Application of DSGE Model:

Fixing the Interest Rate for a While, and then Returning to Taylor Rule

Standard monetary policy briefing question

 'What Happens if We Set the Interest Rate to Fixed Level for y Periods?'

Model

• Model in linearized form:

 $E_t[\alpha_0 z_{t+1} + \alpha_1 z_t + \alpha_2 z_{t-1} + \beta_0 s_{t+1} + \beta_1 s_t] = 0,$

- Here,
 - *z_t* denotes the list of endogenous variables whose values are determined at time *t*.
 - s_t denotes the list of exogenous variables whose values are determined at time t.

$$s_t = P s_{t-1} + \varepsilon_t.$$

• Solution: A and B in

$$z_t = A z_{t-1} + B s_t,$$

- where

 $\alpha_0 A^2 + \alpha_1 A + \alpha_2 I = 0,$ $(\beta_0 + \alpha_0 B) P + [\beta_1 + (\alpha_0 A + \alpha_1) B] = 0$

Policy Experiment

The nth equation in the system is a monetary policy rule (Taylor rule). One of the variables in z_t is the policy interest rate, R_t, in deviation from its non-stochastic steady state value:

$$R_t = \tau' z_t.$$

- *τ* is composed of *O*'s and a single *1*
- Policy:
 - it is now time t=T and policy is $R_t = \tilde{d}$ from t=T+1 to t=T+y.
 - For t>T+y, policy follows the Taylor rule again.

Convenient to 'Stack' the System to be Conformable with Dynare Notation

 First set of equations is the equilibrium conditions and second set is the exogenous shock process:

$$E_{t}\left\{ \overbrace{\begin{bmatrix} \alpha_{0} & \beta_{0} \\ 0 & 0 \end{bmatrix}}^{A_{1}} \overbrace{\begin{bmatrix} z_{t+1} \\ s_{t+1} \end{bmatrix}}^{A_{1}} + \overbrace{\begin{bmatrix} \alpha_{1} & \beta_{1} \\ 0 & I \end{bmatrix}}^{A_{1}} \overbrace{\begin{bmatrix} z_{t} \\ s_{t} \end{bmatrix}}^{Z_{t}} + \overbrace{\begin{bmatrix} \alpha_{2} & 0 \\ 0 & -P \end{bmatrix}}^{A_{2}} \overbrace{\begin{bmatrix} z_{t-1} \\ s_{t-1} \end{bmatrix}}^{Z_{t-1}} + \overbrace{\begin{bmatrix} 0 \\ 0 \\ -\varepsilon_{t} \end{bmatrix}}^{\epsilon_{t}} \right\} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}.$$

$$- \text{ or }$$

$$E_{t}\left\{A_{0}Z_{t+1} + A_{1}Z_{t} + A_{2}Z_{t-1} + \epsilon_{t}\right\} = 0.$$

- where ϵ_t is independent over time and in time t information set.
- The *n*th row of the above system corresponds to monetary policy rule.

Fixed *R* Equilibrium Conditions

- Delete monetary policy rule (i.e., n^{th} equation) from system and replace it by $R_t = \tilde{d}$:
 - Let \hat{A}_0 and \hat{A}_2 denote A_0 and A_2 with their n^{th} rows replaced by 0's.

Let
$$\hat{A}_1 = \begin{bmatrix} \hat{\alpha}_1 & \hat{\beta}_1 \\ 0 & I \end{bmatrix}$$

- Where $\hat{\alpha}_1$ is α_1 with its n^{th} row replaced by τ' and $\hat{\beta}_1$ is β_1 with its n^{th} row replaced by 0's.
- Equilibrium conditions:

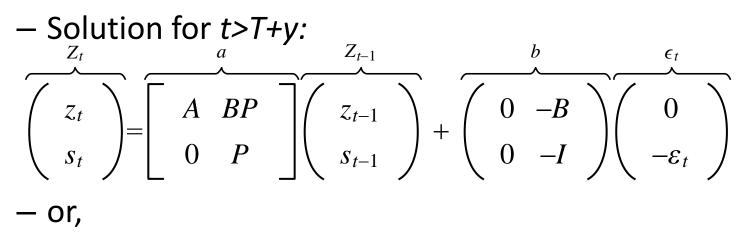
$$E_t \{ \hat{A}_0 Z_{t+1} + \hat{A}_1 Z_t + \hat{A}_2 Z_{t-1} + \epsilon_t \} = d.$$

