Perturbation and Projection
Methods for Solving DSGE Models

Discussion of projections taken from Christiano-Fisher, ‘Algorithms for Solving Dynamic Models with Occasionally
Binding Constraints’, 2000, Journal of Economic Dynamics and Control.

Discussion of perturbations taken from Judd’s textbook.

See also Kim, Kim, Schaumburg and Sims, 2008, cited below.



Outline

A Toy Example to lllustrate the basic ideas.
— Functional form characterization of model solution.
— Use of Projections and Perturbations.

e Neoclassical model.
— Projection methods
— Perturbation methods

e Stochastic Simulations and Impulse Responses

— Focus on perturbation solutions of order greater than
unity.

— The need for pruning.



Simple Example

Suppose that x is some exogenous variable
and that the following equation implicitly
defines y:

h(x,y) =0, forallx e X
Let the solution be defined by the ‘policy rule

g.
y = g(x)

‘Error function’
satisfying /

R(x;g) = h(x,g(x)) =0
forall x e X

4
4



The Need to Approximate

* Finding the policy rule, g, is a big problem
outside special cases

— ‘Infinite number of unknowns (i.e., one value of g
for each possible x) in an infinite number of
equations (i.e., one equation for each possible x).’

e Two approaches:

— projection and perturbation



Projection

Find a parametric function, g(x;v), where 7 is a
vector of parameters chosen so that it imitates
the property of the exact solution, i.e., R(x;g) =0
for all x € x, as well as possible.

Choose values for 7 so that

R(x;7) = h(x,8(x;7))
is close to zero for x € X .
The method is defined by how ‘close to zero’ is

defined and by the parametric function, g(x;7),
that is used.



Projection, continued

e Spectral and finite element approximations

— Spectral functions: functions, (x;v), in which
each parameter in 7 influences g(x;y) forall x e X

example: _ _
" Y1
g(ry) = D yiHix), y = |
i=0
Yn

H;(x) = x' ~ordinary polynominal (not computationaly efficient)
Hi(x) = Ti(p(x)),
T:(z) : [-1,1] » [-1,1], i” order Chebyshev polynomial

@ L X - [_111]



Projection, continued

— Finite element approximations: functions, £(x;7)
in which each parameter in ¥ influences g(x;7)
over only a subinterval of x € X

glx;y) ?’=[ Y1 Y2 Y3 Y4 V5 Ve V7 ]
V4

\
Y2 N

o




Projection, continued
e ‘Close to zero’: two methods

e Collocation, for n values of x: x1,x2,...,x, € X
choose n elements of 7 = [ Y1 ¥ ] so that

RGxiiy) = h(xi, 8Gei;v)) =0,i=1,...,n

— how you choose the grid of x’s matters...



Example of Importance of Grid Points

e Hereis an example, taken from a related problem, the problem
of interpolation.

— You get to evaluate a function on a set of grid points that you
select, and you must guess the shape of the function
between the grid points.

e Consider the function,

fik) = 1+1k2 ke [-5,5]

 Next slide shows what happens when you select 11 equally-
spaced grid points and interpolate by fitting a 10t order
polynomial.

— As you increase the number of grid points on a fixed interval
grid, oscillations in tails grow more and more violent.

e Chebyshev approximation theorem: distribute more points in
the tails (by selecting zeros of Chebyshev polynomial) and get
convergence in sup norm.



nJ

How You Select the Grid Points Matters
Function Approximation with Fixed Interval Grid
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Figure from Christiano-Fisher, JEDC, 1990



Function Approximation with Chebychev Zeros
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Projection, continued
e ‘Close to zero’: two methods

e Collocation, for n values of x: x1,x2,...,x, € X
choose n elements of 7 = [ Y1 o ¥ ] so that

RGxiiy) = h(xi, 8Gei;v)) =0,i=1,...,n

— how you choose the grid of x’s matters...

 Weighted Residual, for m>n values of
X X1.X2,....x, € X choosethen 'S

ZWJZh(X],gA(X],’)/)) — O’ I = 1,...,1’1
j=1



Perturbation

e Projection uses the ‘global’ behavior of the functional
equation to approximate solution.

— Problem: requires finding zeros of non-linear equations.
Iterative methods for doing this are a pain.

— Advantage: can easily adapt to situations the policy rule is
not continuous or simply non-differentiable (e.g.,
occasionally binding zero lower bound on interest rate).

e Perturbation method uses local properties of
functional equation and Implicit Function/Taylor’s
theorem to approximate solution.

