda_{i,t} = \left(\frac{\bar{P}_t}{1-\gamma}\right)^{1-\gamma} \left(\frac{\bar{W}_t}{\gamma}\right)^{\gamma} \frac{1}{A_t}.$$

• Divide marginal cost by P_t :

$$s_{t} \equiv \frac{\lambda_{i,t}}{P_{t}} = (1 - \nu) \left(1 - \psi + \psi R_{t}\right) \left(\frac{1}{1 - \gamma}\right)^{1 - \gamma} \times \left(\frac{1}{\gamma} \exp\left(\tau_{t}\right) C_{t} N_{t}^{\varphi}\right)^{\gamma} \frac{1}{A_{t}}$$
(9),

after substituting out for \bar{P}_t and \bar{W}_t and using the household's labor first order condition.

• Note from (9) that i^{th} firm's marginal cost, s_t , is independent of i and Y_{it_t} .

Share of Materials in Intermediate Good Output

• Firm *i* materials proportional to *Y*_{*i*,*t*} :

$$I_{i,t} = \frac{(1-\gamma)\lambda_{i,t}Y_{i,t}}{\bar{P}_t} = \mu_t Y_{i,t},$$

where

$$\mu_t = \frac{(1-\gamma) s_t}{(1-\nu) (1-\psi+\psi R_t)}$$
(10).

• "Share of materials in firm-level gross output", μ_t .

• *i*th intermediate good firm's objective:

period t+j profits sent to household

$$E_{t}^{i}\sum_{j=0}^{\infty}\beta^{j} v_{t+j} \underbrace{\left[\overbrace{P_{i,t+j}Y_{i,t+j}}^{\text{revenues}} - \overbrace{P_{t+j}S_{t+j}Y_{i,t+j}}^{\text{total cost}}\right]}_{}$$

 \boldsymbol{v}_{t+j} - Lagrange multiplier on household budget constraint

• Firm that gets to reoptimize its price is concerned only with future states in which it does not change its price:

$$E_{t}^{i} \sum_{j=0}^{\infty} \beta^{j} v_{t+j} \left[P_{i,t+j} Y_{i,t+j} - P_{t+j} s_{t+j} Y_{i,t+j} \right]$$

= $E_{t} \sum_{j=0}^{\infty} (\beta \theta)^{j} v_{t+j} \left[\tilde{P}_{t} Y_{i,t+j} - P_{t+j} s_{t+j} Y_{i,t+j} \right] + X_{t},.$

where \tilde{P}_t denotes a firm's price-setting choice at time t and X_t not a function of \tilde{P}_t .

• Substitute out demand curve:

$$E_{t} \sum_{j=0}^{\infty} (\beta \theta)^{j} v_{t+j} \left[\tilde{P}_{t} Y_{i,t+j} - P_{t+j} s_{t+j} Y_{i,t+j} \right]$$

= $E_{t} \sum_{j=0}^{\infty} (\beta \theta)^{j} v_{t+j} Y_{t+j} P_{t+j}^{\varepsilon} \left[\tilde{P}_{t}^{1-\varepsilon} - P_{t+j} s_{t+j} \tilde{P}_{t}^{-\varepsilon} \right].$

• Differentiate with respect to \tilde{P}_t :

$$E_{t}\sum_{j=0}^{\infty}\left(\beta\theta\right)^{j}v_{t+j}Y_{t+j}P_{t+j}^{\varepsilon}\left[\left(1-\varepsilon\right)\left(\tilde{P}_{t}\right)^{-\varepsilon}+\varepsilon P_{t+j}s_{t+j}\tilde{P}_{t}^{-\varepsilon-1}\right]=0,$$

or,

$$E_t \sum_{j=0}^{\infty} \left(\beta\theta\right)^j v_{t+j} Y_{t+j} P_{t+j}^{\varepsilon+1} \left[\frac{\tilde{P}_t}{P_{t+j}} - \frac{\varepsilon}{\varepsilon - 1} s_{t+j}\right] = 0.$$

 When θ = 0, get standard result - price is fixed markup over marginal cost.

• Substitute out the multiplier:

$$E_t \sum_{j=0}^{\infty} (\beta \theta)^j \underbrace{\frac{u'(C_{t+j})}{P_{t+j}}}_{P_{t+j}} Y_{t+j} P_{t+j}^{\varepsilon+1} \left[\frac{\tilde{P}_t}{P_{t+j}} - \frac{\varepsilon}{\varepsilon - 1} s_{t+j} \right] = 0.$$

• Using assumed log-form of utility,

$$\begin{split} E_t \sum_{j=0}^{\infty} \left(\beta\theta\right)^j \frac{Y_{t+j}}{C_{t+j}} \left(X_{t,j}\right)^{-\varepsilon} \left[\tilde{p}_t X_{t,j} - \frac{\varepsilon}{\varepsilon - 1} s_{t+j}\right] &= 0, \\ \tilde{p}_t \equiv \frac{\tilde{P}_t}{P_t}, \ \bar{\pi}_t \equiv \frac{P_t}{P_{t-1}}, \ X_{t,j} = \left\{\begin{array}{c} \frac{1}{\bar{\pi}_{t+j} \bar{\pi}_{t+j-1} \cdots \bar{\pi}_{t+1}}, \ j \geq 1\\ 1, \ j = 0. \end{array}\right., \\ \text{`recursive property': } X_{t,j} = X_{t+1,j-1} \frac{1}{\bar{\pi}_{t+1}}, \ j > 0 \end{split}$$

