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Objective

• Review the foundations of the basic New Keynesian model
without capital.

– Clarify the role of money supply/demand.

• Derive the Equilibrium Conditions.

• Look at some data through the eyes of the model:
– Money demand.
– Cross-sectoral resource allocation cost of inflation.

• Some policy implications of the model will be examined.
– Many policy implications will be ’discovered’ in later computer

exercises.



Outline
• The model:

– Individual agents: their objectives, what they take as given,
what they choose.

• Households, final good firms, intermediate good firms, gov’t.
– Economy-wide restrictions:

• Market clearing conditions.
• Relationship between aggregate output and aggregate factors

of production, aggregate price level and individual prices.

• Model equilibrium conditions:
– Small number of equations and a small number of variables,

which summarize everything about the model (optimization,
market clearing, gov’t policy, etc.).

• Properties of Equilibrium:
– Classical Dichotomy when prices flexible (monetary policy

irrelevant for real variables).
– Monetary policy essential to determination of all variables

when prices sticky.



Households

• Households’ problem.

• Concept of Consumption Smoothing.



Households
• There are many identical households.
• The problem of the typical (’representative’) household:

max E
0

•

Â
t=0

bt

 
log Ct � exp (tt)

N1+j
t

1 + j
+ glog

✓
Mt+1

Pt

◆!
,

s.t. PtCt + Bt+1

+ Mt+1

 WtNt + Rt�1

Bt + Mt

+Profits net of government transfers and taxest.

• Here, Bt and Mt are the beginning-of-period t stock of bonds
and money held by the household.

• Law of motion of the shock to preferences:

tt = ltt�1

+ #t
t

the preference shock is in the model for pedagogic purposes
only, it is not an interest shock from an empirical point of view.



Household First Order Conditions
•

The household first order conditions:

1

Ct
= bEt

1

Ct+1

Rt

¯pt+1

(5)

ettCtN
j
t =

Wt

Pt
.

mt =

✓
Rt

Rt � 1

◆
gCt (7),

where

mt ⌘
Mt+1

Pt
.

•
All equations are derived by expressing the household

problem in Lagrangian form, substituting out the

multiplier on budget constraint and rearranging.

• The last first order condition is real money demand, increasing
in Ct and decreasing in Rt � 1.



Figure: Money Demand, Relative to Two Measures of Velocity
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Consumption Smoothing

• Later, we’ll see that consumption smoothing is an important
principle for understanding the role of monetary policy in the
New Keynesian model.

• Consumption smoothing is a characteristic of households’
consumption decision when they expect a change in income and
the interest rate is not expected to change.

– Peoples’ current period consumption increases by the amount
that can, according to their budget constraint, be maintained
indefinitely.

– So,
• a change in current income that is temporary triggers a small

change in current consumption.
• a change in current income that is permanent triggers a much

bigger increase in current consumption.
• if current income does not change, but future income does,

then current consumption increases.



Consumption Smoothing: Example
• Problem:

maxc
1

,c
2

log (c
1

) + blog (c
2

)

subject to : c
1

+ B
1

 y
1

+ rB
0

c
2

 rB
1

+ y
2.

• where y
1

and y
2

are (given) income and, after imposing
equality (optimality) and substituting out for B

1

,

c
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+
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r
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r
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c
1
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1

c
2

,

second equation is fonc for B
1

.
• Suppose br = 1 (this happens in ’steady state’, see later):
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Consumption Smoothing: Example, cnt’d
• Solution to the problem:

c
1

=
y

1

+ y
2

r

1 + 1

r
+

r
1 + 1

r
B

0

.

• Consider three polar cases:
– temporary change in income: Dy

1

> 0 and

Dy
2

= 0 =) Dc
1

= Dc
2

= Dy
1

1+ 1

r
– permanent change in income:

Dy
1

= Dy
2

> 0 =) Dc
1

= Dc
2

= Dy
1

– future change in income: Dy
1

= 0 and

Dy
2

> 0 =) Dc
1

= Dc
2

=
Dy

2

r
1+ 1

r

• Common feature of each example:
– When income rises, then - assuming r does not change - c

1

increases by an amount that can be maintained into the
second period: consumption smoothing.



Goods Production

• We turn now to the technology of production, and the problems
of the firms.

• The technology requires allocating resources across sectors.
– We describe the e�cient cross-sectoral allocation of resources.
– With price setting frictions, the market may not achieve

e�ciency.