— Advantage: can implement it using non-iterative methods.

— Possible disadvantages:
* may require enormously high derivatives to achieve a decent
global approximation.

* Does not work when there are important non-differentiabilities
(e.g., occasionally binding zero lower bound on interest rate).



Perturbation, cnt’d

e Suppose there is a point, x* € X, where we
know the value taken on by the function, g,
that we wish to approximate:

g(x*) = g*, some x*

e Use the implicit function theorem to
approximate g in a neighborhood of x*

* Note:
R(x;g) =0forallx e X

—

RO (x; g) = %R(x;g) — Oforallj, all x € X.



Perturbation, cnt’d

e Differentiate R with respect to xand evaluate
the result at x*:

ROG) = L g()lerr = et ,g7) + hae g)g () = 0

hl(X*ig*)
hZ(X*’g*)

> g (") = -
Do it again!

2
ROG) = “Loh(r, g0l = hus,8) + 2hia (', g)g ()

hao(x*,2*)[g' (x*)]° + ha(x*,g*)g" (x*).

— Solve this linearly for g" (x*).



Perturbation, cnt’d

* Preceding calculations deliver (assuming
enough differentiability, appropriate
invertibility, a high tolerance for painful

notation!), recursively:
g'(x*),g"(x*),...,g"(x*)

 Then, have the following Taylor’s series
approximation:

g(x) = g(x)
gx) =g"+g'(x") x (x —x*)

+ 5" () x (x—=x) 4+ (67) x (x - x7)"



Perturbation, cnt’d

e Check....
e Study the graph of

R(x; )

—over X € X to verify that it is everywhere close
to zero (or, at least in the region of interest).



Example of Implicit Function Theorem

, hi(x*,g*) x*
*) — _ = —=2— (h, had better not be zero!
g0 = ey — g )




Neoclassical Growth Model

e Objective:
& |
Eo D Buen), ule) = “—
=0

e Constraints:
C; + exp(qu.]_) Sﬂk;,at), [ = 0,1,2,....

a; = pa, 1+ &, e~Ee; =0, Eg? =V,

ks a;) = exp(ak,)exp(a;) + (1 —06)exp(k;)



Why Log Capital?

 Might hope to get an accurate solution.

e Consider the specialcase, a =y =1

— In this case, we know the solution is given by:
K1 = Paexp(a;)K?, K, = exp(k;)

— So, in terms of log capital, the solution is exactly

linear:
qu_]_ = |Og([3a) + a; + Otkt

— Solution methods often work with polynomials
(the perturbation method always does!) , so in
case, ¢ = ¥ = 1, you would get exactly the right
answer.

e We will return to this issue later.



Efficiency Condition

E;I:l/l, (],((kt, Clt) — exp(km_]_ 5)

Cir1 period ++1 marginal product of capital
— ,Bul<f(kt+l, pa; + th+1) — exp(kt+2)> fK(kt+1, pa; + th+1) ] = 0.

k:, a; ~given numbers
* Here, g1 ~random variable
time ¢ choice variable, k.1

e Parameter, o , indexes a set of models, with
the model of interest corresponding to

o=1



Solution
e A policy rule,

ki1 = gk, ay4,0).
e With the property:

R(k; a,,0,2) = Et{u’<],‘(kt,at) — eXIS[g(kt,at,G)j)
. \

kirl a1 B kirl Al ]
_ﬂu, g(kt,at;a),bat+68t+£ _exp g g(khat,a),bat"'agﬁi;g

kt+l Al
XfK(é(kt,at,G),bat + th+£>} = 0,

e forall a; k;, 0.



Projection Methods

e Let
g(khah 61 7)

— be a function with finite parameters (could be either
spectral or finite element, as before).

 Choose parameters,y, to make

R(kl"ahg;g)

— as close to zero as possible, over a range of values of
the state.

— use weighted residuals or Collocation.



Occasionally Binding Constraints

e Suppose we add the non-negativity constraint on
investment:

exp(g(ks,ar,0)) — (1 —0)exp(k;) >0

e Express problem in Lagrangian form and optimum is
characterized in terms of equality conditions with a
multiplier and with a complementary slackness condition
associated with the constraint.

e Conceptually straightforward to apply preceding method.
For details, see Christiano-Fisher, ‘Algorithms for Solving
Dynamic Models with Occasionally Binding Constraints’,
2000, Journal of Economic Dynamics and Control.

