Involuntary Unemployment and the Business Cycle

Lawrence Christiano,
Mathias Trabandt (ECB)
and
Karl Walentin (Riksbank)
Background

• Much progress building DSGE models for the purpose of analyzing monetary policy.

• Consensus benchmark model: basic goods, labor markets, monetary policy.

• Extensions:
 – financial frictions.
 • Financing of investment, working capital, etc.
 – unemployment, labor force.
What We Do:

• We investigate a particular approach to modeling unemployment.
 – Hopenhayn and Nicolini (1997), Shavell and Weiss (1979)

• We explore the implications for monetary DSGE models.
 – Simple three equation NK model
 • NAIRU, Okun’s gap, natural rate of unemployment.
 – Standard empirical NK model (e.g., ACEL, CEE, SW)
 • Estimate the model.
 • Does well reproducing response of unemployment and labor force to three identified shocks.
Unemployment

• To be ‘unemployed’ in US data, must
 – be ‘willing and able’ to work.
 – recently, made efforts to find a job.

• Empirical evidence: losing your job is a bad thing.
 – consumption drops typically about 10 percent upon the loss of a job (Gruber, 1997, Chetty and Looney, 2006)
 – Much discussion in the press about the hardship experienced by the unemployed in the current recession.

• Current monetary DSGE models with ‘unemployment’:
 – Utility jumps when you lose your job.
 – Finding a job requires no effort.
 – US Census Bureau employee dropped into current monetary DSGE models would find zero unemployment.
What we do:

• Explore the simplest possible model of unemployment, which satisfies two key features of unemployment.

• To be unemployed:
 – Must have made recent efforts to find a job.
 • To find a job, household must make an effort, e, which increases the probability, $p(e)$, of finding a job.
 – Transition from employment to unemployment makes you worse off.
 • assume household search effort, e, is not publicly observable.
 • full insurance against household labor market outcomes is not possible.
 – under perfect consumption insurance, no one would make an effort to find a job.
Outline

• Insert our model of unemployment into

 – Simple Clarida-Gali-Gertler (CGG) NK model.

 – CEE model: evaluate model’s ability to match US macroeconomic data, including unemployment and labor force
CGG Model

• Goods Production:

\[Y_t = \left[\int_0^1 Y_{i,t}^{\lambda_f} \, di \right]^{\lambda_f}, \quad 1 \leq \lambda_f < \infty. \]

• Monopolists produce intermediate goods
 – Technology:
 \[Y_{i,t} = A_t h_{i,t} \]
 – Calvo sticky prices:
 \[P_{i,t} = \begin{cases}
 P_{i,t-1} & \text{with prob. } \xi_p \\
 \text{chosen optimally} & \text{with prob. } 1 - \xi_p
 \end{cases} \]
 – Enter competitive markets to hire labor.
CGG Model: Monetary Policy

• Taylor rule:

\[\hat{R}_t = \rho_R \hat{R}_{t-1} + (1 - \rho_R)[r_{\pi} \hat{\pi}_t + r_y \hat{x}_t] + \varepsilon_t \]

• Here:
 – \(\hat{x}_t \) output gap (percent deviation of output from efficient level)

• Efficient equilibrium:
 – Monopoly power and inflation distortions extinguished.
Households

• This is where the new stuff is........
Typical Household During Period

Draw privately observed, idiosyncratic shock, \(l \), from Uniform, \([0, 1]\), that determines utility cost of work:

\[
F + \zeta_t (1 + \sigma_L) l^{\sigma_L}.
\]

Household that stays out of labor market does not work and has utility

\[
\log c_t^{\text{out of labor force}}
\]

After observing \(l \), decide whether to join the labor force or stay out.

Household that joins labor force tries to find a job by choosing effort, \(e \), and receiving ex ante utility.

\[
p(e_t) \left[\log(c_t^w) - F - \zeta_t (1 + \sigma_L) l^{\sigma_L} - \frac{1}{2} e_t^2 \right] + (1 - p(e_t)) \left[\log(c_t^u) - \frac{1}{2} e_t^2 \right]
\]

\[
p(e_t) = \eta + ae_t
\]

At time \(t + 1 \)
Household Insurance

• They need it:
 – Idiosyncratic work aversion.
 – Job-finding effort, e, may or may not produce a job.

