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Outline

e State space-observer form.
— convenient for model estimation and many other things.

e Bayesian inference

Bayes' rule.

Monte Carlo integation.
MCMC algorithm.
Laplace approximation



State Space/Observer Form
e Compact summary of the model, and of the mapping between
the model and data used in the analysis.
e Typically, data are available in log form. So, the following is

useful:
— If x is steady state of x; :
A _ XX
Xt = 7
X
Xt

x . N
— log (;t) =log (1+ &) ~ &
e Suppose we have a model solution in hand:?
zt = Az 1+ Bs

st = Ps;_1+e€;, Eee; =D.

INotation taken from solution lecture notes,
http://faculty.wcas.northwestern.edu/~Ichrist/course/
Korea 2012/lecture on solving rev.pdf




State Space/Observer Form

e Suppose we have a model in which the date t endogenous
variables are capital, K41, and labor, N¢:

e Data may include variables in z; and/or other variables.

— for example, suppose available data are Ny and GDP, y; and
production function in model is:

yr = eKiN; ¢,
so that
" o= & +ak; + (1- zx)Nt
(0 1T—a)ze+(a 0)zq+s;
e From the properties of #; and N; :

data _ [ logy: \ _ ( logy bt
= (ogke ) = (iogt )+ (&)



State Space/Observer Form

e Model prediction for data:
data _ ( logy G
= (logh )+ (5)
logy 0 1—ua
< log N > + [ 0 1 ]
= a+HE,
“ lo 01— 01
o gy . "
gt_<z%1), [logN} H—[o 1 ooo]
t
e The Observer Equation may include measurement error, w; :
Y — g 4 HE, + w;, Ewsw, = R.

e Semantics: ¢, is the state of the system (do not confuse with
the economic state (K, &)!).



State Space/Observer Form

e Law of motion of the state, ¢, (state-space equation):

¢ =FC, 1 +uy, Eusuy = Q

Zii1 A 0 BP 2
Zt = I 0 0 Zi 1 +
St+1 0 0 P St
B BDB' 0 BD A
uy=1 0 Je, Q= 0O 0 0 |,F=]|1
I DB’ D 0




Uses of State Space/Observer Form

Estimation of 6 and forecasting &, and Y7
Can take into account situations in which data represent a
mixture of quarterly, monthly, daily observations.
‘Data Rich’ estimation. Could include several data measures
(e.g., employment based on surveys of establishments and
surveys of households) on a single model concept.
Useful for solving the following forecasting problems:

— Filtering (mainly of technical interest in computing likelihood

function):

[gtwf”ff, yista Y’fﬂﬂ, t=1,2,..T.

— Smoothing:
p [(jtwdﬂm,..., Yﬁlﬂﬂ ,t=1,2,..,T.

— Example: ‘real rate of interest’ and ‘output gap' can be
recovered from ¢, using simple New Keynesian model.
e Useful for deriving a model’s implications vector autoregressions



Quick Review of Probability Theory

e Two random variables, x € (x1,x2) and y € (y1,¥2) -
e Joint distribution: p (x,v)

X1 X2 X1 X2
yi[pu | pr2]= y1[0.05]0.40
Y2 [ P21 | P22 y2 [ 0.35]0.20

where
pij = probability (x = x,y = ;).
e Restriction:

/ p(x,y)dxdy = 1.
Xy



Quick Review of Probability Theory

e Joint distribution: p (x,v)

X1 X2 X1 X
v1 [pun[pr2]= y1 [0.05]0.40
Y2 | P21 | P22 y2 [ 0.35 ] 0.20

o Marginal distribution of x : p (x)

Probabilities of various values of x without reference to the value of

y:
p11+p21 =040 x=x
p(x) = {P12+P22—060 X=X °

Z/yp(x,y)d

or,



Quick Review of Probability Theory

e Joint distribution: p (x, )

X1 X2 X1 X2
yi[pu [ pr2]= y1[0.05]0.40
Y2 [ P21 | P22 y2 [ 0.35]0.20

e Conditional distribution of x given y : p (x|y)