• Want \tilde{p}_t in:

$$E_{t}\sum_{j=0}^{\infty}\left(\beta\theta\right)^{j}\frac{Y_{t+j}}{C_{t+j}}\left(X_{t,j}\right)^{-\varepsilon}\left[\tilde{p}_{t}X_{t,j}-\frac{\varepsilon}{\varepsilon-1}s_{t+j}\right]=0$$

• Solving for \tilde{p}_t , we conclude that prices are set as follows:

$$\tilde{p}_{t} = \frac{E_{t} \sum_{j=0}^{\infty} \left(\beta\theta\right)^{j} \frac{Y_{t+j}}{C_{t+1}} \left(X_{t,j}\right)^{-\varepsilon} \frac{\varepsilon}{\varepsilon-1} s_{t+j}}{E_{t} \sum_{j=0}^{\infty} \left(\beta\theta\right)^{j} \frac{Y_{t+j}}{C_{t+j}} \left(X_{t,j}\right)^{1-\varepsilon}} = \frac{K_{t}}{F_{t}}.$$

• Need convenient expressions for K_t , F_t .

Simplifying Numerator

$$\begin{split} K_t &= E_t \sum_{j=0}^{\infty} (\beta \theta)^j \frac{Y_{t+j}}{C_{t+j}} (X_{t,j})^{-\varepsilon} \frac{\varepsilon}{\varepsilon - 1} s_{t+j} \\ &= \frac{\varepsilon}{\varepsilon - 1} \frac{Y_t}{C_t} s_t \\ &+ \beta \theta E_t \sum_{j=1}^{\infty} (\beta \theta)^{j-1} \frac{Y_{t+j}}{C_{t+j}} \left(\underbrace{\frac{1}{\bar{\pi}_{t+1}} X_{t+1,j-1}}_{\bar{\pi}_{t+1}} \right)^{-\varepsilon} \frac{\varepsilon}{\varepsilon - 1} s_{t+j} \\ &= \frac{\varepsilon}{\varepsilon - 1} \frac{Y_t}{C_t} s_t + \mathcal{Z}_t, \end{split}$$

where

$$\mathcal{Z}_{t} = \beta \theta E_{t} \sum_{j=1}^{\infty} \left(\beta \theta\right)^{j-1} \frac{Y_{t+j}}{C_{t+j}} \left(\frac{1}{\bar{\pi}_{t+1}} X_{t+1,j-1}\right)^{-\varepsilon} \frac{\varepsilon}{\varepsilon - 1} s_{t+j}$$