Final Goods Production
• A homogeneous final good is produced using the following
(Dixit-Stiglitz) production function:

Yt =

"ˆ
1

0

Y
#�1

#
i,t di

# #
#�1

.

• Each intermediate good,Yi,t, is produced by a monopolist using
the following production function:

Yi,t = eatNi,t, at ⇠ exogenous shock to technology.

• Before discussing the firms that operate these production
functions, we briefly investigate the socially e�cient allocation
of resources across i.



E�cient Sectoral Allocation of Resources
• With Dixit-Stiglitz final good production function, there is a
socially optimal allocation of resources to all the intermediate
activities, Yi,t.

• It is optimal to run them all at the same rate, i.e., Yi,t = Yj,t
for all i, j 2 [0, 1] .

• For given Nt, allocative e�ciency : Ni,t = Nj,t = Nt, for all
i, j 2 [0, 1].
In this case, final output is given by

Yt =

"ˆ
1

0

(eatNi,t)
#�1

# di

# #
#�1

= eatNt.

• One way to understand allocated e�ciency result is to suppose
that labor is not allocated equally to all activities.

• Explore one simple deviation from Ni,t = Nj,t for all i, j 2 [0, 1] .



Suppose�Labor�Not Allocated�Equally

• Example:

• Note�that�this�is�a�particular�distribution�of�
labor�across�activities:
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Labor�Not Allocated�Equally,�cnt’d
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Final Good Producers

• Competitive firms:
– maximize profits

PtYt �
ˆ

1

0

Pi,tYi,tdj,

subject to Pt, Pi,t given, all i 2 [0, 1] , and the technology:

Yt =

"ˆ
1

0

Y
#�1

#
i,t dj

# #
#�1

.

Foncs:

Yi,t = Yt

✓
Pt

Pi,t

◆#

!

”cross price restrictions”z }| {

Pt =

 ˆ
1

0

P(1�#)
i,t di

! 1

1�#



Intermediate Good Producers
• The ith intermediate good is produced by a monopolist.

• Demand curve for ith monopolist:

Yi,t = Yt

✓
Pt

Pi,t

◆#

.

• Production function:

Yi,t = eatNi,t, at ˜ exogenous shock to technology.

• Calvo Price-Setting Friction:

Pi,t =

⇢
˜Pt with probability 1 � q
Pi,t�1

with probability q .



Marginal Cost of Production
• An important input into the monopolist’s problem is its
marginal cost:

st =
dCost

dOutput
=

dCost
dWorker
dOutput
dWorker

=
(1 � n) Wt

Pt

eat

=
(1 � n) ettCtN

j
t

eat

after substituting out for the real wage from the household
intratemporal Euler equation.

• The tax rate, n, represents a subsidy to hiring labor, financed
by a lump-sum government tax on households.

• Firm’s job is to set prices whenever it has the opportunity to do
so.

– It must always satisfy whatever demand materializes at its
posted price.



Present Discounted Value of Intermediate
Good Revenues

• ith intermediate good firm’s objective:

Ei
t

•

Â
j=0

bj ut+j

period t+j profits sent to household

z }| {2

4
revenuesz }| {

Pi,t+jYi,t+j �
total costz }| {

Pt+jst+jYi,t+j

3

5

ut+j - Lagrange multiplier on household budget constraint

• Here, Ei
t denotes the firm’s expectation over future variables,

including the future probability that the firm gets to reset its
price.



Firms that Can Change Price at t
• Let ePt denote the price set by the 1 � q firms who optimize at
time t.

• Expected value of future profits sum of two parts:
– future states in which price is still ePt, so ePt matters.

– future states in which the price is not ePt, so ePt is irrelevant.

• That is,

Ei
t

•

Â
j=0

bjut+j
⇥
Pi,t+jYi,t+j � Pt+jst+jYi,t+j

⇤

=

Ztz }| {

Et

•

Â
j=0

(bq)j ut+j
⇥

˜PtYi,t+j � Pt+jst+jYi,t+j
⇤
+Xt,

where
– Zt is the present value of future profits over all future states in

which the firm’s price is ˜Pt.

– Xt is the present value over all other states, so dXt/dePt = 0.



Decision By Firm that Can Change Its Price
• Substitute out demand curve:

Et

•

Â
j=0

(bq)j ut+j
⇥

˜PtYi,t+j � Pt+jst+jYi,t+j
⇤

= Et

•

Â
j=0

(bq)j ut+jYt+jP#
t+j

h
˜P1�#

t � Pt+jst+j ˜P�#
t

i
.