— This paper describes a wide range of strategies, including those

based on parameterizing the expectation function, that may be
easier, when constraints are occasionally bind.



Perturbation Approach

e Straightforward application of the perturbation approach, as in the simple
example, requires knowing the value taken on by the policy rule at a point.

e The overwhelming majority of models used in macro do have this
property.

— In these models, can compute non-stochastic steady state without any
knowledge of the policy rule, g.

— Non-stochastic steady state is k*such that

a=0 (nonstochastic steady state in no uncertainty case) o=0 (no uncertainty)
f_/R f_/R

k=gl &, 0 0

1

T ke iy |




Perturbation

* Error function:

R(k: a:,0,2) = Et{u’<}(kt,at) - eX[S[g(kt,at,G)j>

Cr+1

— Pu’ }‘(g(kt, a:,0),pa; +o&n1) —explg(glks, a:,0), pas + o€441, G)j

XfK(g(khat,G);Pat + Ggl‘+1)} — O’

— for all values of &;,a;,o.

e So, all order derivatives of R with respect to its
arguments are zero (assuming they exist!).



Four (Easy to Show) Results About
Perturbations

* Taylor series expansion of policy rule:

linear component of policy rule

g(ks,a;,0) =~ i+ gi(ky— k) + gqa, + goa\

second and higher order terms

A\

N\

N

+5 [gu (ke — k)2 + Gua? + 9560%] + gra(ks — K)a; + gio (ki — K)o + Gusa,o +...

N

- g5 = 0: to a first order approximation, ‘certainty equivalence’

— All terms found by solving linear equations, except coefficient on past
endogenous variable,&k% ,which requires solving for eigenvalues

— To second order approximation: slope terms certainty equivalent —

ko — aoc — 0

— Quadratic, higher order terms computed recursively.



First Order Perturbation

 Working out the following derivatives and
evaluating at &k = k*,a;, =0 =0

Rk(kt,at;G;g) — Ra(kt,aha;g) — RG(khahG;g) — O

‘problematic term’ Source of certainty equivalence

° |mp|ie53 \ In linear approximation

Ri = u"(fi — e2gr) — Pu'frrgr — Pu" (figr — €322 )k =

R, = U”(fa —e8g,) — ﬂu/[kaga + fkap] — ”(fkga +fap — €8[gkga + gupl)fk = 0

Ry, = —[u'e® + Bu" (fi — efgi)fx]gs = 0

Absence of arguments in these functions reflects they are evaluated in &k, = k*,a, =0 =10



Technical notes for following slide

u" (fi — e2gi) — Pu'frrg — Pu" (fige — e2gi )k = 0
 Jxn

8k~ (frgr — e5gi)fk = 0
/ka

16—t -
%f K
b ottt L Jerat =0
Folre g Jorai-o

e Simplify this further using:

]gk +esgifx =

Bfx ~steady state equation
fx = aK*texp(a) + (1-96), K = exp(k)
=aexp[(a—Dk+a]+(1-9)
fi = aexplak+a] + (1 —8)exp(k) = fxe?
fxe = ala—1)exp[(a —1)k+ a]
fxx = ala —1)K*?exp(a) = a(a - 1)exp[(a — 2)k + a] = free™®

e to obtain polynomial on next slide.



First Order, cont’d

Rewriting R; = Oterm:

%_[1+ % T Zl//J;flf]gk‘Fgl%:O
1

There are two solutions, 0 < gx <1, g > =

— Theory (see Stokey-Lucas) tells us to pick the smaller
one.

— In general, could be more than one eigenvalue less
than unity: multiple solutions.

Conditional on solution to €+ £« solved for
linearly using R, = 0 equation.

These results all generalize to multidimensional
case




Numerical Example

e Parameters taken from Prescott (1986):

B =0.99 y =2(20), «a = 0.36, § = 0.02, p = 0.95, V., = 0.01°

e Second order approximation:

3.88 0.98 (0.996) 0.06 (0.07) 0
g(ki,as1,€4,0) :? + ’é? (ke — k™) + ’_é? a; +’§? o
0.014 (0.00017) 0.067 (0.079) 0.000024 (0.00068) f_}\
+%[ 2 (k=K + Ga a2+ Zoo o2 ]
~0.035 (~0.028) 0 0

+ Zra (ki —k)a; + gro (ki —k)o+ g4 a:o



A Closer Look at the 29 Order
Approximation: Road Map

Log, versus linear approximation
Spurious steady state problem.
Comparison of 15t and 2" order approximation.