• Assume households gather into large families, like in Merz and Andolfatto
 – With complete information:
 • Households with low work aversion told to make big effort to find work.
 • All households given same consumption.
 • Not feasible with private information.

 – With private information
 • To give households incentive to look for work, must make them better off in case they find work.
Optimal Insurance

• Relation of family to household: standard principal/agent relationship.
 – family receives wage from working households
 – family observes current period employment status of household.

• For family with given C, h:
 – allocates consumption: c_t^w, c_t^{nw}
 – c_t^w/c_t^{nw} must be big enough to provide incentives.
 – must satisfy family resource constraint:
 \[h_t c_t^w + (1 - h_t) c_t^{nw} = C_t. \]
Family Indirect Utility Function

• Utility:

\[u(C_t, h_t, \zeta_t) = \log(C_t) - z(h_t, \zeta_t) \]

• Where

\[z(h_t, \zeta_t) = \log[h_t(e^{F+\zeta_t(1+\sigma_L)f(h_t,\zeta_t)^{\sigma_L}} - 1) + 1] \]

\[- \frac{\zeta_t^2 (1 + \sigma_L)\sigma_L^2}{2\sigma_L + 1} f(h_t, \zeta_t)^{2\sigma_L+1} - \eta \zeta_t \sigma_L f(h_t, \zeta_t)^{\sigma_L+1}. \]

• Clarida-Gali-Gertler utility function:

\[u(C_t, h_t, \zeta_t) = \log(C_t) - \zeta_t h_t^{1+\sigma_L} \]
Family Problem

\[
\max_{\{C_t, h_t, B_{t+1}\}} \quad E_0 \sum_{t=0}^{\infty} \beta^t [\log(C_t) - z(h_t, \zeta_t)]
\]

– Subject to:

\[
P_tC_t + B_{t+1} \leq B_t R_{t-1} + W_t h_t + Transfers \text{ and profits}_t.
\]

• Family takes market wage rate as given and tunes incentives so that marginal cost of extra work equals marginal benefit:

\[
C_t z_h(h_t, \zeta_t) = \frac{W_t}{P_t}.
\]
Observational Equivalence Result

• Because of the simplicity of the assumptions, the model is observationally equivalent to standard NK model, when represented in terms of output, interest rate, inflation:

\[
\hat{\pi}_t = \beta E_t \hat{\pi}_{t+1} + \frac{(1-\beta \xi_p)(1-\xi_p)}{\xi_p} (1 + \sigma_z) \hat{x}_t
\]

\[
\hat{x}_t = E_t \hat{x}_{t+1} - (\hat{R}_t - \hat{\pi}_{t+1} - \hat{R}^*_t).
\]

\[
\hat{R}_t = \rho_R \hat{R}_{t-1} + (1 - \rho_R) [r_{\pi} \hat{\pi}_t + r_y \hat{x}_t] + \varepsilon_t,
\]
Observational Equivalence Result

\[\hat{\pi}_t = \beta E_t \hat{\pi}_{t+1} + \frac{(1-\beta \xi_p)(1-\xi_p)}{\xi_p} (1 + \sigma_z) \hat{x}_t \]

\[\hat{x}_t = E_t \hat{x}_{t+1} - (\hat{R}_t - \hat{\pi}_{t+1} - \hat{R}_t^*) \cdot (1 + \sigma_z) \]

\[\hat{R}_t = \rho_R \hat{R}_{t-1} + (1 - \rho_R) [r_{\pi} \hat{\pi}_t + r_y \hat{x}_t] + \varepsilon_t, \]

\[\sigma_z \equiv \frac{z_{hh} h}{z_h} \]