— Probability of x given that the value of y is known

pun_ . pn _ 005 _
P(x|y1) = { p(xl‘]h) m - p(;l) = 045 — 0.11

P _ P _ 040 __
p (xz‘]/l) P11'*1‘2Plz - P(;i) T 045 T 0.89

or,

p(x[y) =



Quick Review of Probability Theory

e Joint distribution: p (x,y)

X1 X2
y1 [ 0.05 0.40 p(y1) =045
> [0.35 0.20 p(y2) = 055
p(x1) =040 | p(xp) = 0.60

e Mode
— Mode of joint distribution (in the example):
argmax,,p (X, y) = (x2,y1)
— Mode of the marginal distribution:
argmax,p (x) = xp, argmax,p (y) =2

— Note: mode of the marginal and of joint distribution
conceptually different.




Maximum Likelihood Estimation

e State space-observer system:

$iv1 = F& 4w, Eupyy = Q,
Y — gy + HE, 4wy, Eww) = R

e Reduced form parameters, (F, Q,a9, H,R), functions of .
e Choose 6 to maximize likelihood, p (Yd“t“](?) :

p (Ydata|9) = p (Yzilata,m, Yt%ataw)
= p (Y(fataw) X p (Ygutulycliata’ 0)

computed using Kalman Filter
7\

X oo Xp (Y’f“t“!Yfﬁtf L Ytliata’ 9)

o xp (v, v o)

e Kalman filter straightforward (see, e.g., Hamilton's textbook).



Bayesian Inference

e Bayesian inference is about describing the mapping from prior
beliefs about 6, summarized in p (0), to new posterior beliefs in
the light of observing the data, Y,

o General property of probabilities:

data _ p (Ydata|9) xXp (9)
p <Y '9> - { p (9|Yduta) X p (Ydata> ’

which implies Bayes' rule:

; Ydata 0 9
p (G‘Yda ) _ P ( ; (Jdazal)?( )/

mapping from prior to posterior induced by Y4,



Bayesian Inference

o Report features of the posterior distribution, p (6] Y%) .

— The value of 8 that maximizes p (Q\Yd“t”), ‘mode’ of posterior
distribution.

— Compare marginal prior, p (6;), with marginal posterior of
individual elements of 6, g (6;/Y%") :

g <9i|Yd”t”> = / p (9|Yd”t”> d0;; (multiple integration!!)
Ojzi

— Probability intervals about the mode of 6 (‘Bayesian
confidence intervals'), need g (91-|Yd“t”) .

e Marginal likelihood for assessing model ‘fit':

p (ydﬁtﬂ> = /P (Yd”mw) p (0) d6 (multiple integration)
0



Markov Chain, Monte Carlo (MCMC)
Algorithms

e Among the top 10 algorithms "with the greatest influence on
the development and practice of science and engineering in the
20th century".

— Reference: January/February 2000 issue of Computing in
Science & Engineering, a joint publication of the American
Institute of Physics and the IEEE Computer Society.’

e Developed in 1946 by John von Neumann, Stan Ulam, and Nick
Metropolis (see http://www.siam.org/pdf/news/637.pdf)



MCMC Algorithm: Overview

e compute a sequence, 9(1),9(2), ...,G(M), of values of the N x 1
vector of model parameters in such a way that

ngnoo Frequency [G(i) close to 9] =p (0]Yd”t”) .

e Use 9(1),6(2), ...,Q(M) to obtain an approximation for
— E, Var (0) under posterior distribution, p (6]Y4)
] _ d
-9 (91|Ydata> — fe,-#jp (Q‘Y ata) 460460
-p (Ydata) — fep (Ydata‘e) p (0) 4o
— posterior distribution of any function of 6, f (6) (e.g., impulse
responses functions, second moments).

e MCMC also useful for computing posterior mode,
argmaxg p (0] Y?) .



MCMC Algorithm: setting up

Let G (6) denote the log of the posterior distribution (excluding
an additive constant):

G (6) = logp (Y™|0) +logp (6)
Compute posterior mode:
6" = argméaxG (0).