• Di↵erentiate with respect to ˜Pt :

Et

•

Â
j=0

(bq)j ut+jYt+jP#
t+j

h
(1 � #)

�
˜Pt
��#

+ #Pt+jst+j ˜P�#�1

t

i
= 0,

or,

Et

•

Â
j=0

(bq)j ut+jYt+jP#+1

t+j


˜Pt

Pt+j
� #

# � 1

st+j

�
= 0.

– When q = 0, get standard result - price is fixed markup over
marginal cost.



Decision By Firm that Can Change Its Price

• Substitute out the multiplier:

Et

•

Â
j=0

(bq)j

= ut+jz }| {
u0 �Ct+j

�

Pt+j
Yt+jP#+1

t+j


˜Pt

Pt+j
� #

# � 1

st+j

�
= 0.

– Using assumed log-form of utility,

Et

•

Â
j=0

(bq)j Yt+j

Ct+j

�
Xt,j
��#


˜ptXt,j �

#

# � 1

st+j

�
= 0,

˜pt ⌘
˜Pt

Pt
,

¯pt ⌘
Pt

Pt�1

, Xt,j =

⇢
1

¯pt+j ¯pt+j�1

··· ¯pt+1

, j � 1

1, j = 0.

,

’recursive property’: Xt,j = Xt+1,j�1

1

¯pt+1

, j > 0



Decision By Firm that Can Change Its Price

• Want ˜pt in:

Et

•

Â
j=0

(bq)j Yt+j

Ct+j

�
Xt,j
��#


˜ptXt,j �

#

# � 1

st+j

�
= 0

• Solving for ˜pt, we conclude that prices are set as follows:

˜pt =
Et Â•

j=0

(bq)j Yt+j
Ct+j

�
Xt,j
��# #

#�1

st+j

Et Â•
j=0

Yt+j
Ct+j

(bq)j �Xt,j
�

1�#
=

Kt

Ft
.

• Need convenient expressions for Kt, Ft.



Simplifying Numerator

Kt = Et

•

Â
j=0

(bq)j Yt+j

Ct+j

�
Xt,j
��# #

# � 1

st+j

=
#

# � 1

Yt

Ct
st

+ bqEt

•

Â
j=1

Yt+j

Ct+j
(bq)j�1

0

BBB@

=Xt,j, recursive property

z }| {
1

¯pt+1

Xt+1,j�1

1
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#

# � 1

st+j

=
#

# � 1

Yt

Ct
st +Zt,

where

Zt = bqEt

•

Â
j=1

(bq)j�1

Yt+j

Ct+j

✓
1

¯pt+1

Xt+1,j�1

◆�# #

# � 1

st+j



Simplifying Numerator, cnt’d

Kt = Et

•

Â
j=0

(bq)j Yt+j

Ct+j

�
Xt,j
��# #

# � 1

st+j =
#

# � 1

st +Zt

Zt = bqEt

•

Â
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Yt+j

Ct+j

✓
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st+j

= bqEt

✓
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Â
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#
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=Et by LIMEz }| {
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✓
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Decision By Firm that Can Change Its Price
• Recall,

˜pt =
Et Â•

j=0

(bq)j Yt+j
Ct+j

�
Xt,j
��# #

#�1

st+j

Et Â•
j=0

(bq)j Yt+j
Ct+j

�
Xt,j
�

1�#
=

Kt

Ft

We have shown that the numerator has the following simple
representation:

Kt = Et

•

Â
j=0

(bq)j Yt+j

Ct+j

�
Xt,j
��# #

# � 1

st+j

=
#

# � 1

(1 � n) ettYtN
j
t

eat
+ bqEt

✓
1

¯pt+1

◆�#

Kt+1

(1),

after using st = (1 � n) ettCtN
j
t /eat

.

• Similarly,

Ft =
Yt

Ct
+ bqEt

✓
1

¯pt+1

◆
1�#

Ft+1

(2)



Interpretation of Price Formula
• Note (lt denotes marginal cost in currency units):

1

Pt+j
=

1

Pt
Xt,j, st+j =

lt+j

Pt+j
=

lt+j

Pt
Xt,j, ˜pt =

˜Pt

Pt
.