‘curvature of disutility of labor’:
Unemployment Gap

- Can express everything in terms of unemployment gap:

\[u_t^g = -\kappa^{okun} \hat{x}_t, \quad \kappa^{okun} = \frac{a^2 \zeta \sigma_L^2 m^{\sigma_L} (1 - u)}{1 - u + a^2 \zeta \sigma_L^2 m^{\sigma_L}} > 0. \]

actual rate of unemployment \quad efficient level of unemployment

\[u_t^g = \underbrace{u_t}_{u_t^g} - \underbrace{u_t^*}_{\text{Non-accelerating rate of inflation level of unemployment, NAIRU}} \]
Unemployment Gap

\[
\hat{\pi}_t = \beta E_t \hat{\pi}_{t+1} - \kappa u^g_t
\]

\[
u^g_t = \kappa^{\text{okun}} E_t u^g_{t+1} + \kappa^{\text{okun}} \left(\hat{R}_t - \hat{\pi}_{t+1} - \hat{R}_t^* \right)
\]

\[
\hat{R}_t = \rho_R \hat{R}_{t-1} + (1 - \rho_R) \left[r_\pi \hat{\pi}_t - \frac{r_y}{\kappa^{\text{okun}}} u^g_t \right] + \varepsilon_t
\]

\[
\kappa \equiv \frac{(1 - \beta \xi_p)(1 - \xi_p)}{\xi_p} \frac{1 + \sigma_z}{\kappa^{\text{okun}}}
\]
Questions...

• A key distinguishing feature of the model is the limited information that prevents full insurance.

• What is the quantitative impact of limited information on the model?
Must Parameterize the Model

- Parameterization informal.
 - Subset of parameters standard.
 - Five parameters (search function and work aversion) novel.
Table 1: Structural Parameters of Small Model Held Fixed Across Numerical Experiments

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>β</td>
<td>$1.03^{-0.25}$</td>
<td>Discount factor</td>
</tr>
<tr>
<td>g_A</td>
<td>1.0047</td>
<td>Technology growth</td>
</tr>
<tr>
<td>$\check{\xi}_P$</td>
<td>0.75</td>
<td>Price stickiness</td>
</tr>
<tr>
<td>λ_f</td>
<td>1.2</td>
<td>Price markup</td>
</tr>
<tr>
<td>ρ_R</td>
<td>0.8</td>
<td>Taylor rule: interest smoothing</td>
</tr>
<tr>
<td>r_π</td>
<td>1.5</td>
<td>Taylor rule: inflation</td>
</tr>
<tr>
<td>r_y</td>
<td>0.2</td>
<td>Taylor rule: output gap</td>
</tr>
<tr>
<td>η_g</td>
<td>0.2</td>
<td>Government consumption share on GDP</td>
</tr>
</tbody>
</table>
‘New’ Parameters

• Disutility of work:

\[F + \zeta_t (1 + \sigma_L) l^{\sigma_L} \]

• Probability of finding work:

\[p(e_t) = \eta + ae_t \]

• Parameters:

\[F, \zeta, a, \eta, \sigma_L. \]

• Pin down 5 parameters by imposing 5 properties of steady state:

\[m, u, \sigma_z, k^{\text{okun}}, \bar{p} \]
Quantitative Impact of Limited Information

• Impact on:
 – total employment, labor force, welfare?

• What is the value of information?
Table 2: The Impact of Imperfect Information in the Small Model