Simplifying Numerator, cnt'd

$$\begin{split} K_{t} &= E_{t} \sum_{j=0}^{\infty} \left(\beta\theta\right)^{j} \frac{Y_{t+j}}{C_{t+j}} \left(X_{t,j}\right)^{-\varepsilon} \frac{\varepsilon}{\varepsilon - 1} s_{t+j} = \frac{\varepsilon}{\varepsilon - 1} \frac{Y_{t}}{C_{t}} s_{t} + \mathcal{Z}_{t} \\ \mathcal{Z}_{t} &= \beta\theta E_{t} \sum_{j=1}^{\infty} \left(\beta\theta\right)^{j-1} \frac{Y_{t+j}}{C_{t+j}} \left(\frac{1}{\bar{\pi}_{t+1}} X_{t+1,j-1}\right)^{-\varepsilon} \frac{\varepsilon}{\varepsilon - 1} s_{t+j} \\ &= \beta\theta E_{t} \left(\frac{1}{\bar{\pi}_{t+1}}\right)^{-\varepsilon} \sum_{j=0}^{\infty} \left(\beta\theta\right)^{j} \frac{Y_{t+j+1}}{C_{t+j+1}} X_{t+1,j}^{-\varepsilon} \frac{\varepsilon}{\varepsilon - 1} s_{t+1+j} \\ &= \beta\theta \sum_{t=t}^{\varepsilon} \exp \lim_{t \to \infty} \left(\frac{1}{\bar{\pi}_{t+1}}\right)^{-\varepsilon} \sum_{j=0}^{\infty} \left(\beta\theta\right)^{j} \frac{Y_{t+j+1}}{C_{t+j+1}} X_{t+1,j}^{-\varepsilon} \frac{\varepsilon}{\varepsilon - 1} s_{t+1+j} \\ &= \kappa e^{2E_{t}} \exp \lim_{t \to \infty} \left(\frac{1}{\bar{\pi}_{t+1}}\right)^{-\varepsilon} \sum_{j=0}^{\infty} \left(\beta\theta\right)^{j} \frac{Y_{t+j+1}}{C_{t+j+1}} X_{t+1,j}^{-\varepsilon} \frac{\varepsilon}{\varepsilon - 1} s_{t+1+j} \\ &= \kappa e^{2E_{t}} \exp \lim_{t \to \infty} \left(\frac{1}{\bar{\pi}_{t+1}}\right)^{-\varepsilon} \sum_{j=0}^{\infty} \left(\beta\theta\right)^{j} \frac{Y_{t+j+1}}{C_{t+j+1}} X_{t+1,j}^{-\varepsilon} \frac{\varepsilon}{\varepsilon - 1} s_{t+1+j} \\ &= \kappa e^{2E_{t}} \exp \left(K_{t+1}\right)^{-\varepsilon} \sum_{j=0}^{\infty} \left(\beta\theta\right)^{j} \frac{Y_{t+j+1}}{C_{t+j+1}} X_{t+1,j}^{-\varepsilon} \frac{\varepsilon}{\varepsilon - 1} s_{t+1+j} \\ &= \kappa e^{2E_{t}} \exp \left(K_{t+1}\right)^{-\varepsilon} \sum_{j=0}^{\infty} \left(\beta\theta\right)^{j} \frac{Y_{t+j+1}}{C_{t+j+1}} X_{t+1,j}^{-\varepsilon} \frac{\varepsilon}{\varepsilon - 1} s_{t+1+j} \\ &= \kappa e^{2E_{t}} \exp \left(K_{t+1}\right)^{-\varepsilon} \sum_{j=0}^{\infty} \left(\beta\theta\right)^{j} \frac{Y_{t+j+1}}{C_{t+j+1}} X_{t+1,j}^{-\varepsilon} \frac{\varepsilon}{\varepsilon - 1} s_{t+1+j} \\ &= \kappa e^{2E_{t}} \exp \left(K_{t+1}\right)^{-\varepsilon} \sum_{j=0}^{\infty} \left(\beta\theta\right)^{j} \frac{Y_{t+j+1}}{C_{t+j+1}} X_{t+1,j}^{-\varepsilon} \frac{\varepsilon}{\varepsilon - 1} s_{t+1+j} \\ &= \kappa e^{2E_{t}} \exp \left(K_{t+1}\right)^{-\varepsilon} \sum_{j=0}^{\infty} \left(\beta\theta\right)^{j} \frac{Y_{t+j+1}}{C_{t+j+1}} X_{t+1,j}^{-\varepsilon} \frac{\varepsilon}{\varepsilon - 1} x_{t+1+j} \\ &= \kappa e^{2E_{t}} \exp \left(K_{t+1}\right)^{-\varepsilon} \sum_{j=0}^{\infty} \left(\beta\theta\right)^{j} \frac{Y_{t+j+1}}{C_{t+j+1}} X_{t+1,j}^{-\varepsilon} \frac{\varepsilon}{\varepsilon - 1} x_{t+1+j} \\ &= \kappa e^{2E_{t}} \exp \left(K_{t+1}\right)^{2E_{t+j}} \sum_{j=0}^{\infty} \left(\beta\theta\right)^{j} \frac{Y_{t+j+1}}{C_{t+j+1}} X_{t+1+j}^{-\varepsilon} \frac{\varepsilon}{\varepsilon - 1} x_{t+1+j} \\ &= \kappa e^{2E_{t}} \exp \left(K_{t+1}\right)^{2E_{t+j}} \sum_{j=0}^{\infty} \left(\beta\theta\right)^{j} \frac{Y_{t+j+1}}{C_{t+j+1}} X_{t+1+j}^{-\varepsilon} \frac{\varepsilon}{\varepsilon - 1} x_{t+1+j} \\ &= \kappa e^{2E_{t}} \exp \left(K_{t+1}\right)^{2E_{t+j}} \sum_{j=0}^{\infty} \left(\beta\theta\right)^{j} \frac{Y_{t+j+1}}{C_{t+j+1}} X_{t+1+j}^{-\varepsilon} \frac{\varepsilon}{\varepsilon - 1} x_{t+1+j} \\ &= \kappa e^{2E_{t}} \exp \left(K_{t+1}\right)^{2E_{t+j}} \sum_{j=0}^{\infty} \left(K_{t+1}\right)^{2E_{t+j}} \sum_{j=0}^{\infty} \left(K_{t+1}\right)^{2E_{t+j+1}} x_{t+1$$

$$= \beta \theta E_t \left(\frac{1}{\bar{\pi}_{t+1}}\right)^{-\varepsilon} E_{t+1} \sum_{j=0}^{\infty} (\beta \theta)^j \frac{Y_{t+j+1}}{C_{t+j+1}} X_{t+1,j}^{-\varepsilon} \frac{\varepsilon}{\varepsilon - 1} s_{t+1+j}$$

• Recall,

$$\tilde{p}_{t} = \frac{E_{t} \sum_{j=0}^{\infty} (\beta \theta)^{j} \frac{Y_{t+j}}{C_{t+1}} (X_{t,j})^{-\varepsilon} \frac{\varepsilon}{\varepsilon - 1} s_{t+j}}{E_{t} \sum_{j=0}^{\infty} (\beta \theta)^{j} \frac{Y_{t+j}}{C_{t+j}} (X_{t,j})^{1-\varepsilon}} = \frac{K_{t}}{F_{t}}$$

