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Outline

• State space-observer form.

— convenient for model estimation and many other things.

• Bayesian inference

— Bayes’ rule.
— Monte Carlo integation.
— MCMC algorithm.
— Laplace approximation



State Space/Observer Form
• Compact summary of the model, and of the mapping between
the model and data used in the analysis.

• Typically, data are available in log form. So, the following is
useful:
— If x is steady state of xt :

ˆxt 
xt  x

x
,

=)
xt

x
= 1+ ˆxt

=) log

xt

x


= log (1+ ˆxt)  ˆxt

• Suppose we have a model solution in hand:1

zt = Azt1

+ Bst

st = Pst1

+ et, Eete
0
t = D.

1Notation taken from solution lecture notes,
http://faculty.wcas.northwestern.edu/~lchrist/course/
Korea_2012/lecture_on_solving_rev.pdf



State Space/Observer Form
• Suppose we have a model in which the date t endogenous
variables are capital, Kt+1

, and labor, Nt:

zt =


ˆKt+1

ˆNt


, st = ˆ

#t, et = et.

• Data may include variables in zt and/or other variables.
— for example, suppose available data are Nt and GDP, yt and
production function in model is:

yt = #tKa

t N1a

t ,

so that

ˆyt = ˆ

#t + a

ˆKt + (1 a) ˆNt

= ( 0 1 a ) zt + ( a 0 ) zt1

+ st

• From the properties of ˆyt and ˆNt :

Ydata
t =


log yt
log Nt


=


log y
log N


+


ˆyt
ˆNt





State Space/Observer Form
• Model prediction for data:

Ydata
t =


log y
log N


+


ˆyt
ˆNt
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log y
log N


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!
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
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h
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• The Observer Equation may include measurement error, wt :

Ydata
t = a+Hxt +wt, Ewtw0t = R.

• Semantics: xt is the state of the system (do not confuse with
the economic state (Kt, #t)!).



State Space/Observer Form

• Law of motion of the state, xt (state-space equation):

xt = Fxt1

+ ut, Eutu0t = Q
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.



Uses of State Space/Observer Form
• Estimation of q and forecasting xt and Ydata

t
• Can take into account situations in which data represent a
mixture of quarterly, monthly, daily observations.

• ‘Data Rich’ estimation. Could include several data measures
(e.g., employment based on surveys of establishments and
surveys of households) on a single model concept.

• Useful for solving the following forecasting problems:
— Filtering (mainly of technical interest in computing likelihood
function):

P
h
xt|Y

data
t1

, Ydata
t2

, ..., Ydata
1

i
, t = 1, 2, ..., T.

— Smoothing:

P
h
xt|Y

data
T , ..., Ydata

1

i
, t = 1, 2, ..., T.

— Example: ‘real rate of interest’ and ‘output gap’ can be
recovered from xt using simple New Keynesian model.

• Useful for deriving a model’s implications vector autoregressions
(VARs).



Quick Review of Probability Theory

• Two random variables, x 2 (x
1

, x
2

) and y 2 (y
1

, y
2

) .

• Joint distribution: p (x, y)
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where
pij = probability


x = xi, y = yj


.

• Restriction: Z

x,y
p (x, y) dxdy = 1.



Quick Review of Probability Theory

• Joint distribution: p (x, y)
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• Marginal distribution of x : p (x)

Probabilities of various values of x without reference to the value of
y:

p (x) =
n p
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+ p
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= 0.40 x = x
1

p
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.

or,

p (x) =
Z

y
p (x, y) dy



Quick Review of Probability Theory

• Joint distribution: p (x, y)
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• Conditional distribution of x given y : p (x|y)
— Probability of x given that the value of y is known

p (x|y
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.



Quick Review of Probability Theory
• Joint distribution: p (x, y)
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• Mode

— Mode of joint distribution (in the example):

argmaxx,yp (x, y) = (x
2

, y
1

)

— Mode of the marginal distribution:

argmaxxp (x) = x
2

, argmaxyp (y) = y
2

— Note: mode of the marginal and of joint distribution
conceptually di§erent.