<table>
<thead>
<tr>
<th>Variable</th>
<th>Involuntary Unemp. (Imperfect Info.)</th>
<th>Fixed Structural Params Full Info</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steady State Properties</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>m</td>
<td>0.67</td>
<td>0.69</td>
<td>Labor force</td>
</tr>
<tr>
<td>h</td>
<td>0.63</td>
<td>0.68</td>
<td>Employment</td>
</tr>
<tr>
<td>u</td>
<td>0.056</td>
<td>0.015</td>
<td>Unemployment rate</td>
</tr>
<tr>
<td>c^{nw}/c^w</td>
<td>0.18</td>
<td>1.0</td>
<td>Replacement ratio</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.189</td>
<td>Price (% of C) of info.a</td>
</tr>
<tr>
<td>Structural Parametersd</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a</td>
<td>0.53</td>
<td>0.53</td>
<td>Slope, $p(e)$</td>
</tr>
<tr>
<td>η</td>
<td>0.86</td>
<td>0.86</td>
<td>Intercept, $p(e)$</td>
</tr>
<tr>
<td>ζ</td>
<td>4.64</td>
<td>4.64</td>
<td>Slope, labor disutility</td>
</tr>
<tr>
<td>F</td>
<td>1.39</td>
<td>1.39</td>
<td>Intercept, labor disutility</td>
</tr>
<tr>
<td>σ_L</td>
<td>13.31</td>
<td>13.31</td>
<td>Power, labor disutility</td>
</tr>
<tr>
<td>Welfare Cost of Business Cycles</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Technology shock only</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>λ</td>
<td>0.520684131141325 0.566191290230633</td>
<td>% of consumption</td>
<td></td>
</tr>
<tr>
<td>Government consumption shock only</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>λ</td>
<td>0.112215458271869 0.125326644511370</td>
<td>% of consumption</td>
<td></td>
</tr>
<tr>
<td>Monetary policy shock only</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>λ</td>
<td>0.071331553871046 0.100111000086489</td>
<td>% of consumption</td>
<td></td>
</tr>
</tbody>
</table>
Put this all into a medium-sized DSGE Model

- Habit persistence in preferences
- Variable capital utilization.
- Investment adjustment costs.
- Wage setting frictions as in Erceg-Henderson-Levin.
Figure 2: Dynamic Responses of Non–Labor Market Variables to a Neutral Technology Shock

- Real GDP
- Inflation (GDP deflator)
- Federal Funds Rate
- Real Consumption
- Real Investment
- Capacity Utilization
- Rel. Price of Investment
- Hours Worked Per Capita
- Real Wage

Legend:
- VAR 95%
- VAR Mean
- Standard Model
- Involuntary Unemployment Model
Figure 3: Dynamic Responses of Non–Labor Market Variables to an Investment Specific Technology Shock

- Real GDP
- Inflation (GDP deflator)
- Federal Funds Rate
- Real Consumption
- Real Investment
- Capacity Utilization
- Rel. Price of Investment
- Hours Worked Per Capita
- Real Wage

VAR 95% | VAR Mean | Standard Model | Involuntary Unemployment Model
Figure 4: Dynamic Responses of Labor Market Variables to Three Shocks

Unemployment Rate

Monetary Shock

Labor Force

Neutral Tech. Shock

Unemployment Rate

Labor Force

Invest. Tech. Shock

VAR 95% VAR Mean Involuntary Unemployment Model
Model Prediction that Consumption Premium for Employed Households is Bigger in Boom

• Don’t have direct evidence on this (but, could get it!)

• Have time series on cross section variance of log, household consumption.

\[V_t = (1 - h_t) h_t \left(\log \left(\frac{c_t^w}{c_t^{nw}} \right) \right)^2. \]

• Heathcote, Perri and Violante (2010) show \(V \) is procyclical in three of past 5 recessions.
Another Question Raised by Analysis

• Does higher unemployment in recessions reflect reduced search intensity?

 – Maybe...

 – discouraged workers: people ‘available to work’ but are not currently looking because they think there are no jobs.

 – number jumped 70 percent, 2008Q1 to 2009Q1.
Conclusion

• Integrated a model of ‘involuntary unemployment’ into monetary DSGE model.

• Results:
 – Obtained a theory of the NAIRU
 – Able to match responses of unemployment and labor force to macro shocks.
 – Raises several empirical questions.

• Why introduce unemployment?
 – A policy variable of direct interest.
 – By bringing in more data, get a more precise read on output gap and real rate (Basistha and Startz (2004))
 – By bringing in more data, get a better read on unobserved shocks and may improve forecasts.