• We have shown that the numerator has the following simple representation:

$$K_{t} = E_{t} \sum_{j=0}^{\infty} (\beta \theta)^{j} \frac{Y_{t+j}}{C_{t+j}} (X_{t,j})^{-\varepsilon} \frac{\varepsilon}{\varepsilon - 1} s_{t+j}$$
$$= \frac{\varepsilon}{\varepsilon - 1} \frac{Y_{t}}{C_{t}} s_{t} + \beta \theta E_{t} \left(\frac{1}{\bar{\pi}_{t+1}}\right)^{-\varepsilon} K_{t+1} (1)$$

• Similarly,

$$F_t = \frac{Y_t}{C_t} + \beta \theta E_t \left(\frac{1}{\bar{\pi}_{t+1}}\right)^{1-\varepsilon} F_{t+1}$$
(2)

Interpretation of Price Formula

• Note,

$$\frac{1}{P_{t+j}} = \frac{1}{P_t} X_{t,j}, \ s_{t+j} = \frac{\lambda_{t+j}}{P_{t+j}} = \frac{\lambda_{t+j}}{P_t} X_{t,j}, \ \tilde{p}_t = \frac{\tilde{P}_t}{P_t}$$

Multiply both sides of the expression for \tilde{p}_t by P_t :

$$\tilde{P}_{t} = \frac{E_{t} \sum_{j=0}^{\infty} \left(\beta\theta\right)^{j} \left(X_{t,j}\right)^{1-\varepsilon} \frac{Y_{t+j}}{C_{t+j}} \frac{\varepsilon}{\varepsilon-1} \lambda_{t+j}}{E_{t} \sum_{j=0}^{\infty} \left(\beta\theta\right)^{j} \left(X_{t,j}\right)^{1-\varepsilon} \frac{Y_{t+j}}{C_{t+j}}} = \frac{\varepsilon}{\varepsilon-1} \sum_{j=0}^{\infty} E_{t} \omega_{t+j} \lambda_{t+j}$$

where

$$\omega_{t+j} = \frac{\left(\beta\theta\right)^{j} \left(X_{t,j}\right)^{1-\varepsilon} \frac{Y_{t+j}}{C_{t+j}}}{E_{t} \sum_{j=0}^{\infty} \left(\beta\theta\right)^{j} \left(X_{t,j}\right)^{1-\varepsilon} \frac{Y_{t+j}}{C_{t+j}}}, \quad \sum_{j=0}^{\infty} E_{t} \omega_{t+j} = 1.$$

Evidently, price is set as a markup over a weighted average of future marginal cost, where the weights are shifted into the future depending on how big θ is.

Moving On to Aggregates

- Aggregate price level.
- Aggregate measures of production.
 - Value added.
 - Gross output.

Aggregate Price Index

- Rewrite the aggregate price index.
 - let $p \in (0, \infty)$ the set of logically possible prices for intermediate good producers.
 - let $g_t(p) \ge 0$ denote the measure (e.g., 'number') of producers that have price, p, in t
 - let $g_{t-1,t}(p) \ge 0$, denote the measure of producers that had price, p, in t-1 and could not reoptimize in t
- Then,

$$P_{t} = \left(\int_{0}^{1} P_{i,t}^{(1-\varepsilon)} di\right)^{\frac{1}{1-\varepsilon}} = \left(\int_{0}^{\infty} g_{t}\left(p\right) p^{(1-\varepsilon)} dp\right)^{\frac{1}{1-\varepsilon}}$$

• Note:

$$P_{t} = \left(\left(1-\theta\right) \tilde{P}_{t}^{1-\varepsilon} + \int_{0}^{\infty} g_{t-1,t}\left(p\right) p^{(1-\varepsilon)} dp \right)^{\frac{1}{1-\varepsilon}}$$

Aggregate Price Index

• Calvo randomization assumption:

measure of firms that had price, p, in t-1 and could not change

$$\overbrace{g_{t-1,t}\left(p\right)}$$

measure of firms that had price p in t-1

$$= \theta \times \widetilde{g_{t-1}(p)}$$

• Then,

$$P_{t} = \left((1-\theta) \tilde{P}_{t}^{1-\varepsilon} + \int_{0}^{\infty} g_{t-1,t}(p) p^{(1-\varepsilon)} dp \right)^{\frac{1}{1-\varepsilon}}$$
$$= \left((1-\theta) \tilde{P}_{t}^{1-\varepsilon} + \theta \int_{0}^{\infty} g_{t-1}(p) p^{(1-\varepsilon)} dp \right)^{\frac{1}{1-\varepsilon}}$$

Restriction Between Aggregate and Intermediate Good Prices

• 'Calvo result':

$$P_t = \left(\int_0^1 P_{i,t}^{(1-\varepsilon)} di\right)^{\frac{1}{1-\varepsilon}} = \left[(1-\theta) \tilde{P}_t^{(1-\varepsilon)} + \theta P_{t-1}^{(1-\varepsilon)} \right]^{\frac{1}{1-\varepsilon}}$$

٠

٠

• Divide by P_t :

$$1 = \left[\left(1 - \theta \right) \tilde{p}_t^{(1-\varepsilon)} + \theta \left(\frac{1}{\bar{\pi}_t} \right)^{(1-\varepsilon)} \right]^{\frac{1}{1-\varepsilon}}$$

• Rearrange:

$$ilde{p}_t = \left[rac{1- heta}{1- hetaar{\pi}_t^{(arepsilon-1)}}
ight]^{rac{1}{arepsilon-1}}$$