Compute the positive definite matrix, V :

. [_82G (9)]1
~ [ 9000 | s

Later, we will see that V is a rough estimate of the
variance-covariance matrix of 6 under the posterior distribution.



MCMC Algorithm: Metropolis-Hastings

o to compute 8, for r > 1
— step 1: select candidate 0\ x,

‘jump’ distribution’

draw x from 8" Y 4+ kx N ( 0 ,V), k is a scalar
<~ —~—
Nx1 Nx1

— step 2: compute scalar, A :
p (Y™ x) p (x)

p (Ydata’g("—l)) p (9(7—1))
— step 3: compute 0"

g — { 01 ifu> A

A=

: , u is a realization from uniform [0, 1]
X ifu<A



Practical issues

What is a sensible value for k?
— set k so that you accept (i.e., o) = x) in step 3 of MCMC
algorithm are roughly 23 percent of time
What value of M should you set?
— want ‘convergence’, in the sense that if M is increased further,
the econometric results do not change substantially
— in practice, M = 10,000 (a small value) up to M = 1,000, 000.
— large M is time-consuming.
e could use Laplace approximation (after checking its accuracy)
in initial phases of research project.
e more on Laplace below.
Burn-in: in practice, some initial 0)'s are discarded to
minimize the impact of initial conditions on the results.
Multiple chains: may promote efficiency.
— increase independence among 0()s.

— can do MCMC utilizing parallel computing (Dynare can do
this).



MCMC Algorithm: Why Does it Work?

e Proposition that MCMC works may be surprising.

— Whether or not it works does not depend on the details, i.e.,
precisely how you choose the jump distribution (of course, you
had better use k > 0 and V positive definite).

e Proof: see, e.g., Robert, C. P. (2001), The Bayesian Choice,
Second Edition, New York: Springer-Verlag.

— The details may matter by improving the efficiency of the
MCMC algorithm, i.e., by influencing what value of M you
need.

e Some Intuition
— the sequence, 9(1),6(2),...,9(M), is relatively heavily populated
by 6's that have high probability and relatively lightly
populated by low probability 8's.
— Additional intuition can be obtained by positing a simple scalar
distribution and using MATLAB to verify that MCMC
approximates it well (see, e.g., question 2 in assignment 9).



MCMC Algorithm: using the Results

e To approximate marginal posterior distribution, g (9i|Yd“m) , of

0;,
— compute and display the histogram of 951),952),..., QEM)
i=1,.., M.

e Other objects of interest:

7

— mean and variance of posterior distribution 0 :

1\14]_ o, Var (8) = = 3 [0 3] [6 ~5] .

j=1

M=

EO ~ 06

Il
—_



MCMC Algorithm: using the Results

e More complicated objects of interest:
— impulse response functions,
— model second moments,
— forecasts,
— Kalman smoothed estimates of real rate, natural rate, etc.
o All these things can be represented as non-linear functions of
the model parameters, i.e., f (0).

— can approximate the distribution of f (0) using



MCMC: Remaining Issues

e In addition to the first and second moments already discused,
would also like to have the marginal likelihood of the data.

e Marginal likelihood is a Bayesian measure of model fit.



MCMC Algorithm: the Marginal Likelihood

e Consider the following sample average:

1 % h <GU)>

Z\_/I]:1 p (Ydata|9(i)> p (9(1)) '

where 1 (6) is an arbitrary density function over the N—
dimensional variable, 6.

By the law of large numbers,

l% h<90>) - E( 1 (0) )
M=, <Ydata|9(j)> p (9(]')) M-\ p (Y#|0) p (6)



MCMC Algorithm: the Marginal Likelihood

| (69) (o)
1\71]; " (Ydata|9(j)> p (9(j>> e B (p (Yteta|6) p (9))

:/< h(6) )pwmwwwugz 1
(Ydutul@) (9 p (Ydata) p (Ydata)

e When h (6) = p (6), harmonic mean estimator of the marginal
likelihood.
e |deally, want an & such that the variance of

7 (9@)
 107) ()

is small (recall the earlier discussion of Monte Carlo
integration). More on this below.