Impulse response functions (IRF) and spurious steady state
problem: toy example.

— Standard definition of IRF

— Linear approximation: easy!

— Nonlinear approximation:
e Computing IRF hard - requires stochastic simulation.

— Alternative definition of IRF.

Addressing the spurious steady state problem: pruning.
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actual capital stock, K', next period

Was

Log Capital a Good Idea? Maybe

Comparing Two Second Order Approximations

The two solutions are similar in neighborhood of steady state,
but differ far from steady state. Near zero, log capital works better.

We know that at zero initial capital, the optimal
(and only feasible) capital choice is zero.

Approximation based on -

=]

/
_ Steady state:
~ exp(3.88)=48.4

=
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Line dropping to zero at origin is solution based on log capital.
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Was Log Capital a Good Idea? Maybe Not

Comparing Two Second Order Approximations

Solid line. Approximation based on log approximation.
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Second (spurious) steady state! (K = 789)
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A Closer Look at Spurious Steady State in
Approximation based on Log K

e Because of scale problem, it is hard to see the
policy rule when graphed in the ‘natural way/,
k.,; against k, .

e Instead, will graph:

— k,,, - k,against k,—k*  (recall, k, = log(K, )).



0.98 0.063 0.014 0.067 0.000024 —0.035
Y1 = 8k Vit 8a art 5| Bk XVit Laa A t Loo — &ka X)Y:ily

2

v: = ki — k*, k; ~log, capital stock

Second order approximation of policy rule for log-linear capital

a, = 0, actual capital = 790

001 This is slightly higher than

g,,~>0. Precautionary motive.

a; = 4 x /Var(a,), capital = 461

0.005

\

-0.01 —




Spurious Steady State

e Setting a,=0 and ignoring g, (it’s small anyway),
the 2" order approximation to the policy rule is:

Vel = kYt T %gkky?
* This has two steady states: y,=0 and

_2(1-g0) _ 2(1-0.98) _
V=""gu ~ ooz 4%

e This corresponds to the following value of the
capital stock:
y =k—k* = log(KIK*)

because g.c ignored

K =exp(y+k*) Tr exp(2.86 + 3.9) = 790. 3 (after rounding)



Kt+1

2.5

15

0.5

Stylized Representation of 2"? Order
Approximation of Policy Rule

The shape of the policy rule to the
left of the first positive steady state
corresponds to what we know qualitatively.

In neoclassical model, second steady state seems far enough
to right that (perhaps) we don’t have to worry about it.

This (spurious) steady state marks a
transition to unstable dynamics.
Simulations would explode if capital
st‘ock got large enOL‘Jgh.

1.5 2

2.5



Comparing 15t and 2" Order
Approximation

* Following is a graph that compares the policy
rules implied by the first and second order
perturbation.

 The graph itself corresponds to the baseline
parameterization, and results are reported in
parentheses for risk aversion equal to 20.



‘If initial capital is 20 percent away from steady state, then capital
choice differs by 0.03 (0.035) percent between the two approximations.’

‘If shock is 6 standard deviations away from its mean, then capital
choice differs by 0.14 (0.18) percent between the two approximations’

/

0.04] 7
0.18}, A

0- 035*W* O 16 [ *\\ * B
0.03| | 014, | ]

o
o
N
al

0.1
0.02

o
o
[y
a1
o
o
oo

o
o
>

0.01

100%( ki, (an order) - k+1 (1St order) )

o
o
=

100%( k,,, (2" order) - k+1 (1* order) )

0.005

o
o
R

0 | | | O | |
-20 -10 0 10 20 -20 -10 0 10 20
100%(k, - K ), percent deviation of initial capital from steady state ~ 100*a, percent deviation of initial shock from steady state

Number in parentheses at top correspondto 7 = 20.



Impulse Response Functions,
Simulations, Pruning

 Impulse response function:

— Impact of a shock on expectation of future
variables.

Ely#jl€1,8hock, # 0] — E[y4,/Q~1,shock, = 0], j =0,1,2,...

— Impulse responses are useful for building intuition
about the economic properties of a model.

— Can also used for model estimation, if you have
the empirical analogs from VAR analysis.