Aggregate inputs and outputs

• *Gross output* of firm *i* :

$$Y_{i,t} = \exp\left(a_t\right) N_{i,t}^{\gamma} I_{i,t}^{1-\gamma}.$$

- Net output or *value-added* would subtract out the materials that were bought from other firms.
- Economy-wide *gross output*: sum of value of $Y_{i,t}$ across all firms:

$$\int_{0}^{1} P_{i,t} Y_{i,t} di = \int_{0}^{1} P_{t} \left(\frac{Y_{t}}{Y_{i,t}}\right)^{\frac{1}{\varepsilon}} Y_{i,t} di$$
$$= P_{t} Y_{t}^{\frac{\varepsilon}{\varepsilon}} \int_{0}^{1} Y_{i,t}^{\frac{\varepsilon-1}{\varepsilon}} di = P_{t} Y_{t}$$

• Gross output production function: relation between Y_t and non-produced inputs, N_t.

Aggregate inputs and outputs, cnt'd

- Gross output, Y_t , is not a good measure of economic output, because it double counts.
 - Some of the output that firm *i* 'produced' is materials produced by another firm, which is counted in that firm's output.
 - If wheat is used to make bread, wrong to measure production by adding all wheat and all bread. That double counts the wheat.
- Want aggregate *value-added*: sum of firm-level gross output, minus purchases of materials from other firms.
- Value-added production function: expression relating aggregate value-added in period t to inputs not produced in period t.
 - capital and labor.

Gross Output vs Agg Materials and Labor

- Approach developed by Tack Yun (JME, 1996).
- Define Y_t^* :

$$Y_{t}^{*} \equiv \int_{0}^{1} Y_{i,t} di$$

$$\stackrel{\text{demand curve}}{=} Y_{t} \int_{0}^{1} \left(\frac{P_{i,t}}{P_{t}}\right)^{-\varepsilon} di = Y_{t} P_{t}^{\varepsilon} \int_{0}^{1} (P_{i,t})^{-\varepsilon} di$$

$$= Y_{t} P_{t}^{\varepsilon} (P_{t}^{*})^{-\varepsilon}$$

where, using 'Calvo result':

$$P_t^* \equiv \left[\int_0^1 P_{i,t}^{-\varepsilon} di\right]^{\frac{-1}{\varepsilon}} = \left[(1-\theta)\,\tilde{P}_t^{-\varepsilon} + \theta\,\left(P_{t-1}^*\right)^{-\varepsilon}\right]^{\frac{-1}{\varepsilon}}$$

Then

$$Y_t = p_t^* Y_t^*, \ p_t^* = \left(\frac{P_t^*}{P_t}\right)^{\varepsilon}.$$

Gross Output vs Agg Materials and Labor

• Relationship between aggregate inputs and outputs:

$$\begin{split} Y_t &= p_t^* Y_t^* = p_t^* \int_0^1 Y_{i,t} di \\ &= p_t^* A_t \int_0^1 N_{i,t}^{\gamma} I_{i,t}^{1-\gamma} di = p_t^* A_t \int_0^1 \left(\frac{N_{i,t}}{I_{i,t}}\right)^{\gamma} I_{i,t} di, \\ &= p_t^* A_t \left(\frac{N_t}{I_t}\right)^{\gamma} I_t, \end{split}$$

or,

$$Y_t = p_t^* A_t N_t^{\gamma} I_t^{1-\gamma}$$
 (6).

- Note that p_t^* is a function of the ratio of two averages (with different weights) of $P_{i,t}$, $i \in (0, 1)$
 - So, when $P_{i,t}=P_{j,t}$ for all $i,j\in(0,1)$, then $p_t^*=1.$
 - But, what is p_t^* when $P_{i,t} \neq P_{j,t}$ for some $i, j \in (0, 1)$?

Tack Yun Distortion

• Consider the object,

$$p_t^* = \left(\frac{P_t^*}{P_t}\right)^{\varepsilon},$$

where

$$P_t^* = \left(\int_0^1 P_{i,t}^{-\varepsilon} di\right)^{\frac{-1}{\varepsilon}}, \ P_t = \left(\int_0^1 P_{i,t}^{(1-\varepsilon)} di\right)^{\frac{1}{1-\varepsilon}}$$

• In following slide, use Jensen's inequality to show:

$$p_t^* \leq 1.$$

Tack Yun Distortion

• Let $f(x) = x^4$, a convex function. Then,

convexity: $\alpha x_1^4 + (1 - \alpha) x_2^4 > (\alpha x_1 + (1 - \alpha) x_2)^4$

for $x_1 \neq x_2$, $0 < \alpha < 1$.