– Multiply both sides of the expression for ˜pt by Pt :

˜Pt =
Et Â•

j=0

(bq)j Yt+j
Ct+j

�
Xt,j
�

1�# #
#�1

lt+j

Et Â•
l=0

(bq)l Yt+l
Ct+l

(Xt,l)
1�#

=
#

# � 1

•

Â
j=0

Etwt,jlt+j

where

wt,j =
(bq)j Yt+j

Ct+j

�
Xt,j
�

1�#

Et Â•
l=0

(bq)l Yt+l
Ct+l

(Xt,l)
1�#

,

•

Â
j=0

Etwt,j = 1.

• Evidently, price is set as a markup over a weighted average of
future marginal cost, where the weights are shifted into the
future depending on how big q is.



Interpretation of Price Formula, cnt’d
• Price formula:

˜Pt =
#

# � 1

•

Â
j=0

Etwt,jlt+j

where

wt,j =
(bq)j Yt+j

Ct+j

�
Xt,j
�

1�#

Et Â•
l=0

(bq)l Yt+l
Ct+l

(Xt,l)
1�#

,

•

Â
j=0

Etwt,j = 1.

• Suppose prices are fully flexible, q = 0 :

wt,0 = 1, wt,j = 0, j > 0.

– That means, ˜Pt = #
#�1

lt, so that all prices are the same.
– Hence, Yi,t = Yj,t, so get allocative e�ciency.



Moving On to Aggregate Restrictions

• Link between aggregate price level, Pt, and Pi,t, i 2 [0, 1].
– Potentially complicated because there are MANY prices, Pi,t,

i 2 [0, 1].

• Link between aggregate output, Yt, and Nt.

– Potentially complicated because of earlier example with f (a) .

– Analog of f (a) will be a function of degree to which Pi,t 6= Pj,t.

• Market clearing conditions.
– Money and bond market clearing.
– Labor and goods market clearing.



Aggregate Price Index
• Trick: rewrite the aggregate price index.

– let p 2 (0, •) the set of logically possible prices for
intermediate good producers.

– let gt (p) � 0 denote the measure (e.g., ’number’) of producers
that have price, p, in t

– let gt�1,t (p) � 0, denote the measure of producers that had
price, p, in t � 1 and could not re-optimize in t

– Then,

Pt =

 ˆ
1

0

P(1�#)
i,t di

! 1

1�#

=

✓ˆ •

0

gt (p) p(1�#)dp
◆ 1

1�#

.

• Note:

Pt =

✓
(1 � q) ˜P1�#

t +
ˆ •

0

gt�1,t (p) p(1�#)dp
◆ 1

1�#

.



Aggregate Price Index

• Calvo randomization assumption:

measure of firms that had price, p, in t�1 and could not change

z }| {
gt�1,t (p)

= q ⇥
measure of firms that had price p in t�1

z }| {
gt�1

(p)



Aggregate Price Index

• Using gt�1,t (p) = qgt�1

(p) :

Pt =

✓
(1 � q) ˜P1�#

t +
ˆ •

0

gt�1,t (p) p(1�#)dp
◆ 1

1�#

Pt =

0

BBBB@
(1 � q) ˜P1�#

t + q

=P1�#
t�1z }| {ˆ •

0

gt�1

(p) p(1�#)dp

1

CCCCA

1

1�#

Pt =
⇣
(1 � q) ˜P1�#

t + qP1�#
t�1

⌘ 1

1�#

•
Wow, simple!: Only two variables: ˜Pt and Pt�1

.



Aggregate Price Index

• Using gt�1,t (p) = qgt�1

(p) :

Pt =

✓
(1 � q) ˜P1�#

t +
ˆ •

0

gt�1,t (p) p(1�#)dp
◆ 1

1�#

=
⇣
(1 � q) ˜P1�#

t + qP1�#
t�1

⌘ 1

1�#

• Divide by Pt :

1 =

 

(1 � q) ˜p1�#
t + q

✓
1

¯pt

◆
1�#
! 1

1�#

• Rearrange: ˜pt =


1�q( ¯pt)

#�1

1�q

� 1

1�#



Aggregate Output vs Aggregate Labor and
Tech (Tack Yun, JME1996)

• Define Y⇤
t :

Y⇤
t ⌘
ˆ

1

0

Yi,tdi

 
=
ˆ

1

0

eatNi,tdi = eatNt

!

demand curvez}|{
= Yt

ˆ
1

0

✓
Pi,t

Pt

◆�#

di = YtP#
t

ˆ
1

0

(Pi,t)
�# di

= YtP#
t (P

⇤
t )

�#

where, using ’Calvo result’:

P⇤
t ⌘

"ˆ
1

0

P�#
i,t di

#�1

#

=
h
(1 � q) ˜P�#

t + q
�
P⇤

t�1

��#
i�1

#

• Then

Yt = p⇤t Y⇤
t , p⇤t =

✓
P⇤

t
Pt

◆#

.