Impulse Response Function, cnt’d

e Example: o
f_M
Vi =pPYir1 TE&;
e Obviously:  mar= Pyt \
E[)/t|Qt—1,8t + 0] - E[yt|Qt—1,8t = 0] = ¢
e Also
Verl = PYVe T 1
= PZJ/t—l + €11 + PE;
e So that:

E[)/t+1|Qz—1,8t] = ,02)/1—1 + P&y, E[)/t+1|Qt—1,€t = O] = Pz)/t—l
- E[yt+1|Qt—1,<9t] —E[ymlﬂt—l,sz = O] = PE&;

* [n general:
E[y¢+j|§2¢—1,8t * O] —E[)/t+j|Qt—1,8t = 0] = [ﬂgt



Impulse Responses, cnt’d

Easy in the linear system!

— Impulse responses not even a function of Q.4

Different story in our 2" order approximation,
especially because of the spurious steady
state..

/ Same form as our 2"? order approximation

Example:
Vi = pyet+ayiy + &

Obviously: . Easy...
pyi1t+ay? j+e, py1+ay? /

E[VAQt—l;gtj — 2?[)/t|Qt—1,<9t = O]: Et




IRF’s, cnt’d
 Too hard to compute IRF’s by analytic
formulas, when equations are not linear.

Vi = Pyi1+ayi, + &
e \What we need:

— Fix a value for Q.1 =pyr1 + ay?,

— Compute: our example

ElyuilQQea, €], j = 1,2,3,..., T, for agiven value of ¢, > 0
E[yl‘-l—j|Qt—118t = O],] = 1,2,3,...,T.

— Subtract:
ED/H-]"QZ—].’EZ:I _ED/t+j|Qt—1lgt — 0]1] — 112131---1T



IRF’s, cnt’d

e Computational strategy

— From a random number generator, draw:

1 @) (1)
8t+1’ 8t+2’ """ yEnr

— Using the stochastic equation, py+~1 + ay?, and the given &

compute oW 0
yt+l’yt+2’ s ’yt+T

— Repeat this, over and over again, R (big) times, to obtain

(1) (1)
yt+l’yt+2’ e VT

(R) (R)
yt+1’yt+2""’yt+T

— Finally,

E[)/l‘-i-let—l,gl‘ — % Zy5_21j — 1121-'-1T

R
=1



IRF’s, cnt’d

e Toget E[ys|Qr1,6,=0],;=123,...,T, just
repeat the preceding calculations, except set
Er = 0

 To do the previous calculations, need R and T.
— Dynare will do these calculations.
— In the stoch_simul command,

* Ris set by including the argument, replic=R.
e Tis set by including irf=T.



A Different Type of Impulse Response Function

 The previous concept of an impulse response
function required specifying the information
set, Q.1 .

— How to specify this is not often discussed...in part
because with linear solutions it is irrelevant.

— With nonlinear solutions, €2-1 makes a
difference.

— How to choose , ; ?
— One possibility: nonstochastic steady state.
— Another possibility: stochastic mean.



A Different IRF

Note that
E[)/t+j|Qt—1lgt] _E[)/l‘+j|Ql‘—118l‘ — O:I!J — 112131'-'1T

—is a function of Q, ;.

— Evaluate the IRF at the mean of Q,; as follows

e Suppose there is date 0, date t and date T, where T>t
and t is itself large.

 Draw R sets of shocks (no need to draw &)

1) (@) 1 @ Q) (1)
€0 €1 a1 EL1HELD yE T

(R) .(R) R) (R) .(R) (R)
Eo 1€1 11 €L EL1IE LD yEpT



A Different IRF

e Usingg; # 0, &, = Otogether with

1 @ 1 QO @D (1)

€0 181 v & 1 ERTHELD e yEnT
R) (R) ®) ®) _®) (R)
€0 181 1 &1 ER11ELD ks y €T
e Compute two sets:
(1) 1) 1 @ Q) Q) 1)
Yo Y1 v Vi Vi ViV o Vit

(R) (R R) (B (R) _(R) (R)
Yo V1o Ve Vuir Ve Var

e The period t+j IRF is computed by averaging across

I=1,...,R, for given t+j, j=0,1,...,T. Then, subtract, as
before.

 In Dynare, tis set with drop=t parameter in
stoch_simul command.



Simulations

e The computation of impulse responses, when
the solution is nonlinear, involves simulations.

 The simulations can be a basis for computing
second moments and other statistics.

e The simulated data can be compared with
actual data, to evaluate the empirical fit of the
model.



Pruning

e All these simulations must confront a potentially
major problem.