Maximum Likelihood Estimation
• State space-observer system:

xt+1

= Fxt + ut+1

, Eutu0t = Q,

Ydata
t = a

0

+Hxt +wt, Ewtw0t = R

• Reduced form parameters, (F, Q, a
0

, H, R), functions of q.

• Choose q to maximize likelihood, p

Ydata|q


:

p


Ydata|q

= p


Ydata

1

, ..., Ydata
T |q



= p


Ydata
1

|q

 p


Ydata

2

|Ydata
1

, q



 · · ·

computed using Kalman Filterz }| {
p


Ydata
t |Ydata

t1

· · · Ydata
1

, q



 · · ·p


Ydata
T |Ydata

T1

, · · ·, Ydata
1

, q



• Kalman filter straightforward (see, e.g., Hamilton’s textbook).



Bayesian Inference
• Bayesian inference is about describing the mapping from prior
beliefs about q, summarized in p (q) , to new posterior beliefs in
the light of observing the data, Ydata

.

• General property of probabilities:

p


Ydata
, q


=


p

Ydata|q


 p (q)

p

q|Ydata p


Ydata ,

which implies Bayes’ rule:

p


q|Ydata

=

p

Ydata|q


p (q)

p

Ydata


,

mapping from prior to posterior induced by Ydata
.



Bayesian Inference

• Report features of the posterior distribution, p

q|Ydata

.

— The value of q that maximizes p

q|Ydata, ‘mode’ of posterior

distribution.
— Compare marginal prior, p (qi) , with marginal posterior of
individual elements of q, g


qi|Ydata

:

g


qi|Ydata

=
Z

qj 6=i

p


q|Ydata


dqj 6=i (multiple integration!!)

— Probability intervals about the mode of q (‘Bayesian
confidence intervals’), need g


qi|Ydata

.

• Marginal likelihood for assessing model ‘fit’:

p


Ydata

=
Z

q

p


Ydata|q


p (q) dq (multiple integration)



Markov Chain, Monte Carlo (MCMC)
Algorithms

• Among the top 10 algorithms "with the greatest influence on
the development and practice of science and engineering in the
20th century".

— Reference: January/February 2000 issue of Computing in
Science & Engineering, a joint publication of the American
Institute of Physics and the IEEE Computer Society.’

• Developed in 1946 by John von Neumann, Stan Ulam, and Nick
Metropolis (see http://www.siam.org/pdf/news/637.pdf)



MCMC Algorithm: Overview

• compute a sequence, q

(1)
, q

(2)
, ..., q

(M)
, of values of the N 1

vector of model parameters in such a way that

lim

M!•
Frequency

h
q

(i) close to q

i
= p


q|Ydata


.

• Use q

(1)
, q

(2)
, ..., q

(M) to obtain an approximation for

— Eq, Var (q) under posterior distribution, p

q|Ydata

— g


q

i|Ydata

=
R

qi 6=j
p

q|Ydata dqdq

— p

Ydata =

R
q

p

Ydata|q


p (q) dq

— posterior distribution of any function of q, f (q) (e.g., impulse
responses functions, second moments).

• MCMC also useful for computing posterior mode,
arg max

q

p

q|Ydata

.



MCMC Algorithm: setting up
• Let G (q) denote the log of the posterior distribution (excluding
an additive constant):

G (q) = log p


Ydata|q

+ log p (q) ;

• Compute posterior mode:

q

 = arg max

q

G (q) .

• Compute the positive definite matrix, V :

V 



∂

2G (q)
∂q∂q

0

1

q=q



• Later, we will see that V is a rough estimate of the
variance-covariance matrix of q under the posterior distribution.