- d is a column vector zero in all but one location and $au'd = \tilde{d}$

Problem

- Equilibrium conditions for t=T+1,...,T+y: $E_t \{\hat{A}_0 Z_{t+1} + \hat{A}_1 Z_t + \hat{A}_2 Z_{t-1} + \epsilon_t\} = d.$
- Equilibrium conditions for *t>T+y*:

$$E_t \{ A_0 Z_{t+1} + A_1 Z_t + A_2 Z_{t-1} + \epsilon_t \} = 0.$$



$$Z_t = aZ_{t-1} + b\epsilon_t$$

How is the solution for t=T+1,...,T+y?

Solve the Model 'Backward'

• In period *t=T+y*:

$$E_{T+y} \left\{ \hat{A}_0 \overset{=aZ_{T+y}+b\epsilon_{T+y+1}}{\sum} + \hat{A}_1 Z_{T+y} + \hat{A}_2 Z_{T+y-1} + \epsilon_{T+y} \right\} = d$$

- or
$$(\hat{A}_0 a + \hat{A}_1) Z_{T+y} + \hat{A}_2 Z_{T+y-1} + \epsilon_{T+y} = d$$

$$\rightarrow Z_{T+y} = a_1 Z_{T+y-1} + b_1 \epsilon_{T+y} + d_1$$

$$a_{1} \equiv -(\hat{A}_{0}a + \hat{A}_{1})^{-1}\hat{A}_{2}$$
$$b_{1} \equiv -(\hat{A}_{0}a + \hat{A}_{1})^{-1}$$
$$d_{1} \equiv (\hat{A}_{0}a + \hat{A}_{1})^{-1}d$$

Backward, cnt'd

• Period *t=T+y-1*:

$$E_{T+y-1}\left\{\hat{A}_{0} \quad \overbrace{Z_{T+y}}^{=a_{1}Z_{T+y-1}+b_{1}\epsilon_{T+y}+d_{1}} + \hat{A}_{1}Z_{T+y-1} + \hat{A}_{2}Z_{T+y-2} + \epsilon_{T+y-1}\right\} = d.$$
- Or

$$(\hat{A}_0a_1 + \hat{A}_1)Z_{T+y-1} + \hat{A}_0d_1 + \hat{A}_2Z_{T+y-2} + \epsilon_{T+y-1} = d.$$

$$\rightarrow Z_{T+y-1} = a_2 Z_{T+y-2} + b_2 \epsilon_{T+y-1} + d_2$$

$$a_2 = -(\hat{A}_0 a_1 + \hat{A}_1)^{-1} \hat{A}_2$$

$$b_2 = -(\hat{A}_0 a_1 + \hat{A}_1)^{-1}$$

$$d_2 = (\hat{A}_0 a_1 + \hat{A}_1)^{-1} (d - \hat{A}_0 d_1)$$

- and so on.....

Backwards, cnt'd

• Solution for *t=T+1,...,T+y*.

$$Z_{T+y-j} = a_{j+1}Z_{T+y-j-1} + b_{j+1}\epsilon_{T+y-j},$$

$$a_{j+1} = -(\hat{A}_0 a_j + \hat{A}_1)^{-1} \hat{A}_2,$$

$$b_{j+1} = -(\hat{A}_0 a_j + \hat{A}_1)^{-1}$$

$$d_{j+1} = (\hat{A}_0 a_j + \hat{A}_1)^{-1} (d - \hat{A}_0 d_j),$$

$$a_0 \equiv a, \ b_0 \equiv b, \ d_0 = 0.$$

In Sum

- Future stochastic realization of length, x, with interest rate fixed at some specified value for y<x periods....Three steps:
- Backward step:

$$a_0, a_1, \ldots, a_y; b_0, b_1, \ldots, b_y; d_0, d_1, \ldots, d_y$$

• Two forward steps: draw shocks, and simulate

realization of future shocks during fixed interest rate regime realization of shocks after fixed interest rate regime

$$\epsilon_{T+1}, \dots, \epsilon_{T+y}$$
, $\epsilon_{T+y+1}, \dots, \epsilon_{T+x}$
 $Z_{T+1} = a_y Z_T + b_y \epsilon_{T+1} + d_y$
 $Z_{T+2} = a_{y-1} Z_{T+1} + b_{y-1} \epsilon_{T+2} + d_{y-1}$
 \dots
 $Z_{T+y} = a_1 Z_{T+y-1} + b_1 \epsilon_{T+y} + d_1$
 $Z_{T+y+1} = a Z_{T+y} + b \epsilon_{T+y+1}$
 \dots

 $Z_{T+x} = aZ_{T+x-1} + b\epsilon_{T+x}$

Simple New Keynesian Model

log deviation of actual and natural output ('output gap')

(deviated from natural inflation, which is zero)

Net rate of inflation

$$\beta E_t \pi_{t+1} + \kappa x_t - \pi_t = 0$$
 (Phillips curve)

Nominal net rate of interest

$$-[r_{t}^{\downarrow} - E_{t}\pi_{t+1} - r_{t}^{*}] + E_{t}x_{t+1} - x_{t} = 0$$
(IS equation)

 $\alpha r_{t-1} + (1-\alpha)\phi_{\pi}\pi_t + (1-\alpha)\phi_x x_t - r_t = 0 \text{ (policy rule)}$

 a_t is log technology shock, which is AR(1) in first difference with ar coefficient p

$$r_t^* - \rho \Delta a_t - \frac{1}{1 + \varphi} (1 - \lambda) \tau_t = 0$$
 (definition of natural rate)

an AR(1) shock to disutility of work, with ar coefficient, λ

Natural rate of interest

 $\frac{1}{\varphi}$ is Frish labor supply elasticity

Solving the Model

 $E_t[\alpha_0 z_{t+1} + \alpha_1 z_t + \alpha_2 z_{t-1} + \beta_0 s_{t+1} + \beta_1 s_t] = 0$

Model Solution

$$E_t[\alpha_0 z_{t+1} + \alpha_1 z_t + \alpha_2 z_{t-1} + \beta_0 s_{t+1} + \beta_1 s_t] = 0$$

$$s_t - Ps_{t-1} - \epsilon_t = 0.$$

• Solution:

$$z_t = A z_{t-1} + B s_t$$

• where:

$$\alpha_0 A^2 + \alpha_1 A + \alpha_2 I = 0,$$

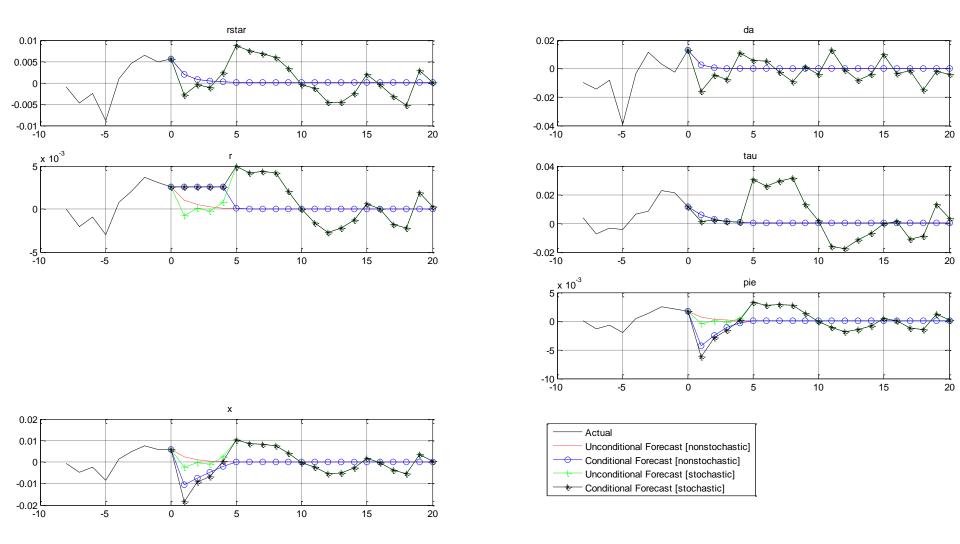
$$(\beta_0 + \alpha_0 B)P + [\beta_1 + (\alpha_0 A + \alpha_1)B] = 0$$