— The additional spurious steady states introduced by

2"d order approximations introduce the possibility of
explosive behavior.

/e Convex, so once

7 you get into this
region, you really
blow up, generating
NaN and Inf in
MATLAB.

Actual capital

25l
oL
-
+
+
N4
sl

K

— Although we have seen that this explosiveness is not
so likely in neoclassical model, that model is

nevertheless useful for thinking about explosiveness
and spurious steady states.

e Quite likely in larger sized model, even for USA-sized shocks.



Pruning, cnt’d

e Example (closely related to neoclassical model
solution):

yi=pye1+ayi,+&, p=0.8,a=0.5 E¢? =0, 0 =0.10

After a few
big positive
shock, this
process will
explode.

y t+1

45 degree line .

| |
0 0.2

Vi



Simulations, std dev = /10

solid line: y; = py.1 + ay?, + &

x —line: y, = pyr1 + &
\ \ \ \

Two lines virtually the same.
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Simulations, std dev=o0

solid line: y, = py.1 + ay? | + &

x line: y; = pyr1 + &

\

By period 71, this hits MATLAB’s Inf and remains there.
i
i
%j
Y

.2"d order approximation has gone awry!

Two lines wildly different......
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Pruning, cnt’d

 Must do something about the explosive behavior.

 Dynare and others take the approach described
In :

— Kim, Jinill, Sunghyun Kim, Ernst Schaumburg, and
Christopher A. Sims, 2008, “Calculating and using
second-order accurate solutions of discrete time
dynamic equilibrium models,” Journal of Economic
Dynamics and Control, 32(11), 3397-3414.



Pruning

This is a procedure for simulating the nonlinear
difference equation, that avoids the explosions.

First, draw a sequence, ¢1,€2,...,&ér

Next, solve for y1,7,,...,pr in the linear
component of the process:

Vi = pVer1 + &;

The (‘pruned’) solution to the 2"9 order difference
equation is yu,y2,...,¥r In

Vi = pyi1+oPig + &
Note that this cannot explode.



Simulations, std dev = /10

e ‘ N |
0.02— y 41 ‘ é‘“l] I | ‘l‘u i _
*‘ ‘ ] y | " l =
0.011 ] , | i ’Il / ‘ ’ , ‘ i
% ol T T
Ve © / I ‘ i U ’ ‘ 1 l ’ l’
-0.01 ] 1 I ‘ ‘ l A l ‘“ . l | " 1
i ik ’ ’v I ! '
-0.02 ﬁ ‘l’ l | Ly ' ’
T
ou- solid line: y, = py,1 +apfy + & (‘pruned) |t ] .
x—line: , = ppr1 + & ~ The two lines roughly coincide.
pai | | | | | | | 7]

Vi



y t+1

0.5
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Simulations, std dev =0

solid line: y,
x —line: y, = pyr1 + ¢
\ \

—

T
N

T k‘b

= pyr1 +ay?, + g (‘pruned)

| The two lines now differ a lot.
| | | | | | |
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Conclusion

For modest US-sized fluctuations and for aggregate quantities, it may be
reasonable to work with first order perturbations.

— This assumption deserves much further testing.
— Can do this by studying the error function.
— Also, try fancier approximations and see if it changes your results.

One alternative to first order perturbations is higher order perturbations.

— These must be handled with care, as they are characterized by spurious steady
states, which may be the transition point to unstable dynamics.

— Must do some sort of pruning to compute IRF’s, or just to simulate data.

An alternative is to apply projection methods.
— Perhaps these have less problems with spurious steady states.
— Computation of solutions is more cumbersome in this case.

First order perturbation: linearize (or, log-linearize) equilibrium conditions
around non-stochastic steady state and solve the resulting system.

— This approach assumes ‘certainty equivalence’. Ok, as a first order
approximation.



List of endogenous variables determined at t

Solution by Linearization
* (log) Linearized Equilibrium Conditions:

E/oozm1 + a1z, + a2z 1 + Posy1 + P1s:] =0

e Posit Linear Solution:
St%t = 0.
zi = Aziq + Bsy Exogenous shocks

e To satisfy equil conditions, A and B must:

oA’ +a1A+al =0, F=(Bo+aoB)P+[B1+ (aod+0a1)B] =0

e |f there is exactly one A with eigenvalues less
than unity in absolute value, that’s the solution.
Otherwise, multiple solutions.

 Conditional on A, solve linear system for B.