Gross Output vs Agg Materials and Labor

• Relationship between aggregate inputs and outputs:

Yt = p⇤t Y⇤
t

or,
Yt = p⇤t eatNt.

• Note that p⇤t is a function of the ratio of two averages (with
di↵erent weights) of Pi,t, i 2 (0, 1)

• So, when Pi,t = Pj,t for all i, j 2 (0, 1) , then p⇤t = 1.

• But, what is p⇤t when Pi,t 6= Pj,t for some (measure of)
i, j 2 (0, 1)?



Tack Yun Distortion

• Consider the object,

p⇤t =

✓
P⇤

t
Pt

◆#

,

where

P⇤
t =

 ˆ
1

0

P�#
i,t di

!�1

#

, Pt =

 ˆ
1

0

P(1�#)
i,t di

! 1

1�#

• In following slide, use Jensen’s inequality to show:

p⇤t  1.



Tack Yun Distortion
• Let f (x) = x4

, a convex function. Then,

convexity: ax4

1

+ (1 � a) x4

2

> (ax
1

+ (1 � a) x
2

)4

for x
1

6= x
2

, 0 < a < 1.

• Applying this idea:

convexity:

ˆ
1

0

⇣
P(1�#)

i,t

⌘ #
#�1 di �

 ˆ
1

0

P(1�#)
i,t di

! #
#�1

()
 ˆ

1

0

P�#
i,t di

!
�

 ˆ
1

0

P(1�#)
i,t di

! #
#�1

()

P⇤
tz }| {

 ˆ
1

0

P�#
i,t di

!�1

#



Ptz }| {
 ˆ

1
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Law of Motion of Tack Yun Distortion

• We have

P⇤
t =

h
(1 � q) ˜P�#

t + q
�
P⇤

t�1

��#
i�1

#

• Dividing by Pt:

p⇤t ⌘
✓

P⇤
t

Pt

◆#

=

"

(1 � q) ˜p�#
t + q

¯p#
t

p⇤t�1

#�1

=

0

@(1 � q)

"
1 � q ( ¯pt)

#�1

1 � q

# �#
1�#

+ q
¯p#

t
p⇤t�1

1

A
�1

(4)

using the restriction between ˜pt and aggregate inflation developed
earlier.



Evaluating the Distortions

• Tack Yun distortion:

p⇤t =

2

4(1 � q)

 
1 � q ¯p

(#�1)
t

1 � q

! #
#�1

+
q ¯p#

t
p⇤t�1

3

5
�1

.

– Potentially, NK model provides an ’endogenous theory of TFP’.

• Standard practice in NK literature is to set p⇤t = 1 for all t.
– First order expansion of p⇤t around ¯pt = p⇤t = 1 is:

p⇤t = p⇤ + 0 ⇥ ¯pt + q (p⇤t�1

� p⇤) , with p⇤ = 1,

so p⇤t ! 1 and is invariant to shocks.



Empirical Assessment of Tack Yun
Distortion

• First, do ’back of the envelope’ calculations in a steady state
when inflation is constant and p⇤ is constant.

• Then, use

p⇤t =

2

4(1 � q)

 
1 � q ¯p

(#�1)
t

1 � q

! #
#�1

+
q ¯p#

t
p⇤t�1

3

5
�1

.

to compute times series estimate of p⇤t .



Three Inflation Rates:

• Average inflation in the 1970s, 8 percent APR.

• Suggestion: raise inflation target to 4 percent so that nominal
rate of interest is higher, and less likely to hit lower bound.

– http://www.voxeu.org/article/case-4-inflation

• Two percent inflation is the average in the recent (pre-2008)
low inflation environment.