Simulation

• Parameter values:

 $\beta = 0.99, \ \phi_x = 0, \ \phi_\pi = 1.5, \ \alpha = 0, \ \rho = 0, \ \lambda = 0.5, \ \varphi = 1, \ \theta = 0.75$ (Calvo sticky price parameter) variance, innovation in preference shock = 0.01^2 , variance, innovation in technology growth = 0.01^2 $\kappa = \frac{(1-\theta)(1-\beta\theta)(1+\varphi)}{\theta} = 0.1717.$

- Experiment:
 - From periods -8,-7,...,-1,0, economy is stochastically fluctuating with Taylor rule in place.
 - At period 0, monetary authority commits to keeping interest rate fixed in t=1,2,3,4, at the value it took on in t=0. Afterward, return to Taylor rule
 - After period 0, economy continues to be hit by shocks.



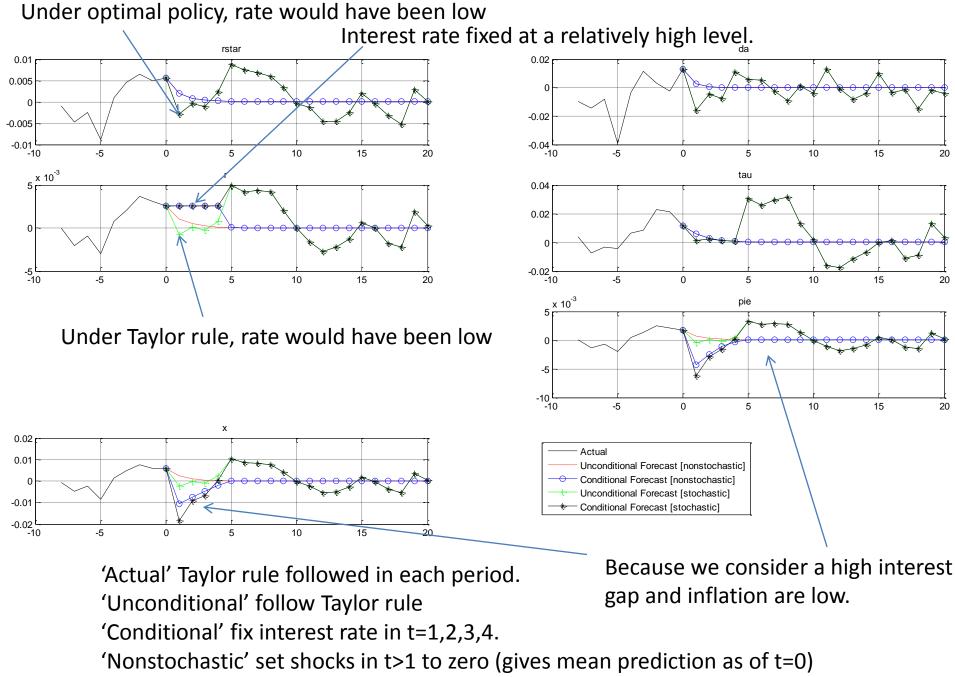
'Actual' Taylor rule followed in each period.

'Unconditional' follow Taylor rule

'Conditional' fix interest rate in t=1,2,3,4.

'Nonstochastic' set shocks in t>1 to zero (gives mean prediction as of t=0)

'Stochastic' shocks drawn from Normal, mean zero, variance indicated, in all periods



'Stochastic' shocks drawn from Normal, mean zero, variance indicated, in all periods