• Applying this idea to prices:

$$\operatorname{convexity:} \int_{0}^{1} \left(P_{i,t}^{(1-\varepsilon)} \right)^{\frac{\varepsilon}{\varepsilon-1}} di \geq \left(\int_{0}^{1} P_{i,t}^{(1-\varepsilon)} di \right)^{\frac{\varepsilon}{\varepsilon-1}} \\ \iff \left(\int_{0}^{1} P_{i,t}^{-\varepsilon} di \right) \geq \left(\int_{0}^{1} P_{i,t}^{(1-\varepsilon)} di \right)^{\frac{\varepsilon}{\varepsilon-1}} \\ \xleftarrow{\left(\int_{0}^{1} P_{i,t}^{-\varepsilon} di \right)^{\frac{-1}{\varepsilon}}} \leq \underbrace{\left(\int_{0}^{1} P_{i,t}^{(1-\varepsilon)} di \right)^{\frac{1}{1-\varepsilon}}}_{\left(\int_{0}^{1} P_{i,t}^{(1-\varepsilon)} di \right)^{\frac{1}{1-\varepsilon}}}$$

Law of Motion of Tack Yun Distortion

• We have

$$P_t^* = \left[(1-\theta) \tilde{P}_t^{-\varepsilon} + \theta \left(P_{t-1}^* \right)^{-\varepsilon} \right]^{\frac{-1}{\varepsilon}}$$

• Then,

$$p_{t}^{*} \equiv \left(\frac{P_{t}^{*}}{P_{t}}\right)^{\varepsilon} = \left[\left(1-\theta\right)\tilde{p}_{t}^{-\varepsilon} + \theta\frac{\bar{\pi}_{t}^{\varepsilon}}{p_{t-1}^{*}}\right]^{-1}$$
$$= \left[\left(1-\theta\right)\left(\frac{1-\theta\bar{\pi}_{t}^{(\varepsilon-1)}}{1-\theta}\right)^{\frac{\varepsilon}{\varepsilon-1}} + \frac{\theta\bar{\pi}_{t}^{\varepsilon}}{p_{t-1}^{*}}\right]^{-1}$$
(4)

using the restriction between \tilde{p}_t and aggregate inflation developed earlier.

Gross Output Production Function

Recall

$$I_{i,t} = \mu_t \Upsilon_{i,t},$$

so,

$$I_t \equiv \int_0^1 I_{i,t} di = \mu_t \int_0^1 Y_{i,t} d = \mu_t Y_t^* = \frac{\mu_t}{p_t^*} Y_t.$$

• Then, the gross output production function is:

$$Y_t = p_t^* A_t N_t^{\gamma} I_t^{1-\gamma}$$

= $p_t^* A_t N_t^{\gamma} \left(\frac{\mu_t}{p_t^*} Y_t\right)^{1-\gamma}$
 $\longrightarrow Y_t = \left(p_t^* A_t \left(\frac{\mu_t}{p_t^*}\right)^{1-\gamma}\right)^{\frac{1}{\gamma}} N_t$

Value Added (GDP) Production Function

• We have

$$GDP_{t} = Y_{t} - I_{t} = \left(1 - \frac{\mu_{t}}{p_{t}^{*}}\right)Y_{t}$$

$$= \left(1 - \frac{\mu_{t}}{p_{t}^{*}}\right)\left(p_{t}^{*}A_{t}\left(\frac{\mu_{t}}{p_{t}^{*}}\right)^{1 - \gamma}\right)^{\frac{1}{\gamma}}N_{t}$$

$$= \text{Total Factor Productivity (TFP)}$$

$$= \left(p_{t}^{*}A_{t}\left(1 - \frac{\mu_{t}}{p_{t}^{*}}\right)^{\gamma}\left(\frac{\mu_{t}}{p_{t}^{*}}\right)^{1 - \gamma}\right)^{\frac{1}{\gamma}}N_{t}$$

- Note how an increase in technology at the firm level, by A_t , gives rise to a bigger increase in TFP by $A_t^{1/\gamma}$.
 - In the literature on networks, $1/\gamma$ is referred to as a 'multiplier effect' (see Jones, 2011).
- The Tack Yun distortion, p_t^* , is associated with the same multiplier phenomenon.

Decomposition for TFP

• To maximize GDP for given aggregate N_t and A_t :

$$\max_{\substack{0 < p_t^* \leq 1, \ 0 \leq \lambda_t \leq 1 \\ \rightarrow \lambda_t = 1 - \gamma, \ p_t^* = 1. }} \left(p_t^* A_t \left(1 - \lambda_t \right)^{\gamma} (\lambda_t)^{1 - \gamma} \right)^{\frac{1}{\gamma}}$$

• So,

 $TFP_{t} = \underbrace{\left(p_{t}^{*} \left(\frac{1 - \frac{\mu_{t}}{p_{t}^{*}}}{\gamma} \right)^{\gamma} \left(\frac{\frac{\mu_{t}}{p_{t}^{*}}}{1 - \gamma} \right)^{1 - \gamma} \right)^{\frac{1}{\gamma}}}_{\text{Exogenous, technology component} \equiv \tilde{A}_{t}} \times \underbrace{\left(A_{t} \left(\gamma \right)^{\gamma} \left(1 - \gamma \right)^{1 - \gamma} \right)^{\frac{1}{\gamma}}}_{\text{Exogenous, technology component}} \right)^{\frac{1}{\gamma}}$

Evaluating the Distortions

• The equations characterizing the TFP distortion, χ_t :

$$\chi_t = \left(p_t^* \left(\frac{1 - \frac{\mu_t}{p_t^*}}{\gamma} \right)^{\gamma} \left(\frac{\frac{\mu_t}{p_t^*}}{1 - \gamma} \right)^{1 - \gamma} \right)^{\frac{1}{\gamma}}$$
$$p_t^* = \left[(1 - \theta) \left(\frac{1 - \theta \bar{\pi}_t^{(\varepsilon - 1)}}{1 - \theta} \right)^{\frac{\varepsilon}{\varepsilon - 1}} + \frac{\theta \bar{\pi}_t^{\varepsilon}}{p_{t-1}^*} \right]^{-1}$$