Figure: US Quarterly Gross Inflation
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Cost of Three Alternative Permanent
Levels of Inflation

p⇤ =
1 � q ¯p#

1 � q

✓
1 � q

1 � q ¯p(#�1)

◆ #
#�1

Table: Percent of GDP Lost Due to Inflation, 100(1 � p⇤t )

steady state inflation markup, #
#�1

1.20 1.15 1.10
8% 2.41 3.92 10.85

4% 0.46 0.64 1.13

2% 0.10 0.13 0.21



Costs of Inflation, Dynamic Formula
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Figure 1a: Percent loss of GDP due to Inflation, assumed markup is 1.2

 

 

US CPI inflation (APR)
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Figure 1b: Percent loss of GDP due to Inflation, assumed markup is 1.15
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Notes: (i) the figure reports the percent loss of output, 100 (1 � p⇤t ), due to cross-sectoral

resource misallocation; (ii) losses are for the model in these notes as well as for the version of

the model with networks, the annualized percent inflation networks; the inflation rate is

expressed in annual, percent terms.

http://faculty.wcas.northwestern.edu/~lchrist/course/Gerzensee_2016/NewKeynesian_model_rev_handout.pdf


Government
• Government budget constraint: expenditures = receipts

purchases of final goodsz}|{
PtGt +

subsidy paymentsz }| {
nWtNt +

gov’t bonds (lending, if positive)z}|{
Bg

t+1

+

transfer payments to householdsz }| {
Ttrans

t

=

money injection, if positivez }| {
Mtµt +

tax revenuesz}|{
Ttax

t +Rt�1

Bg
t

where µt denotes money growth rate.
• Then,

Ttax
t � Ttrans

t = nWtNt + Bg
t+1

+ PtGt � Mtµt � Rt�1

Bg
t

• Government’s choice of µt determines evolution of money
supply:

Mt+1

= (1 + µt)Mt, µt ⇠ money growth rate.



Government

• The law of motion for money places restrictions on mt:

mt ⌘
Mt+1

Pt
=

Mt+1

Mt

Mt

Pt�1

Pt�1

Pt

! mt =

✓
1 + µt

¯pt

◆
mt�1

(8),

for t = 0, 1, ... .



Market Clearing

• We now summarize the market clearing conditions of the
model.

– Money, labor, bond and goods markets.



Money Market Clearing
• We temporarily use the bold notation, Mt, to denote the per
capita supply of money at the start of time t, for t = 0, 1, 2, ... .

• The supply of money is determined by the actions, µt, of the
government:

Mt+1

= Mt + µtMt,

for t=0,1,2,...

• Households being identical means that in period t = 0,

M
0

= M
0

,

where M
0

denotes beginning of time t = 0 money stock of the
representative household.

• Money market clearing in each period, t = 0, 1, ..., requires

Mt+1

= Mt+1

,

where Mt+1

denotes the representative household’s time t
choice of money.

• From here on, we do not distinguish between Mt and Mt.



Other Market Clearing Conditions
• Bond market clearing:

Bt+1

+ Bg
t+1

= 0, t = 0, 1, 2, ...

• Labor market clearing:

supply of laborz}|{
Nt =

demand for laborz }| {
1ˆ

0

Ni,tdi

• Goods market clearing:

demand for final goodsz }| {
Ct + Gt =

supply of final goodsz}|{
Yt ,

and, using relation between Yt and Nt:

Ct + Gt = p⇤t eatNt (6)



Walras’ Law

• We use the market clearing conditions in constructing the
equilibrium conditions used to solve the model.

• We will not use the household budget constraint because (by
Walras’ Law) it is redundant given market clearing, the
government budget constraint and the definition of profits.

• It is useful to verify Walras’ Law, as a way to make sure that
the model has been correctly specified and understood.

• Next, we derive Walras’ Law for the model.



Walras’ Law
• Household budget constraint:

PtCt + Bt+1

+ Mt+1

= WtNt + Rt�1

Bt + Mt + Qt

Qt ⇠ lump-sum profits & gov’t taxes

or,

Qt =

profits from ownership in monopolistsz }| {ˆ
1

0

Pi,tYi,t � (1 � n)Wt

ˆ
1

0

Ni,tdi + Ttrans
t � Ttax

t

zero profits in final goods and labor market clearingz}|{
=

PtYt � (1 � n)WtNt + Ttrans
t � Ttax

t

• Need to make use of government budget constraint.



Walras’ Law
• Lump sum receipts of households, Qt :

Qt = PtYt � (1 � n)WtNt + Ttrans
t � Ttax

t

government budgetz}|{
=

PtYt � (1 � n)WtNt � nWtNt � Bg
t+1

� PtGt + Mtµt + Rt�1

Bg
t

Then,

PtCt + Bt+1

+ Mt+1

= WtNt + Rt�1

Bt + Mt + Qt

= WtNt + Rt�1

Bt + Mt

+PtYt � WtNt � Bg
t+1

� PtGt + Mtµt + Rt�1

Bg
t

Rearranging:

Pt (Ct + Gt) +
�
Bt+1

+ Bg
t+1

�
+ Mt+1

= Rt�1

�
Bt + Bg

t
�
+ Mt (1 + µt) + PtYt,

which is satisfied with bond, money and goods market clearing.