MCMC Algorithm: Metropolis-Hastings

•
q

(1) = q



• to compute q

(r)
, for r > 1

— step 1: select candidate q

(r)
, x,

draw x|{z}
N1

from q

(r1) +

‘jump’ distribution’z }| {

kN

0

@
0|{z}

N1

, V

1

A
, k is a scalar

— step 2: compute scalar, l :

l =
p

Ydata|x


p (x)

p


Ydata|q(r1)


p


q

(r1)


— step 3: compute q

(r)
:

q

(r) =


q

(r1) if u > l

x if u < l

, u is a realization from uniform [0, 1]



Practical issues
• What is a sensible value for k?

— set k so that you accept (i.e., q

(r) = x) in step 3 of MCMC
algorithm are roughly 23 percent of time

• What value of M should you set?
— want ‘convergence’, in the sense that if M is increased further,
the econometric results do not change substantially

— in practice, M = 10, 000 (a small value) up to M = 1, 000, 000.

— large M is time-consuming.
• could use Laplace approximation (after checking its accuracy)
in initial phases of research project.

• more on Laplace below.
• Burn-in: in practice, some initial q

(i)’s are discarded to
minimize the impact of initial conditions on the results.

• Multiple chains: may promote e¢ciency.
— increase independence among q

(i)’s.
— can do MCMC utilizing parallel computing (Dynare can do
this).



MCMC Algorithm: Why Does it Work?
• Proposition that MCMC works may be surprising.

— Whether or not it works does not depend on the details, i.e.,
precisely how you choose the jump distribution (of course, you
had better use k > 0 and V positive definite).
• Proof: see, e.g., Robert, C. P. (2001), The Bayesian Choice,
Second Edition, New York: Springer-Verlag.

— The details may matter by improving the e¢ciency of the
MCMC algorithm, i.e., by influencing what value of M you
need.

• Some Intuition
— the sequence, q

(1)
, q

(2)
, ..., q

(M)
, is relatively heavily populated

by q’s that have high probability and relatively lightly
populated by low probability q’s.

— Additional intuition can be obtained by positing a simple scalar
distribution and using MATLAB to verify that MCMC
approximates it well (see, e.g., question 2 in assignment 9).



MCMC Algorithm: using the Results

• To approximate marginal posterior distribution, g

qi|Ydata

, of
qi,

— compute and display the histogram of q

(1)
i , q

(2)
i , ..., q

(M)
i ,

i = 1, ..., M.

• Other objects of interest:

— mean and variance of posterior distribution q :

Eq ' ¯

q 
1

M

M

Â
j=1

q

(j)
, Var (q) '

1

M

M

Â
j=1

h
q

(j)  ¯

q

i h
q

(j)  ¯

q

i0
.



MCMC Algorithm: using the Results
• More complicated objects of interest:

— impulse response functions,
— model second moments,
— forecasts,
— Kalman smoothed estimates of real rate, natural rate, etc.

• All these things can be represented as non-linear functions of
the model parameters, i.e., f (q) .

— can approximate the distribution of f (q) using

f


q

(1)


, ..., f


q

(M)


! Ef (q) ' ¯f 
1

M

M

Â
i=1

f


q

(i)


,

Var (f (q)) '
1

M

M

Â
i=1

h
f


q

(i)

 ¯f
i h

f


q

(i)

 ¯f
i0



MCMC: Remaining Issues

• In addition to the first and second moments already discused,
would also like to have the marginal likelihood of the data.

• Marginal likelihood is a Bayesian measure of model fit.



MCMC Algorithm: the Marginal Likelihood

• Consider the following sample average:

1

M
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Â
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h


q

(j)


p


Ydata|q(j)


p


q

(j)


,

where h (q) is an arbitrary density function over the N
dimensional variable, q.

By the law of large numbers,
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
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
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MCMC Algorithm: the Marginal Likelihood
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
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
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
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
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
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!
p

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
p (q)

p

Ydata

 dq =
1

p

Ydata


.

• When h (q) = p (q) , harmonic mean estimator of the marginal
likelihood .

• Ideally, want an h such that the variance of

h


q

(j)


p


Ydata|q(j)


p


q

(j)


is small (recall the earlier discussion of Monte Carlo
integration). More on this below.