- Potentially, NK model provides an 'endogenous theory of TFP'.
- Standard practice in NK literature is to set $\chi_t = 1$ for all t.
 - Set $\gamma = 1$ and linearize around $\bar{\pi}_t = p_t^* = 1$.
 - With $\gamma = 1, \ \chi_t = p_t^*$, and first order expansion of p_t^* around $\bar{\pi}_t = p_t^* = 1$ is:

$$p_t^* = p^* + 0 imes ar{\pi}_t + heta \left(p_{t-1}^* - p^*
ight)$$
 , with $p^* = 1$,

so $p_t^* \rightarrow 1$ and is invariant to shocks.

Empirical Assessment of the Distortions

• First, do 'back of the envelope' calculations in a steady state when inflation is constant and p^* is constant.

$$p^* = \left[(1-\theta) \left(\frac{1-\theta\bar{\pi}^{(\varepsilon-1)}}{1-\theta} \right)^{\frac{\varepsilon}{\varepsilon-1}} + \frac{\theta\bar{\pi}^{\varepsilon}}{p^*} \right]^{-1} \\ \rightarrow p^* = \frac{1-\theta\bar{\pi}^{\varepsilon}}{1-\theta} \left(\frac{1-\theta}{1-\theta\bar{\pi}^{(\varepsilon-1)}} \right)^{\frac{\varepsilon}{\varepsilon-1}}$$

• Approximate TFP distortion, χ :

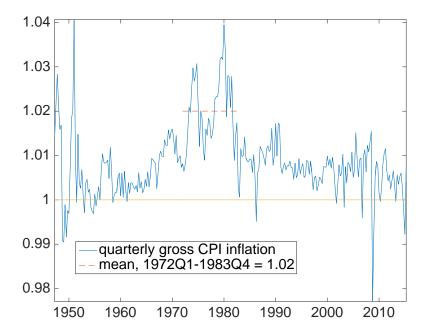
$$\chi_t = \left(p_t^* \left(\frac{1 - \frac{\mu_t}{p_t^*}}{\gamma} \right)^{\gamma} \left(\frac{\frac{\mu_t}{p_t^*}}{1 - \gamma} \right)^{1 - \gamma} \right)^{\frac{1}{\gamma}} \xrightarrow{\text{more on this later}} (p^*)^{1/\gamma}$$

Three Inflation Rates:

- Average inflation in the 1970s, 8 percent APR.
- Several people have suggested that the US raise its inflation target to 4 percent to raise the nominal rate of interest and thereby reduce the likelihood of the zero lower bound on the interest rate becoming binding again.

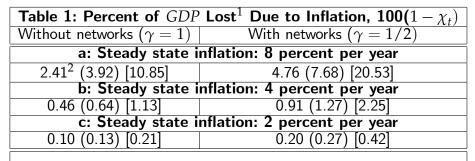
- http://www.voxeu.org/article/case-4-inflation

• Two percent inflation is the average in the recent (pre-2008) low inflation environment.



Cost of Three Alternative Permanent Levels of Inflation

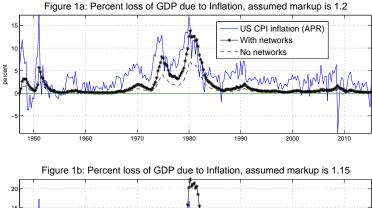
$$p^* = rac{1 - heta ar{\pi}^arepsilon}{1 - heta} \left(rac{1 - heta}{1 - heta ar{\pi}^{(arepsilon - 1)}}
ight)^{rac{arepsilon}{arepsilon - 1}}$$
 , $\chi = (p^*)^{1/\gamma}$



Note: number not in parentheses assumes a markup of 20 percent; number in parentheses: 15 percent; number in

square brackets: 10 percent

Next: Assess Costs of Inflation Using Non-Steady State Formulas



Inflation Distortions Displayed are Big

- With $\varepsilon = 6$,
 - mean $(\chi_t)=0.98$, a 2% loss of GDP.
 - frequency, $\chi_t < 0.955$, is 10% (i.e., 10% of the time, the output loss is greater than 4.5 percent).
- With more competition (i.e., ε higher), the losses are greater.
 - with higher elasticity of demand, given movements in inflation imply much greater substitution away from high priced items, thus greater misallocation (caveat: this intuition is incomplete since with greater ε the consequences of a given amount of misallocation are smaller).
- Distortions with $\gamma = 1/2$ are roughly twice the size of distortions in standard case, $\gamma = 1$.
 - To see this, note

$$1-\chi_t \simeq 1-(p^*)^{\frac{1}{\gamma}} \xrightarrow{\text{Taylor series expansion about } p^*=1} \frac{1}{\gamma} \left(1-p^*\right).$$