Next

• Collect the equilibrium conditions associated with private sector
behavior.

• Comparison of NK model with RBC model (i.e., q = 0)
– Classical Dichotomy: In flexible price version of model real

variables determined independent of monetary policy.
– Fiscal policy still matters, because equilibrium depends on how

government deals with the monopoly power, i.e., selects value
for subsidy, n.

– In NK model, markets don’t necessarily work well and good
monetary policy essential.

• To close model with q > 0 must take a stand on monetary
policy.



Equilibrium Conditions
• 8 equations in 8 unknowns: mt, Ct, p⇤t , Ft, Kt, Nt, Rt, ¯pt, and 3
policy variables: n, µt, Gt.

Kt =
#

# � 1

(1 � n) ettYtN
j
t

At
+ bqEt ¯p#

t+1

Kt+1

(1)

Ft =
Yt

Ct
+ bqEt ¯p#�1

t+1

Ft+1

(2),
Kt

Ft
=

"
1 � q ¯p

(#�1)
t

1 � q

# 1

1�#

(3)

p⇤t =

2

4(1 � q)

 
1 � q ¯p

(#�1)
t

1 � q

! #
#�1

+
q ¯p#

t
p⇤t�1

3

5
�1

(4)

1

Ct
= bEt

1

Ct+1

Rt

¯pt+1

(5), Ct + Gt = p⇤t eatNt (6)

mt =
gCt⇣

1 � 1

Rt

⌘ (7), mt =

✓
1 + µt

pt

◆
mt�1

(8)



Classical Dichotomy Under Flexible Prices
•
Classical Dichotomy : when prices flexible, q = 0, then real
variables determined regardless of the rule for µt (i.e., monetary
policy).

– Equations (2),(3) imply:

Ft = Kt =
Yt

Ct
,

which, combined with (1) implies

# (1 � n)
# � 1

⇥
Marginal Cost of workz }| {

ettCtN
j
t =

marginal benefit of workz}|{
eat

– Expression (6) with p⇤t = 1 (since q = 0) is

Ct + Gt = eatNt.

• Thus, we have two equations in two unknowns, Nt and Ct.



Classical Dichotomy: No Uncertainty
• Real interest rate, R⇤

t ⌘ Rt/ ¯pt+1

, is determined:

R⇤
t =

1

Ct

b 1

Ct+1

.

• So, with q = 0, the following are determined:

R⇤
t , Ct, Nt, t = 0, 1, 2, ...

• What about the nominal variables?
– Suppose the monetary authority wants a given sequence of

inflation rates, ¯pt, t = 0, 1, ... .
– Then,

Rt = ¯pt+1

R⇤
t , t = 0, 1, 2, ...

– What money growth sequence is required?
• From (7), obtain mt, t = 0, 1, 2, ... . Also, m�1

is given by initial
M

0

and P�1

.

• From (8)
1 + µt =

mt
mt�1

pt, t = 0, 1, 2, ...



Classical Dichotomy versus New Keynesian
Model

• When q = 0, then the Classical Dichotomy occurs.

• In this case, monetary policy (i.e., the setting of µt,
t = 0, 1, 2, ... ) cannot a↵ect the real interest rate, consumption
and employment.

– Monetary policy simply a↵ects the split in the real interest rate
between nominal and real rates:

R⇤
t =

Rt

¯pt+1

.

– For a careful treatment when there is uncertainty, see.

• When q > 0 (NK model) then real variables are not determined
independent of monetary policy.

– In this case, monetary policy matters.

http://faculty.wcas.northwestern.edu/~lchrist/d16/d1614/Labor_market_handout.pdf


Monetary Policy in New Keynesian Model
• Suppose q > 0, so that we’re in the NK model and monetary
policy matters.

• The standard assumption is that the monetary authority sets µt
to achieve an interest rate target, and that that target is a
function of inflation:

Rt/R = (Rt�1

/R)a
exp [(1 � a) fp( ¯pt � ¯p) + fxxt] (7)’,

where xt denotes the log deviation of actual output from target
(more on this later).

• This is a Taylor rule, and it satisfies the Taylor Principle when
fp > 1.

• Smoothing parameter: a.

– Bigger is a the more persistent are policy-induced changes in
the interest rate.