Comparison of Steady State and Dynamic Costs of Inflation in 1970s

• Results

Table 1: Fraction of <i>GDP</i> Lost, $100(1 - \chi)$, During High Inflation		
	No networks, $\gamma=1$	Networks, $\gamma=2$
Steady state lost output	2.41 (3.92)*	4.76 (7.68)
Mean, 1972Q1-1982Q4	3.13 (5.22)	6.26 (10.44)
Note * number not in parentheses - markup of 20 percent (i.e., $\varepsilon = 6$)		
number in parentheses - markup of 15 percent. (i.e., $arepsilon=7.7)$		

• Evidently, distortions increase rapidly in inflation,

E [*distortion* (inflation)] > *distortion* (*E*inflation)

Next

- Collect the equilibrium conditions.
 - For careful comparison of NK model with RBC model, see http://faculty.wcas.northwestern.edu/~lchrist/course/ China_Chengdu_2016/NewKeynesian_model_handout.pdf
 - In RBC model, markets obtain socially efficient allocations independent of monetary policy.
 - In NK model, markets don't necessarily work well and good monetary policy essential.
- Solve the model.

Summarizing the Equilibrium Conditions

- Break up the equilibrium conditions into three sets:
 - **()** Conditions (1)-(4) for prices: $K_t, F_t, \bar{\pi}_t, p_t^*, s_t$
 - **2** Conditions (6)-(10) for: $C_t, Y_t, N_t, I_t, \mu_t$
 - **3** Conditions (5) and (11) for R_t and χ_t .
- We have 11 equilibrium conditions for 12 variables: system is underdetermined.
 - Not surprising: have said nothing about monetary policy.

Equilibrium Conditions Associated with Price Setting

$$K_{t} = \frac{\varepsilon}{\varepsilon - 1} \frac{Y_{t}}{C_{t}} s_{t} + \beta \theta E_{t} \bar{\pi}_{t+1}^{\varepsilon} K_{t+1} (1)$$

$$F_{t} = \frac{Y_{t}}{C_{t}} + \beta \theta E_{t} \bar{\pi}_{t+1}^{\varepsilon - 1} F_{t+1} (2)$$

$$\frac{K_{t}}{F_{t}} = \left[\frac{1 - \theta \bar{\pi}_{t}^{(\varepsilon - 1)}}{1 - \theta} \right]^{\frac{1}{1 - \varepsilon}} (3)$$

$$p_{t}^{*} = \left[(1 - \theta) \left(\frac{1 - \theta \bar{\pi}_{t}^{(\varepsilon - 1)}}{1 - \theta} \right)^{\frac{\varepsilon}{\varepsilon - 1}} + \frac{\theta \bar{\pi}_{t}^{\varepsilon}}{p_{t-1}^{*}} \right]^{-1} (4)$$

Equilibrium Conditions Associated With Gross Output

• Equations:

$$Y_{t} = p_{t}^{*}A_{t}N_{t}^{\gamma}I_{t}^{1-\gamma} (6), C_{t} + I_{t} = Y_{t} (7), I_{t} = \mu_{t}\frac{Y_{t}}{p_{t}^{*}} (8)$$

$$s_{t} = (1-\nu)(1-\psi+\psi R_{t})\left(\frac{1}{1-\gamma}\right)^{1-\gamma} \times \left(\frac{1}{\gamma} \underbrace{\operatorname{used household Euler equation to substitute out } W_{t}/P_{t}}_{\exp(\tau_{t})C_{t}N_{t}^{\varphi}}\right)^{\gamma} \frac{1}{A_{t}}$$

$$\mu_{t} = \frac{(1-\gamma)s_{t}}{(1-\nu)(1-\psi+\psi R_{t})} (10),$$

Other Equilibrium Conditions

• Allocative distortion:

$$\chi_t = \left(p_t^* \left(\frac{1 - \frac{\mu_t}{p_t^*}}{\gamma} \right)^{\gamma} \left(\frac{\frac{\mu_t}{p_t^*}}{1 - \gamma} \right)^{1 - \gamma} \right)^{\frac{1}{\gamma}} (11)$$

• Intertemporal equation

$$\frac{1}{C_t} = \beta E_t \frac{1}{C_{t+1}} \frac{R_t}{\bar{\pi}_{t+1}}$$
(5)

• On way to close the system: specify a monetary policy rule:

$$R_t/R = (R_{t-1}/R)^{\rho} \exp\left[(1-\rho)\phi_{\pi}(\bar{\pi}_t - \bar{\pi}) + u_t\right]$$
(12)

- Smoothing parameter: ρ.
 - Bigger is ρ the more persistent are policy-induced changes in the interest rate.
- Monetary policy shock: u_t .

Conclusion About Networks

- Networks alter the New Keynesian model's implications for inflation.
 - Doubles the cost of inflation.
 - Phillips curve is flatter because of strategic complementarities (when there are price frictions, this makes materials prices inertial which makes marginal costs inertial, which reduces firms' interest in changing prices).
- For the result on the Taylor principle, see my 2011 handbook chapter and Christiano (2015).
 - When the smoothing parameter in Taylor rule is set to zero and $\psi = 1$, then the model has indeterminacy, even when the coefficient on inflation is 1.5.
 - So, the likelihood of the Taylor principle breaking down goes up when γ is reduced, consistent with intuition.
 - When the smoothing parameter is at its empirically plausible value of 0.8, then the solution of the model does not display indeterminacy.