Equilibrium Conditions of NK Model with
Taylor Rule

Kt =
#

# � 1

(1 � n) ettYtN
j
t

At
+ bqEt ¯p#

t+1

Kt+1

(1)

Ft =
Yt

Ct
+ bqEt ¯p#�1

t+1

Ft+1

(2),
Kt

Ft
=

"
1 � q ¯p

(#�1)
t

1 � q

# 1

1�#

(3)

p⇤t =

2

4(1 � q)
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(#�1)
t

1 � q

! #
#�1

+
q ¯p#

t
p⇤t�1
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(4)

1

Ct
= bEt

1

Ct+1

Rt

¯pt+1

(5), Ct + Gt = p⇤t eatNt (6)

Rt/R = (Rt�1

/R)a
exp [(1 � a) fp( ¯pt � ¯p) + fxxt] (7)’.

Conditions (7) and (8) have been replaced by (7)’.



Equilibrium Conditions of NK Model

• The model represents 7 equations in 7 unknowns:

C, p⇤t , Ft, Kt, Nt, Rt, ¯pt

• After this system has been solved for the 7 variables, equations
(7) and (8) can be used to solve for µt and mt.

– This is rarely done, because researchers are uncertain of the
exact form of money demand and because mt and µt are in
practice not of direct interest.



Natural Equilibrium
• When q = 0, then

# (1 � n)
# � 1

⇥
Marginal Cost of workz }| {

ettCtN
j
t =

marginal benefit of workz}|{
eat

so that we have a form of e�ciency when n is chosen to that
# (1 � n) / (# � 1) = 1.

• In addition, recall that we have allocative e�ciency in the
flexible price equilibrium.

• So, the flexible price equilibrium with the e�cient setting of n
represents a natural benchmark for the New Keynesian model,
the version of the model in which q > 0.

– We call this the Natural Equilibrium.

• To simplify the analysis, from here on we set Gt = 0.



Natural Equilibrium
• With Gt = 0, equilibrium conditions for Ct and Nt:

Marginal Cost of workz }| {
ettCtN

j
t =

marginal benefit of workz}|{
eat

aggregate production relation: Ct = eatNt.

• Substituting,

etteatN1+j
t = eat ! Nt = exp

✓
�tt

1 + j

◆

Ct = exp

✓
at �

tt

1 + j

◆

R⇤
t =

1

Ct

bEt
1

Ct+1

=
1

bEt
Ct

Ct+1

=
1

bEtexp

⇣
�Dat+1

+ Dtt+1

1+j

⌘



Natural Equilibrium, cnt’d

• Natural rate of interest:

R⇤
t =

1

Ct

bEt
1

Ct+1

=
1

bEtexp

⇣
�Dat+1

+ Dtt+1

1+j

⌘

• Two models for at :

DS : Dat+1

= rDat + #a
t+1

TS : at+1

= rat + #a
t+1

• Model for tt :

tt+1

= ltt + #t
t+1



Natural Equilibrium, cnt’d
• Suppose the #t’s are Normal. Then,

Etexp

✓
�Dat+1

+
Dtt+1

1 + j

◆
= exp

✓
�EtDat+1

+ Et
Dtt+1

1 + j
+

1

2

V
◆

,

where

V = s2

a +
s2

t

(1 + j)2

• Then, with r⇤t ⌘ log R⇤
t

r⇤t = � log b + EtDat+1

� Et
Dtt+1

1 + j
� 1

2

V.

• Useful: consider how natural rate responds to #a
t shocks under

DS and TS models for at and how it responds to #t
t shocks.

– To understand how r⇤t responds, consider implications of
consumption smoothing in absence of change in r⇤t .

– Hint: in natural equilibrium, r⇤t steers the economy so that
natural equilibrium paths for Ct and Nt are realized.



Conclusion
• Described NK model and derived equilibrium conditions.

– The usual version of model represents monetary policy by a
Taylor rule.

• When q = 0, so that prices are flexible, then monetary policy is
(essentially) neutral.

– Changes in money growth move prices and wages in such a
way that real wages do not change and employment and
output don’t change.

• When prices are sticky, then a policy-induced reduction in the
interest rate encourages more nominal spending.

– The increased spending raises Wt more than Pt because of the
sticky prices, thereby inducing the increased labor supply that
firms need to meet the extra demand.

– Firms are willing to produce more goods because:
• The model assumes they must meet all demand at posted

prices.
• Firms make positive profits, so as long as the expansion is not

too big they still make positive profits, even if not optimal.


